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ABSTRACT This paper addresses the problems related to the mapless navigation control of wheeled
mobile robots based on deep learning technology. The traditional navigation control framework is based
on a global map of the environment, and its navigation performance depends on the quality of the global
map. In this paper, we proposes a mapless Light Detection and Ranging (LiDAR) navigation control method
for wheeled mobile robots based on deep imitation learning. The proposed method is a data-driven control
method that directly uses LiDAR sensors and relative target position for mobile robot navigation control.
A deep convolutional neural network (CNN) model is proposed to predict motion control commands of
the mobile robot without the requirement of the global map to achieve navigation control of the mobile
robot in unknown environments. While collecting the training dataset, we manipulated the mobile robot to
avoid obstacles through manual control and recorded the raw data of the LiDAR sensor, the relative target
position, and the corresponding motion control commands. Next, we applied a data augmentation method
on the recorded samples to increase the number of training samples in the dataset. In the network model
design, the proposed CNNmodel consists of a LiDAR CNNmodule to extract LiDAR features and a motion
predictionmodule to predict themotion behavior of the robot. In themodel training phase, the proposed CNN
model learns the mapping between the input sensor data and the desired motion behavior through end-to-end
imitation learning. Experimental results show that the proposed mapless LiDAR navigation control method
can safely navigate the mobile robot in four unseen environments with an average success rate of 75%.
Therefore, the proposed mapless LiDAR navigation control system is effective for robot navigation control
in an unknown environment without the global map.

INDEX TERMS Deep imitation learning, end-to-end learning, mapless LiDAR navigation control, behavior
cloning.

I. INTRODUCTION
Navigation control is one of the core functions of autonomous
mobile robots; it enables the robots to successfully complete
the task of motion control and obstacle avoidance in the
working environment. Figure 1(a) shows the architecture of
the traditional map-based mobile robot navigation control
system [1], which is a layered architecture composed of map-
ping, planning, and tracking control systems. The mapping
system is used to construct a global map of the unknown
environment. The planning system includes a global planner
and a local planner to provide the optimal motion trajec-
tory for the mobile robot to perform navigation tasks such
as target approaching or obstacle avoidance. Both global
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planner and local planner need to use the global map, sensor
information, and the absolute target position to compute the
optimal path trajectory and the motion control commands,
respectively. According to [2], each system of the traditional
map-based navigation framework represents a challenging
research topic, and their integration often leads to poor
computing performance due to large computational errors.
In addition, the navigation performance of the traditional
map-based navigation framework depends on the quality of
the global map, which is very sensitive to sensor noise. This
requirement may limit the ability of the navigation system to
manage unknown or dynamic environments [2].

To simplify the architecture of the traditional map-based
navigation control system, the development of mapless
LiDAR navigation technology for wheeled mobile robots
has received more and more attention in recent years.
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Figure 1(b) shows the system architecture of the existing
deep learning-based mapless LiDAR navigation control sys-
tem, which employs the neural network model to predict
the motion control commands for the robot to approach
the target while avoiding obstacles. Compared with tradi-
tional map-based navigation technology, the existing deep
learning-based mapless navigation technology has two major
advantages:

(1) It releases the requirement of global map information.
This advantage makes the performance of the navigation
system independent of the quality of the global map, but it
depends on the diversity of the training dataset.

(2) It directly uses the sensor information and the rela-
tive target position to predict the corresponding motion con-
trol commands. This advantage simplifies the complexity of
the navigation system by using the neural network model.
However, a potential flaw of this simplification is that the
user may need to retrain the entire neural network model if
the hardware specification of the mobile platform is changed.

Several mapless navigation control methods have been
proposed in the literature. Based on the types of sensors,
we divide the existing mapless navigation control methods
into two approaches, namely the vision-based approach and
the LiDAR-based approach. The vision-based approach uses
RGB cameras to capture environmental images and a deep
CNN model to learn the mapping between the observed
images and the corresponding motion control commands,
which can directly drive the robot to perform the navi-
gation control in an unknown environment. For example,
Kanayama et al. [3] proposed a two-mode mapless visual
navigation system for mobile robots based on deep CNN
models. The proposed navigation system is composed of two
modules, namely the approach module and the positioning
module. The approach module detects the landmarks in the
environment to determine the velocity which directs the robot
to move close to the target. The positioning module con-
sists of a deep CNN model to calculate the moving distance
from the current position to the target position. Experimental
results show that this visual mapless navigation system is
able to navigate the robot in the first-time-seen environments.
Similar research can also be found in the references [4]
and [5].

