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ABSTRACT A dual-band quad-polarized transmitarray (TA) is designed in a common aperture operating at
25.9/39.8 GHz. Using narrow strip patches as cells, the 25.9 GHz cells are arranged in the ±45◦ direction,
and the 39.8 GHz cells are arranged in the 0/90◦ direction in the formed square gap of the 25.9 GHz cells
to realize a compact design with four polarization directions. In each band of 25.9/39.8 GHz, the proposed
TA is dual-polarization designed. Measurements show that the expected beams can be achieved, and their
3 dB gain bandwidth covers almost all of the 5G bands n258 (24.25–27.5 GHz) and n260 (37–440 GHz).
This TA has potential application value in 5G construction.

INDEX TERMS Dual-band, quad-polarized, mm-Wave, 5G, transmitarray.

I. INTRODUCTION
The function of transmitarrays (TAs) or reflectarrays (RAs) is
to converge a divergent spherical wave into a plane wave by
placing unit cells with different phase shifts at different posi-
tions on the plane. TAs and RAs [1]–[14] are both effective
solutions to achieve high gain aperture antennas, but the TAs
have no feed shielding effect, which is more convenient for
installation and use. For the dual-band TA, themain challenge
is to make the cells independently change the transmission
phase in two bands with low transmission loss, but it has
a wider application space. Most of the existing dual-band
TAs [15]–[27] are single polarized, and only a few dual-
band TAs [28]–[31] adopt a dual polarized design, but they
are single polarized in each band. Therefore, it is signifi-
cant to design a dual band TA, which has dual-polarization
designed in each band.

The 5G bands n258 (24.25–27.5 GHz) and n260
(37–440 GHz) are used for 5G mm-wave communication,
so it is meaningful to design a dual-band quad-polarized
TA operating at 25.9 GHz and 39.8 GHz. In this paper,
a dual-band quad-polarized TA is proposed with±45◦ polar-
ization at 25.9 GHz and 0/90◦ polarization at 39.8 GHz.
The transmission cell used here is a narrow strip patch [31].
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First, dual polarization is realized by interleaving the linear
polarization cells, then similar higher band cells are placed
between the gaps of the lower band cells, and finally, the
interaction between the cells is adjusted. To make the best use
of space, the lower band cells are tilted 45◦, and the higher
band cells are placed horizontally or vertically, which makes
the design more compact. Because of the high frequency,
the phase changes rapidly with the size, so the narrow side
of the strip patch remains unchanged, and the size changes
are reflected on the longer side. This kind of operation can
reduce the influence of machining error and maximize the
design of higher frequency cells under the same machining
error.

The dual-band quad-polarized TA designed in this paper
has a total of 1681 linear polarization units, including four
polarization directions. The final experimental results show
that each polarization direction has a good gain and cross
polarization level performance.

II. CELL DESIGN
A. INITIAL CELL
To conveniently describe the polarization direction of
the electric field, a schematic diagram of the dual-band
quad-polarized TA is shown here, in which each polarization
direction can be represented by the angle with the x-axis,
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as shown in Fig. 1. The initial cell of the TA is shown
in Fig. 2. It is made up of two rectangular strips that are
perpendicular to each other and printed on each side of
two identical 0.508 mm-thick dielectric substrates (Rogers
RO4350B, εr1 = 3.66, tan δ1 = 0.0037). The two rectangular
strips are connected by a metalized via, and the two substrates
are connected by a 0.1mm-thick adhesive film (Rogers4450F,
εr1 = 3.52, tan δ1 = 0.0042), with the floor in the middle.
This kind of transmit cell has the function of polarization
rotation, and this kind of polarization rotation cell has a wider
passband than that of a nonrotation cell [31].

FIGURE 1. Schematic diagram of the dual-band quad-polarized TA.

FIGURE 2. Initial cell design model.

B. DUAL-BAND QUAD-POLARIZED CELL
The −45◦-pol cell is placed at the four corners of the 45◦-
pol cell, and a uniform dual-polarization array configuration
can be formed [32]. Then, the 0◦ and 90◦ polarized patch
cells are placed in the square space in the dual polarization
array, and a dual-band quad-polarized array configuration can
be formed. The formation process is shown in Fig. 3. The
four different polarization linear polarization arrays share one
aperture. The ±45◦-pol cells are designed at 25.9 GHz, and
0◦/90◦-pol cells are designed at 39.8 GHz. The relationship
between the polarization directions of ±45◦, 0◦ and 90◦ and
the coordinate axis is shown in Fig. 1.

The design model of a dual-band quad-polarized cell in
the simulation software is shown in Fig. 4. Floquet ports and

FIGURE 3. Formation process of dual bands and four polarizations.

