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ABSTRACT In this paper we consider the characterisation of linear statistically thinned arrays. Their
side-lobe level is often given in terms of the angle independent array factor variance, which does not capture
the actual statistical fluctuations of the power pattern around its average, or by some analytical formulas
which overcome this limitation by estimating the probability distribution of the peak side-lobe level. Here,
the aim is to refine existing theory in order to obtain a more precise estimation of the statistical features of
thinned arrays. For the general asymmetric case, we exploit an analytical expression of the variance of the
power pattern. This measures the dispersion of the power pattern around its average and in conjunction with
the Chebyshev’s inequality allows to find a lower bound, for each fixed angle, of the power pattern probability
distribution. For symmetric thinned arrays, the power pattern probability distribution is precisely obtained
without resorting to some strong assumptions which are usually employed to get tractable expressions. Also,
this result, along with the up-crossing method, allows to obtain a theoretical and new expression for the
peak side-lobe level probability distribution as well as for the deviation between the thinned array factor
and the reference one. The theoretical findings are checked through a Monte Carlo numerical analysis. The
numerical results show that the theoretical predictions work very well and are more accurate than previous
literature estimations. Finally, since the symmetric thinned arrays actually exploit half the available degrees
of freedom, a numerical comparison is run with the asymmetric ones. The comparison shows that asymmetric
and symmetric statistically thinned arrays exhibit similar performances.

INDEX TERMS Density-tapered arrays, nonuniformly-spaced arrays, random arrays, side-lobe level
characterisation, standardised error characterisation, thinned arrays.

I. INTRODUCTION
Nonuniformly-spaced arrays consist of elements arranged at
a non-constant separation spacing [1]. They are of interest
since fewer elements than uniformly-spaced arrays can be
employed and, in principle, the array factor shaping can be
achieved without the amplitude-tapering [2], [3].

Different strategies, such as heuristic, deterministic, prob-
abilistic (the ones of interest herein) and optimisation based
approaches, have been proposed for obtaining a non-uniform
arrangement.

The paper by Unz [4] is most likely the first one that deals
with non-uniformly spaced arrays and addresses their study
using matrix techniques.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

The paper by Willey [5] and the contribution by Doyle [1]
can be considered the pioneering and seminal results towards
the development of the deterministic density-tapering. Basi-
cally, these approaches are founded in some procedures by
which the spatial density of a nonuniformly-spaced array is
determined according to the amplitude tapering of a reference
array. In this framework, the contribution by Willey is rather
heuristic but provides an estimation of the peak side-lobe
level (PSLL) in terms of the number of elements and their
average separation. Note that this estimation is the same as
reported by Andreasen [6]. Doyle theory is more rigorous.
Indeed, it shows how to non-uniformly deploy the elements
so as to minimise a weighted square error metric. This metric
tends to promote good pattern matching (between the refer-
ence and the non-uniform one) especially around the main
beam. This justifies the increasing of side-lobes far from
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the main beam, which is commonly experienced by space
tapering procedures.

The contribution by Harrington [7] mainly concerns the
reduction of the side-lobe level (SLL) by introducing small
perturbations of the initial uniform positions.

The contribution by Bucci et al. [2] presents a modified
Doyle approach for the case of linear arrays, whereas [8]
focuses on the application of the Doyle method to circularly
symmetric arrays.

Another noteworthy methodology is that of
Ishimaru et al. [9]–[11], in which the analysis/synthesis of
nonuniformly-spaced arrays is carried out by transforming
the array factor using the Poisson summation formula and
hence introducing the so-called source number and source
position functions. This way, the array factor is recast as a sum
of an infinite number of radiation patterns due to continuous
sources. However, this methodology does not allow for a
simple generalisation of the synthesis process since, in order
to obtain analytically tractable relations, it is necessary to
impose some constraints on the source number and source
position functions.

As to the statistically designed density-tapered
arrays (statistically thinned arrays), the contributions by
Skolnik et al. [12] and by Lo [13] are the most theoret-
ically significant for research in this field. In particular,
Skolnik et al. [12] focus on statistically thinned arrays which
are obtained by randomly removing elements from the refer-
ence filled array according to a probabilistic law dictated by
the amplitude tapering of the reference one. However, their
theory covers up to the estimation of the variance of the array
factor, which is considered as the average SLL. Lo [13] also
considered the case of statistically thinned arrays. In particu-
lar, he adopted the same methodology as he developed for the
so-called totally random arrays [14], by considering highly
thinned cases. The estimation of the PSLL is correctly cast as
the statistical characterisation of the supremum of the array
factor magnitude in the side-lobe region but the sampling
method is adopted, which is theoretically questionable and
does not necessarily return accurate results. Also, the array
factor is assumed stationary.