On the other hand, the LiDAR-based approach uses LiDAR
sensors to obtain point cloud information of the surrounding
environment and a deep CNN model to learn the mapping
between the observed point clouds and the corresponding
navigation control commands without the global map infor-
mation. Recently, some mapless LiDAR navigation control
methods have been published in the literature. Figure 2 shows
the existing mapless LiDAR navigation control methods,
which can be divided into two categories. The first cate-
gory is based on data clustering technology to deal with
scene segmentation problems. The second category is based
on deep learning technology, which can be further divided
into training methods based on reinforcement learning [6]
and imitation learning [7]. The former can be used to solve

FIGURE 1. System architecture of (a) the traditional map-based
navigation control system, which is a layered architecture composed of
mapping, planning, and tracking control systems, and (b) the existing
deep learning-based mapless navigation control system.

FIGURE 2. Categories of the existing mapless LiDAR navigation control
methods.

the problem of motion behavior classification and motion
behavior analysis; the latter is useful in dealing with the
problem of motion behavior cloning.

The purpose of the mapless navigation method based on
point cloud segmentation processing is to use the geometric
surface features of the LiDAR point cloud to segment the road
area in the scene and to plan the motion trajectory of the area.
For example, Ort et al. proposed amapless driving framework
for autonomous vehicle navigation, which combines sparse
topological maps for global navigation with a sensor-based
perception system for local navigation [8]. The sensor-based
perception system uses a 3D laser scanner mounted on the
vehicle for planning safe trajectories in the local frame based
on a road segmentation algorithm, which aims to obtain the
road boundary points in the sensor swath of the vehicle.
Experimental results show that this framework allows the
vehicle to navigate road networks without detailed prior maps
in a rural unknown environment. Similar research can also be
found in the reference [9].

Due to the rise of deep learning technology in recent
years, its applications have become more diverse. With deep
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learning technology, mapless navigation control methods can
achieve more robust navigation results. The main purpose
of the reinforcement learning method is to determine the
best action based on environmental feedback to maximize
the overall reward. The classification problem of navigation
control commands is to classify the output commands of
the navigation system into several fixed categories accord-
ing to the environmental conditions. The motion behavior
classification method based on reinforcement learning can
be applied to this classification problem to train the opti-
mal classifier that can predict the correct motion command
category based on the sensing information. For example,
Qiang et al. [10] proposed a model-free mapless navigation
method for mobile robots based on reinforcement learning.
They designed an end-to-end navigation model that uses
LiDAR sensor data as input and one of the five possible
motion actions as output. After training the model through
reinforcement learning, the mobile robot can safely reach
the navigation target in an unknown environment without
prior maps. References [11] and [12] also proposed simi-
lar research on this topic. A good review of reinforcement
learning-based navigation techniques compared to traditional
map-based navigation methods can be found in [2].

The motion behavior analysis method based on reinforce-
ment learning is a regression analysis between the output
motion control commands of the navigation system and the
input environment perception and target position data. For
example, Tai et al. [13] proposed a learning-based mapless
motion planner, which takes the laser scan data and the rel-
ative target position as input and the continuous navigation
commands as output. They applied an asynchronous deep
reinforcement learning method to train an end-to-end map-
less motion planner in the virtual environment. Experimental
results show that the trained planner can be directly applied
in unseen virtual and real environments. Pfeiffer et al. [14]
proposed a target-driven mapless navigation policy based on
a combination of imitation and reinforcement learning. They
designed a neural network model, which uses the sensor
measurements and the relative target position as input and
the required control commands as output. The model was
trained in a sequential fashion by using the result from imita-
tion learning to initialize the reinforcement learning method.
Their results show that target-driven demonstrations through
imitation learning significantly improve the exploration
during reinforcement learning.

Imitation learning means learning from the demonstra-
tion so that the network model can imitate the behavior of
the demonstration. In the training process, the end-to-end
learning method is used to make the neural network model
learn the demonstration behavior given by the expert strategy,
so that the predictive behavior of the model can become sim-
ilar to the behavior of the expert strategy. Hence, the purpose
of the navigation control method based on imitation learn-
ing is to learn the best mapping between the output motion
action of the navigation controller and the input LiDAR
sensing data and the relative target position. For example,

Khaksar et al. [15] proposed a mapless neuro-fuzzy motion
planner learned from a virtual experience model, which gen-
erates enough training data to train the adaptive neuro-fuzzy
inference system. Pfeiffer et al. [16] proposed a data-driven
motion planning approach based on a feature-based maxi-
mum entropy model, which is trained to predict the joint
navigation behavior of heterogeneous groups of agents based
on the demonstration of human-human interactions. In [17],
Pfeiffer et al. proposed a target-oriented end-to-end naviga-
tion model that can learn the complex mapping from raw
2D-laser range findings and a target position to the required
motion commands for a robotic platform. Hamandi et al. [18]
proposed a human-aware navigationmodel in which the robot
mimics humans to navigate safely in the crowds. The pro-
posed navigation model also processes LiDAR scans as input
to navigate the robot to the target position. Hence, the main
advantage of imitation learning is that it is very useful when
an expert system is available to provide the desired behavior
for the network model to learn the optimal policy by imi-
tating the behavior of the expert. However, the efficiency
of imitation learning depends on the diversity of behaviors
of the expert system to cover various situations. Therefore,
to find ways to increase the behavior diversity of the expert
system is an important issue in the application of imitation
learning.