FIGURE 4. Design model of a dual-band quad-polarized cell.

periodic boundary conditions are used to simulate the cell.
The parameter identification of the cell size is the same as
in Fig. 2, and the specific design size is shown in Table 1.
The coefficient k in Table 1 is used to define different sizes of
cells. Furthermore, the coefficient k is mainly used to adjust
the size of variables a and c. Setting different k values can
make the cell realize different phase responses. We set the
value interval of k as 0.02 to ensure higher phase accuracy,
so 16 different phases are used in first band and 8 different
phases are used in second band. And due to the limited
machining accuracy, it is meaningless to continue to reduce
the value interval of k.

TABLE 1. Design size of cell.

Generally, the greater the distance between the two dif-
ferently polarized cells, the better the cross-polarization
transmission performance (since the transmission cell here
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FIGURE 5. Relationship between the transmission S-parameter
and L of 25.9 GHz cells: (a) Co-pol S21, (b) Cross-pol S21.

FIGURE 6. Current simulation of the dual-band quad-polarized cell:
(a) 25.9 GHz excited, (b) 39.8 GHz excited.

has a 90◦ polarization rotation, homopolar transmission
is unnecessary). The L is determined by scanning parame-
ters. Fig. 5 shows the relationship between the transmission
S-parameter and L of 25.9 GHz cells, and as L increases, the
copolarized transmission S21 decreases. When L is 5 mm,
the copolarized transmission S21 of 25.9 GHz cell is low, and
when L continues to increase, the copolarized transmission
S21 decreases slightly, but its cross-polarized transmission
S21 decreases. Therefore, 5 mm is chosen as the distance
between the cells for consideration of transmission perfor-
mance and polarization isolation. The 39.8 GHz cells are far-
ther apart in electrical length, so suppression of copolarized
transmission should not be considered too much.

The current simulation of the dual-band quad-polarized
cell is shown in Fig. 6.When the 25.9 GHz or 39.8 GHz cell is
excited separately, there is almost no current in the uninspired
cell with different frequencies or polarizations. Therefore, the

FIGURE 7. Cell characteristics: (a) 25.9 GHz amplitude-frequency
characteristic curve, (b) 39.8 GHz amplitude-frequency characteristic
curve, (c) 25.9 GHz phase-frequency characteristic curve, and (d) 39.8 GHz
phase-frequency characteristic curve.

linearly polarized cells placed in this way have little influence
on each other, and the cells are very independent.

C. CELL CHARACTERISTICS: AMPLITUDE AND PHASE
This cell can obtain different phase responses by fine-tuning
its size. The strip patch at the receiving end can be
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FIGURE 8. Phase surface extraction: (a) 25.9 GHz/−45◦-pol,
(b) 25.9 GHz/45◦-pol, (c) 39.8 GHz/0◦-pol, and (d) 39.8 GHz/90◦-pol.

FIGURE 9. Design model of dual-band quad-polarized TA.

symmetrically designed to achieve 0◦ and 180◦ phase shifts,
so the cell only needs to meet the phase-shifting range of
0◦ to 180◦ when tuning the size. In addition, 360◦ phase
coverage can be achieved through mirror symmetry. Consid-
ering the problem of processing accuracy, the value spacing
of k in Table 1 is set to 0.02, that is, the minimum change in
size is 2.5 mil length. Designed at 25.9 GHz is 4-bit cells with
k ranging from 0.93 to 1.07. Since 39.8 GHz cells are smaller
in size, 3-bit cells are designed at 39.8 GHz, with k ranging
from 0.58 to 0.64.

The amplitude-frequency response of the cells is shown
in Fig. 7(a) and (b). The −3 dB transmission bandwidth of
a single cell is approximately 3.6 GHz but shared by all
25.9 GHz cells is only 1.4 GHz and by all 39.8 GHz cells
is only 1.3 GHz. In a very wide bandwidth, more than half of
the cells have an interpolation loss between 0 dB and 2 dB,
which can greatly reduce the average transmission loss,
so the total gain bandwidth is wider when designing arrays.
Fig. 7(c) and (d) are phase-frequency response curves.
The phase values are normalized to 0–360◦. There are
8 different cells at 25.9 GHz and 4 different cells

FIGURE 10. Physical model of dual-band quad-polarized TA.

FIGURE 11. Gain test results of proposed TA: (a) Lower band, (b) Higher
band.

TABLE 2. Phase-shift for different size cells.

at 39.8 GHz, and the total phase shift range of all cells
covers almost 0–180◦. Since this kind of cell has a 1-bit
response at a fixed size, it can achieve a 0◦ or 180◦

response by mirroring itself symmetrically, so the original
cells plus the symmetrically operated cells can cover almost
1–360◦. Their respective simulation phase shifts are shown
in Table 2, where the cells with coefficients k between
0.93 and 1.07 are defined as #1∼#8 (25.9 GHz cells) and
the symmetrically operated cells are #9∼#16. The cells with
k between 0.58 and 0.64 are defined as ∗1 ∼ ∗4 (39.8 GHz
cells), and the symmetrically operated cells are ∗5 ∼ ∗8.
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FIGURE 12. E-plane Pattern test results of dual-band quad-polarized TA: (a) 25.9 GHz/45◦-pol,
(b) 25.9 GHz/−45◦-pol, (c) 39.8 GHz/0◦-pol, and (d) 39.8 GHz/90◦-pol.