In this paper, we propose a mapless LiDAR navigation
control system based on an end-to-end CNN model, which is
trained through imitation learning. The proposed navigation
system directly uses the LiDAR sensor data and the relative
target position as input, and outputs the motion control com-
mands required by the mobile robot. In the training phase,
we use a regression method to train the model end-to-end
to learn the mapping between input data and output com-
mands and apply the trained model to navigation control.
Moreover, we also propose a novel data augmentationmethod
to increase the diversity of training samples to improve the
efficiency of imitation learning. The contributions of this
paper are summarized in the following three points:

(1) A new CNN-based navigation control model is pro-
posed, which can obtain better training results by increasing
the dimension of input LiDAR data.

(2) We propose a data augmentation method that can
increase the diversity of training samples so that the trained
model can operate in an unknown environment.

(3) By collecting training data in the real environment and
using the proposed data augmentation method to increase the
size of the training dataset, the trained model can obtain good
navigation control performance in the real environment.

Experimental results show that the proposed LiDAR navi-
gation control system based on end-to-end imitation learning
achieves good navigation control performance of the wheeled
mobile robot. In a known environment, the proposed navi-
gation control system can safely control the mobile robot to
avoid obstacles and reach the target position. When operating
in an unknown environment, the proposed navigation control
system can reach the target position with an average success
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FIGURE 3. Architecture of the proposed mapless LiDAR navigation control system for wheeled
mobile robots based on end-to-end imitation learning.

rate of 75%. Therefore, the proposed mapless navigation
control system is practically applicable in real environments.

The rest of this paper is organized as follows. Section II
describes the architecture of the proposed mapless naviga-
tion control system. Section III introduces the LiDAR signal
CNN model and the motion prediction neural network model
proposed in this paper. Section IV presents the collected
training dataset and the proposed data augmentation method.
Section V reports the experimental results to evaluate the
navigation control performance of the proposed method in
different environments. Section VI concludes this work and
provides recommendations for future work.

II. SYSTEM ARCHITECTURE
Figure 3 shows the architecture of the proposed mapless
LiDAR navigation control system based on end-to-end imita-
tion learning, in which the wheeled mobile robot is equipped
with a 3D laser scanner to capture the point cloud of the
surrounding environment. When the 3D point cloud of the
surrounding environment, has been received, the proposed
mapless navigation control system performs point cloud pre-
processing on the 3D point cloud information to obtain the
LiDAR sensing data. In addition, the robot motion informa-
tion is obtained from the odometry of the mobile platform.
Next, we use the Laser_scan_matcher [19] provided in the
Robot Operating System (ROS) to obtain the robot position
information by fusing the LiDAR point cloud and the robot
motion information. When the user manually gives the target
position information, the proposed navigation control system
performs/initiates a coordinate conversion process on the

given target position information to obtain the target position
information relative to the current robot position.

As shown in Figure 3, the proposed navigation motion
controller comprises of a navigation control CNN model and
an end-to-end imitation learning algorithm.When performing
navigation tasks, the proposed navigation control CNNmodel
takes the extracted LiDAR sensing data and the relative target
position as input, and outputs linear and angular velocity
commands to the mobile platform. To learn the navigation
control behavior provided by the expert strategy, we applied
an end-to-end imitation learning algorithm to train the pro-
posed navigation control CNN model offline. The detailed
training process is described in Section III.

Figure 4 shows the architecture of the proposed navigation
control neural networkmodel, which is divided into twomod-
els. The first one is a LiDAR signal CNNmodel that includes
a feature extraction module for extracting features of LiDAR
sensing data, and a residual network module for generating
key point cloud feature maps. The second one is a motion
prediction neural network model for motion command pre-
diction. In the design of this model, we preprocess the relative
target position through a fully connected (FC) layer and input
the result into the data fusion module together with the point
cloud feature maps. Finally, we use the motion prediction
module to predict motion control commands. Section III also
introduces the detailed design of the proposed navigation
control CNN model for motion command prediction.
Remark 1: In the proposed navigation system, the robot

position is obtained from the Laser_scan_matcher node in
ROS, which is a frame-to-frame laser odometry based on
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FIGURE 4. Architecture of the proposed navigation control CNN model.

FIGURE 5. Detailed architecture of the LiDAR signal CNN model, which is implemented based on
the design in [15].

laser scan match between consecutive laser scans. More
specifically, the laser odometry used in this node applies
a point-to-line iterative closest point algorithm [20] on two
consecutive laser scans to estimate the motion of the robot
while updating the robot position relative to the starting posi-
tion. The Laser_scan_matcher node can operate with wheel
odometry to speed up the scan match process by providing
a guess for the current position of the sensor. Therefore,
in an indoor environment suitable for scan match processing,
this node can effectively solve the problem of accumulated
odometry errors. However, in an open wide environment, this
node may reduce the accuracy of robot localization due to the
increase in the scan match error. Interested readers can refer
to [19] and [20] for more detailed information.

III. THE PROPOSED NAVIGATION CONTROL CNN MODEL
In this section, we introduce the design of the proposed navi-
gation control CNNmodel for mapless navigation of wheeled
mobile robots.

A. LIDAR SIGNAL CNN MODEL
Figure 5 shows the detailed architecture of the proposed
LiDAR signal CNNmodel, which is inspired from the design
presented in [17]. The authors in [17] proposed a CNNmodel
based on the ResNet architecture [21] to process laser scans
obtained from a 2DLiDAR sensor, which provides a vector of
distance values of the surrounding environment. In contrast,
the proposed navigation control system uses a 3D LiDAR

sensor to capture a distance matrix of the surrounding envi-
ronment and converts this distance matrix into a 3D point
cloud matrix of the regional environment. Next, a point cloud
preprocessing module is adopted to reduce the dimension of
the 3D point cloud matrix that outputs a 1080-by-3 point
cloud matrix, which is defined as the LiDAR sensing data.
This data is the input data of the proposed CNN model.

As shown in Figure 5, the proposed CNN model is divided
into a feature extraction module and a residual network
(ResNet) module. The former is built by using two convo-
lutional blocks and one maximum pooling (MaxPool) layer.
Each convolutional block is composed of a 2D convolutional
layer with ReLU [22] activation function and batch nor-
malization (BN) layer for data normalization. The latter is
designed and implemented based on the ResNet architecture
to reduce the complexity of training and increase the speed of
learning. Finally, we use an average pooling (AvgPool) layer
to output the point cloud feature maps to complete the point
cloud feature extraction process.

Figure 6 shows the processing steps of the proposed point
cloud preprocessing, which is divided into two steps, namely
point cloud extraction, and point cloud library (PCL) filtering.
We used ROS to connect the LiDAR sensor and read laser
scans from the LiDAR through RJ-45 network cable. In the
point cloud extraction step, after receiving the laser scans
from the LiDAR sensor node in ROS, we convert the received
data into 3D point clouds, and then convert these point clouds
into the PCL file format [23]. In the PCL filtering step,
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FIGURE 6. Processing steps of the proposed point cloud preprocessing.

FIGURE 7. Detailed architecture of the proposed motion prediction neural network model.

we perform two filtering processes. The first one uses the
PassThrough filter to set the size of a 3D cuboid to filter the
point clouds outside the cuboid. The purpose of this process
is to filter out the point clouds that are far away from the
robot to retain the more important point cloud data. However,
after processing by the PassThrough filter, the number of
remaining point clouds is not fixed. Therefore, the second one
uses the RandomSample filter to filter the remaining point
clouds and output a fixed number of point clouds, which is
the input data of the LiDAR signal CNN model.

B. MOTION PREDICTION NEURAL NETWORK MODEL
Figure 7 shows the architecture of the proposed motion
prediction neural network model, which is modified from
the neural network model presented in [17]. The proposed
neural network model is built on five FC layers with dimen-
sions (210, 1024, 1024, 512, 2). The first FC layer uses the
linear activation function to increase the dimension of the
input relative target position, which is calculated based on
the coordinate conversion of the given target position with
respect to the current robot location. After concatenating the
high-dimensional target position information and the point
cloud feature vector to form a hybrid feature vector, two FC
layers with the ReLU activation function are used to perform
nonlinear transformation and dimensionality reduction oper-
ations on the hybrid feature vector. The last two FC layers
use the linear activation function to perform the mapping
between the low-dimensional hybrid feature vector and the
output linear and angular velocity commands.