III. TRANSMITARRAY
A. PHASE SURFACE EXTRACTION
When the antenna is fed by the horn, it is necessary to know
the phase value received by each cell at each position of
the array to determine the phase shift to be compensated.
Therefore, it is necessary to extract the radiated electric field
phase of the horn on the receiving surface of the array.
To irradiate the radiation energy of the horn on the receiving
surface of the array as much as possible, the F/D is 0.69. The
horn selected here is a linear polarization standard gain horn
lb-28-15 working in the Ka-band. Because the position of
each polarization cell is different, the phase plane of each
linear polarization array needs to be extracted separately.
A total of four phase planes need to be extracted, as shown
in Fig. 8, and the phase extraction value of each grid point is
quantized according to the phase in Table 2.

B. SIMULATIONS AND MEASUREMENTS OF THE TA
The dual-band quad-polarized TA prototype is simulated and
tested. The feed used here is a linear polarization standard
gain horn lb-28–15. Because the test band is wide, we divided
the frequency into several segments for calibration and test-
ing. The array has 20 × 20 cells at 25.9 GHz/−45◦-pol,
21 × 21 cells at 25.9 GHz/45◦-pol, 20 × 21 cells at
39.8 GHz/0◦-pol and 21 × 20 cells at 39.8 GHz/90◦-pol.
A total of 1681 linearly polarized cells were arranged alter-
nately. The design model of the dual-band quad-polarized
TA is shown in Fig. 9. The size of the substrate is 120 mm ×
120 mm, and the area of radiation cells is 105 mm× 105 mm.
Four linearly polarized arrays are excited by changing the
excitation frequency and rotating direction of the horn.

To reduce the influence of the fixing device, an acrylic plate
and nylon column are used to fix the TA. The physical model
of the dual-band quad-polarized TA is shown in Fig. 10. The
feed horn is fixed on the acrylic plate by bolts, and there are
fixing holes to allow the horn to rotate on the acrylic plate.
Here, only four central beams are simulated and tested, and
the gain and pattern test results are shown in Fig. 11 and
Fig. 12. Because the array is large and difficult to simulate,
only one polarization is simulated at each band.

The test results show that the peak gain is 26.1 dBi/
45◦-pol and 25.8/−45◦-pol in the lower band (23–229 GHz),
which is approximately 1 dB lower than the simulation result
(27.1/26.8 dBi), and its 3 dB gain bandwidth is approximately
24.2–27.6 GHz. The peak gain of 27.9 dBi in the higher band
(37–442 GHz) is 1.2 dB lower than that of the simulation
result (29.1 dBi), and its 3 dB gain bandwidth is approx-
imately 37.7–41.5 GHz. The pattern in Fig. 12 is normal-
ized with the simulated gain as a reference. The tested and
simulated patterns have the same ascending and descending
trend from 0◦ to 90◦, and all sidelobes and cross-polarization
levels tested are below −17 dB on average. The higher the
angle is, the higher the cross-polarization level is. This is
caused by the polarization rotation in the transmission cells.
The polarization direction of the horn is the cross-polarization
direction of the array. Therefore, when the horn radiates at a
large angle, the gain overflows the array, which causes the
cross-polarization level to become higher.

Taking 105 mm × 105 mm as the aperture size of the
array, according to the test results, the actual aperture effi-
ciency of the dual-band quad-polarized TA is 39.4%/45◦-pol,
36.8%/−45◦-pol at 25.9 GHz, and 25.3% at 39.8 GHz
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TABLE 3. Comparison of dual-band TA.

because of the large spacing of the higher band cells. Table 3
shows the parameter comparison between some existing
dual-band transmission arrays and the proposed TA. Com-
pared with the dual-band or dual-polarized transmission
array, the array designed in this paper is not inferior in
aperture efficiency, polarization purity, array size, gain band-
width, and other parameters. Moreover, dual-polarization
transmission is realized in each band, which is a highlight of
this design.

IV. CONCLUSION
Using the common radiation aperture method, a dual-band
quad-polarized TA operating at 25.9/39.8 GHz is presented.
The 3 dB gain bandwidth can almost cover all of the
5G bands n258 (24.25–27.5 GHz) and n260 (37–40 GHz).
It has been proven that the proposed TA can achieve
good beam convergence and polarization independence at
each polarization and can be used for 5G millimeter-wave
applications.
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