LetL andLf denote the LiDAR sensing data and the corre-
sponding point cloud feature maps, respectively. Assume that
the LiDAR signal CNN model is represented by a nonlinear
mapping function πf . Then, the relationship between L and

Lf can be expressed asLf = πf (L), where the dimension ofL
is fixed to 1080×3. LetCd = (Xd ,Yd , θd ) denote the desired
relative target position given by the user, where (Xd ,Yd ) is
the plane coordinate of the desired relative target point, and
θd is the desired relative orientation angle; CM = (v, ω)
the predicted motion control command, where v is the linear
velocity command, and ω is the angular velocity command.
Assume that the proposed motion prediction neural network
model is formulated by a nonlinear mapping function πϕ .
Then, the relationship between the input data Lf , Cd and
the output command CM can be described by the following
formula

CM = πφ(Lf ,Cd ), (1)

where the input data Cd is obtained from the user-defined
target position (XT ,YT , θT ) and the current robot position
(XR,YR, θR). Note that the current robot position can be
obtained from a mobile robot localization algorithm, such as
the Laser_scan_matcher method used in the proposed naviga-
tion control system. Then, the desired relative target position
Cd can be calculated by the following coordinate conversion
formulaXdYd

θd

 =
 cos θR sin θR 0
− sin θR cos θR 0

0 0 1

XT − XRYT − YR
θT − θR

 , (2)

where the current robot position (XR,YR, θR) is continuously
updated during the navigation task. Note that the physical
meaning of the coordinate conversion formula (2) is the
transformation of the target position from the world frame
to the robot base frame. Therefore, when the desired relative
target position converges to zero, it indicates that the robot is
already at the desired target position.

117532 VOLUME 9, 2021



C.-Y. Tsai et al.: Mapless LiDAR Navigation Control of Wheeled Mobile Robots

FIGURE 8. Evolution of MAE with respect to different dimensions of the input FC layer of the relative target position.

FIGURE 9. Experimental field for the preliminary training dataset
collection.

In the model training phase, we first constructed a large-
scale training dataset. Let �train = {(Li,Cdi, ĈMi)}|i=1∼Ntrain
and �test = {(Lj,Cdj, ĈMj)}|j=1∼Ntest denote, respectively,
the constructed training and testing dataset, where Li is the
i-th LiDAR sensing data, Cdi the i-th desired relative target
position, and ĈMi the i-th desired motion control commands.
In this study, we collected a total of 250,000 training samples,
of which 200,000 samples were used as the training dataset
(Ntrain = 200, 000), and the other 50,000 samples were used
as the testing dataset (Ntest = 50, 000). During the model
training process, we randomly divided the training dataset
into several batches to train the proposed navigation control
CNNmodel.We used theMean-Absolute-Error (MAE) as the
loss function for training

LMAE (�batch, πφ, πf )

=
1

Nbatch

Nbatch∑
k=1

∣∣∣ĈMk − πφ(Cdk , πf (Lk ))
∣∣∣ (3)

where �batch = {(Lk ,Cdk , ĈMk )}|k=1∼Nbatch ⊂ �train is a
batch of the training dataset, and Nbatch � Ntrain is the batch
size. Based on the MAE loss function (3), we optimized both
the LiDAR signal CNN model and the motion prediction
neural network model such that

π̂φ, π̂f = argmin
πφ ,πf

LMAE (�batch, πφ, πf ). (4)

FIGURE 10. Four behaviors and the corresponding velocity control
commands of the wheeled mobile robot defined in the training dataset.

Finally, the optimal navigation control CNNmodel is given
by π̂φ(Cd , π̂f (L)).
In the model testing phase, we evaluated the performance

of the optimized navigation control CNN model based on
the MAE loss function LMAE (�test , π̂φ, π̂f ) calculated from
the testing dataset �test . We observed from the experimen-
tal results that the MAE loss value of the optimized nav-
igation control CNN model tested on the testing dataset is
LMAE (�test , π̂φ, π̂f ) = 0.1137.

C. INFLUENCE OF DIFFERENT DIMENSIONS OF THE
INPUT FC LAYER OF THE RELATIVE TARGET
POSITION ON MODEL TRAINING
In this section, we study the influence of the different dimen-
sions of the input FC layer of the relative target position on
the training of the proposed navigation control CNN model.
Figure 8 shows the evolution ofMAEwith respect to different
dimensions of this FC layer from 3 to 300. It can be seen from
Figure 8 that the use of a 3-dimensional FC layer results in the
worst performance of model training. In contrast, when the
dimension of the input FC layer is increased to 210, the best
performance of model training can be obtained. Therefore,
we use the 210-dimensional input FC layer as the default
setting of the proposed motion prediction neural network
model.
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FIGURE 11. Some examples of affine transformations used in the proposed data augmentation
method.

FIGURE 12. Graphic illustration of the data merging processing approach used in the proposed
data augmentation method.

FIGURE 13. The wheeled mobile robot (P3-DX) equipped with a 3D LiDAR
sensor (Velodyne-16) used in the experiments.

Remark 2: The difference between the proposed CNN
model and the original model in reference [17] is twofold.
First, the original model is only suitable for 2D LiDAR,

TABLE 1. Changes in the number of training samples before and after
using the proposed data augmentation method.

whereas the proposed model is expanded to be used for 3D
LiDAR by integrating a point cloud preprocessing module.
Second, the original model does not have an input FC layer
for the relative target position. On the contrary, the pro-
posed model adds an input FC layer to improve the learning
accuracy of the CNN model, as shown in Figure 8. Hence,
the navigation performance of the proposed model can be
improved.
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FIGURE 14. Four unseen environments used in the experiments to evaluate the performance of the proposed navigation
control CNN model.

FIGURE 15. Experimental result of the proposed mapless navigation control system in the UE1.

IV. PREPARATION OF TRAINING DATASET
This section presents the collection of the training dataset
and the proposed data augmentation methods to increase the
number of training samples.

A. COLLECTION OF THE TRAINING DATASET
In this study, we first collected a preliminary training
dataset by manually controlling a wheeled mobile robot
(Pioneer P3-DX [24]) equipped with a 3D LiDAR sensor
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TABLE 2. Experimental results of the five experiments of the robot mapless navigation in the UE1.

FIGURE 16. Experimental result of the proposed mapless navigation control system in the UE2.

TABLE 3. Experimental results of the five experiments of the robot mapless navigation in the UE2.

(Velodyne VLP-16 [25]). The robot navigated in an experi-
mental field. Figure 9 shows the experimental field for the
preliminary training dataset collection. A notebook computer
was placed on the mobile robot to collect LiDAR sensor
information, robot motion control commands, and the relative
target positions.

While collecting the training data, we placed the robot in
the experimental field and manually controlled the robot to
navigate among six specific locations (the red dots from A
to F), as shown in Figure 9. In the manual navigation control
task, we recorded the surrounding point cloud information,
the relative target positions, and all the control commands
of the navigation process as expert strategies. The starting
point of the navigation task starts from point A, passes

through point B to point F in order (sequence), and finally
returns to point A. When performing navigation control,
the motion trajectory of the robot is maintained at the mid-
point of the movable space. If the robot encounters an obsta-
cle, we controlled the robot to perform obstacle avoidance
actions.

In order to control the motion of the mobile robot, we used
the ROS system to connect the robot through the RS232 inter-
face. In this work, we defined four control behaviors to
navigate the mobile robot in the experimental field. Figure 10
shows these four behaviors and the corresponding velocity
control commands of the wheeled mobile robot. These com-
mands are defined as the output ground truth in the training
dataset.
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FIGURE 17. Experimental result of the proposed mapless navigation control system in the UE3.

TABLE 4. Experimental results of the five experiments of the robot mapless navigation in the UE3.

B. THE PROPOSED DATA AUGMENTATION METHOD
After obtaining the preliminary training dataset recorded in
the real environment, we performed a data augmentation pro-
cessing on the recorded training samples to form a large-scale
training dataset. First, we applied multiple affine transfor-
mations, such as rotating 90 degrees clockwise, flipping
180 degrees horizontally, flipping 180 degrees vertically, etc.,
to the recorded LiDARpoint cloud data to obtainmultiple sets
of new data. Figure 11 shows some examples of affine trans-
formations used in the proposed data augmentation method.
Note that the output ground truth of each augmented new data
is the same as that of the original data.

Second, we propose a new data augmentation method
based on a data merging process to increase the training
samples by merging multiple consecutive training data into
a new training data. Figure 12 illustrates the concept of the
proposed data augmentation method. Let Cdij denote the rel-
ative position from target point i to target point j. In Figure 12,
there are three target points to guide the mobile robot to avoid
an obstacle in the corridor. When we sequentially recorded
the training samples of the robot navigation from Cd01 to
Cd23, we perform the data merging process on the recorded
data to generate new training samples between two different

target points offline, such as the new robot navigation path
Cd02 and Cd13. By doing so, we can efficiently increase the
navigation distance of the robot in the training sample so
that the diversity of the augmented training dataset can be
improved. Table 1 records the changes in the number of train-
ing samples before and after using the proposed data augmen-
tation method. At the beginning, we recorded 15,625 training
samples in the preliminary training dataset through man-
ual navigation control of the mobile robot. After applying
multiple affine transformations to the preliminary training
samples, the number of the training samples increased to
125,000 samples. Finally, a large-scale training dataset with
250,000 samples was created by applying the data merging
process on the augmented 125,000 samples.

V. EXPERIMENTAL RESULTS
We trained the proposed navigation control CNN model
using Tensorflow Keras framework running on a desktop
computer equipped with an Nvidia RTX 2080Ti GPU, and
then implemented it on a laptop to control a wheeled mobile
robot equipped with a 3D LiDAR sensor. Figure 13 shows
the wheeled mobile robot and the 3D LiDAR sensor used in
the experiment. We used the ROS framework to control the
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FIGURE 18. Experimental result of the proposed mapless navigation control system in the UE4.

TABLE 5. Experimental results of the five experiments of the robot mapless navigation in the UE4.

mobile robot and the LiDAR sensor to test and evaluate the
performance of the proposed navigation control method.

Figure 14 shows four unseen environments used to evaluate
the performance of mobile robot navigation control based on
the proposed navigation control CNN model. These unseen
environments are considered as common scenes in the indoor
environments. For example, UE1 and UE2 are indoor cor-
ridor scenes, and UE3 and UE4 are indoor hall scenes. For
each unseen environment, we performed five times of the
mapless navigation control on the mobile robot and recorded
the desired target position and the final robot position to
evaluate the success rate of the navigation control task in
an unseen environment. In the experiment, we define the
condition of successful navigation as the error distance within
0.4m between the desired target position and the final robot
position.

A. EXPERIMENTAL RESULTS OF THE ROBOT MAPLESS
NAVIGATION IN THE UE1
Table 2 lists the results of five experiments of the mapless
navigation control of the mobile robot in the UE1. As shown
in Table 2, after five experiments, the robot successfully
navigated to the desired target position four times. Therefore,
the average success rate of the mapless navigation con-
trol task in the UE1 reaches 80%. In addition, in the four

successful navigation experiments, the longest navigation
distance was about 10.21 meters, and the maximum error
distance was 0.19 meters.

Figure 15 shows the image sequence of the mobile robot
performing mapless navigation in the first experiment. First,
we placed the robot at the starting point shown in Figure 15
and set the desired target position to (5.0m, -2.5m). From
Point (2) to Point (4), the robot autonomously approached
the desired target position with a smooth motion trajectory.
At Point (5), the robot autonomously performed a right-turn
motion to correct its orientation angle to face the desired
target position. Finally, the robot successfully reached the
desired target position at Point (6) with an error distance of
about 0.09m.

B. EXPERIMENTAL RESULTS OF THE ROBOT MAPLESS
NAVIGATION IN THE UE2
Table 3 lists the results of the five experiments of the mapless
navigation control of the mobile robot in the UE2, which
is an unseen corridor environment. After five experiments,
the robot also successfully navigated to the desired target
position four times. Therefore, the average success rate of the
mapless navigation control task in the UE2 is 80%. In the four
successful navigation experiments, the longest navigation
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TABLE 6. Experimental results of the method proposed in [17] for the four unseen environments for comparison.

TABLE 7. Comparison of the proposed method with other state-of-the-art
methods.

distance was about 13.01 meters, and the maximum error
distance was 0.13 meters.

Figure 16 presents the image sequence of the first navi-
gation experiment in the UE2. In this experiment, we tested
whether the robot could complete the mapless navigation
control task in the unseen corridor environment. At the
beginning of the experiment, we placed the robot at the
starting point and set the desired target position to the position
where the robot needs to turn twice in the corridor. From
Point (1) to Point (3), the robot successfully completed the
first autonomous steering action with smooth motion trajec-
tory. From Point (3) to Point (6), the robot completed the sec-
ond autonomous steering action and successfully reached the
desired target position of Point (6) with an error distance of
about 0.13m.

C. EXPERIMENTAL RESULTS OF THE ROBOT
MAPLESS NAVIGATION IN THE UE3
Table 4 records the results of the five experiments of the
mapless navigation control of the mobile robot in the UE3,

which is an unseen wide open environment. After five exper-
iments, the robot successfully reached the desired target posi-
tion only three times. Therefore, the average success rate
of the mapless navigation control task in the UE3 is 60%.
In the three successful navigation experiments, the longest
navigation distance was about 5.05 meters, and the maximum
error distance was 0.19 meters.

Figure 17 shows the image sequence of the first navigation
experiment in the UE3. In this experiment, we tested the
performance of the proposed mapless navigation control sys-
tem in the unseen open wide environment. At the beginning
of the experiment, we placed the robot at Point (1) shown
in Figure 17 and set the desired target position to (3.0m,
1.0m). From Point (2) to Point (5), the robot approached
the desired target position with a smooth motion trajectory.
At Point (6), the robot successfully reached the desired target
position with an error distance of about 0.14m. During the
experiments in the UE3, we found that the navigation perfor-
mance of the proposed mapless navigation control system in
an unseen open wide environment may be reduced due to the
increased difficulty of the robot localization.

D. EXPERIMENTAL RESULTS OF THE ROBOT MAPLESS
NAVIGATION IN THE UE4
Table 5 records the results of the five experiments of the
mapless navigation control of the mobile robot in the UE4,
which is an unseen wide-open environment with an archi-
tectural structure conducive to robot localization. After five
experiments, the robot successfully reached the desired target
position four times. Therefore, the average success rate of the
mapless navigation control task in the UE4 is 80%. In the four
successful navigation experiments, the longest navigation
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distance was 8.28 meters, and the maximum error distance
was 0.33 meters.

Figure 18 shows the image sequence of the first navigation
experiment in the UE4. In this experiment, the mobile robot
performed navigation tasks near a cylindrical structure in the
unseen openwide environment. At the beginning of the exper-
iment, we placed the robot at Point (1) shown in Figure 18
and set the desired target position to (5.0m, 2.0m). From
Point (2) to Point (6), the robot tried to avoid the obstacle
while approaching the desired target position with a smooth
motion trajectory. At Point (7), the robot successfully reached
the desired target position with an error distance of about
0.29m. The experimental results in the UE4 show that by
improving the reliability of the robot localization, the naviga-
tion performance of the proposed mapless navigation control
system in an unseen open wide environment can be improved.
For a video clip of the experimental results, kindly refer to the
online webpage in [26].

E. COMPARISON OF RESULTS WITH SOME
EXISTING METHODS
In this section, we first compare the performance of the
proposed method with the CNN model introduced in the lit-
erature [17], which is highly relevant to this work. We imple-
mented the CNN model in [17] in Tensorflow Keras and
trained the model using the proposed large-scale training
dataset. After training the model, we tested its navigation
performance in the same four unseen environments, each
of which contains five experiments. Table 6 records the
experimental results of twenty experiments conducted for the
purpose of the comparison using themethod proposed in [17].
It can be seen from Table 6 that the comparison method
performs well in the first two unseen environments with an
average success rate of 80%. However, in UE3 and UE4,
the average success rate of the comparison method reduced
to 40%. This problem is also mentioned in the literature [17]
that one limitation of the comparison method is wide open
spaces with a lot of glass and clutter around, which is like
the last two unseen environments in our proposed work.
Therefore, the overall average success rate of the comparison
method [17] only reaches 60%, which is lower than the
success rate of the proposed method which is 75%.

We next compare the performance of the proposed method
with other state-of-the-art methods. Table 7 presents compari-
son results between the proposed method and all comparison
methods, in which the data of all comparison methods are
obtained directly from the literature [14] and [27]. In Table 7,
the learning types are divided into three types: imitation
learning (IL), reinforcement learning (RL), and reinforced
imitation learning (R-IL). In addition, the average success
rate results of all comparison methods were calculated in
virtual environments. The c1000 method is a neural net-
work model trained by IL training with 1000 trajectories in
a complex map. The CPO method uses constrained policy
optimization (CPO) to train the neural network model during
RL training. The c1000-CPO method uses the c1000 model

as the pre-trained model and uses the CPO to update the
model during RL training. It can be seen from Table 7 that
the proposed method is superior to the c1000 and CPO meth-
ods and provides comparable performance to the c100-CPO
method.

On the other hand, SPN (support point-based navigation)
and SPN-v2 are two recently proposed LiDAR navigation
network models that can be used with different range sensors
and different installation positions. The SPN {360|10|5|0}
method represents the SPN model that uses a LiDAR con-
figuration with 360-degree field of view, 10-degree angular
resolution, a maximum detection range of 5 meters, and a
distance of 0 meter between the center point of the range
sensor and the mobile robot. It can be seen from Table 7 that
the proposed method provides comparable performance to
the two SPN models configured with low-resolution LiDAR
sensors.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a mapless LiDAR navigation con-
trol method for a wheeled mobile robot based on deep imita-
tion learning to solve the mapless navigation control problem
in unknown environments. The proposed navigation control
method is a data-driven control method based on a deep CNN
model, which consists of a LiDAR signal CNN model for
generating point cloud feature maps and a motion prediction
neural network model for predicting motion velocity com-
mands. In addition, a data augmentation method is proposed
to increase the number of training samples in the preliminary
training dataset recorded in the real environment. After the
data augmentation process, a large-scale training dataset with
250,000 samples was generated in this study.

In this experiment, four unseen environments are used to
evaluate the navigation performance of the proposed mapless
navigation control method. Experimental results show that
the proposed mapless navigation control method has been
tested twenty times in the four unseen environments, and
the average success rate reached 75%. Therefore, the pro-
posed mapless navigation control method is effective for
robot navigation control in an unknown environment without
the global map. We also compared the proposed method
with some existing methods, and the experimental results
show that the proposed method outperforms the two existing
IL-based methods and provides comparable performance to
the R-IL-based method in terms of the overall average suc-
cess rate. Moreover, compared with the recently proposed
SPN-based method, the proposed method also provides com-
parable performance to the SPN model equipped with a
low-resolution LiDAR sensor.

In future work, we will try to increase the data diversity of
the training database so that the trained navigation network
model can have better navigation performance in unknown
and complex environments. In addition, we also consider
using reinforcement learning to improve the robustness of
the navigation network model and achieve better mapless
navigation performance.
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