Finally, there is a large body of research that casts the
synthesis of arrays, and particularly of the thinned ones, as an
optimization problem and many different algorithms have
been presented in the literature. [15].

In this paper we focus only on statistically thinned arrays.
Although they have been around for a long time, they
are still of interest because of their simplicity and since
there are several scenarios, such as satellite communications,
radio-astronomy, ground-based high-frequency radars, where
achieving high-resolution is required by keeping, at the same
time, the system as cheap and light as possible [16]. More-
over, recently it has been suggested that statistically thinned
arrays can be conveniently used in the framework of smart
antennas and in particular for adaptive beam-forming in order
to cancel the interference coming from outside the main
beam [17], [18].

Statistically thinned arrays are often characterised in terms
of the average SLL, which is the variance of the array
factor [12]. This simple characterisation however misses to
capture the actual statistical fluctuations of the power pat-
tern around its average. To overcome this limitation some
PSLL estimations have been presented in the literature.
Here, we mention the one reported in [6] and the Brookner
one [15], [17], which here will be used as benchmark. The
latter, in particular, returns an estimation of the probability
distribution of the PSLL and basically is adapted from the Lo
results [13].

Here, the aim is to provide a more complete theoretical
framework for characterising the stochastic thinned array
factor with respect to [12], estimating the dispersion (with
respect to the reference array) of both the array factor and
the power pattern as well as the PSLL probability distribu-
tion. In particular, for the case of symmetric thinned arrays,
we refine the Lo approach [13] by avoiding some strong
assumptions concerning the statistical nature of the array
factor.

The content conveyed in this paper is the following.
In Section II, basics on linear statistically thinned arrays are
briefly recalled under the general asymmetric framework.
The aim is to establish the background and the notation.
Moreover, in this section, using the Chebyshev’s inequality,
we find a lower bound, for each angle, for the probabil-
ity that the power pattern is inside a given interval. This
result allows to have a better characterisation, with respect
to the simple array factor variance, of the power pattern
fluctuations and seems to have been overlooked in the per-
tinent literature. In Section III, symmetric thinned arrays
are presented along with their exact probability distribution.
This allows to compute the probability (no longer only a
lower bound) that the array factor is within a given inter-
val, for each observation angle. Afterwards, in Section IV,
the probability distributions of thePSLL and of the supremum
of the standardised error magnitude (between the thinned
array factor and the reference one) are derived for the sym-
metric case, whereas in Section V a Monte Carlo numeri-
cal analysis is used to check the theoretical findings. The
numerical analysis shows that these findings work very well
and, above all, allows for a more accurate characterisation
of the PSLL than the literature formulas mentioned above.
In this Section, we also numerically address the comparison
between the symmetric and the asymmetric thinned arrays.
This is done in order to appreciate how the reduction by half
of the available degrees of freedom (due to the symmetric
arrangement) impacts on the array statistical features. Finally,
conclusions and future developments end the paper. The
paper also includes a short appendix that reports the expres-
sions of some functions used and not described in the main
text.

We end this section by remarking that here the focus
is only on the array factor. Hence, isotropic radiators are
considered and mutual coupling neglected. These, however,
are the starting point assumptions commonly used in the
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FIGURE 1. Geometry of a generic asymmetric array.

literature [15], [24], [25]. Also, for thinned arrays, mutual
coupling can be considered less severe [15], [18].

II. BASICS ON STATISTICALLY THINNED ARRAYS
Consider a linear array of N isotropic radiators deployed
along the x axis within the segment [−L/2,L/2] (see Fig. 1).
Denote its array factor as

FREF (u) =
N/2∑

n=−N/2

Anej2πxnu (1)

in which, for simplicity, N is assumed even and there is no
element with n = 0. Moreover,
• {An}

N/2
n=−N/2 are the excitation coefficients (amplitude

taper) determined according to the desired array factor
shape;

• u = (cos θ−cos θo), with θ and θo being the observation
and the steering angles measured from the axis of the
array, respectively;

• xn ∈ [−L/2,L/2] is the (deterministic) position of the
n-th radiator, measured in wavelength. The {xn}

N/2
n=−N/2

do not necessarily need to be uniform across the array
aperture. Here, however, we limit to consider the case
whereby the spacing between adjacent radiators is 0.5
(i.e., λ/2).

FREF (u) is the so-called reference filled array factor which
must be approximated by the thinned array. If the thinning is
statistically achieved, the corresponding array factor can be
expressed as [12], [13]

F(u) = C
N/2∑

n=−N/2

Fnej2πxnu (2)

in which
• {Fn}

N/2
n=−N/2 are independent Bernoulli random vari-

ables;
• C is a suitable real constant.
In particular, P{Fn = 1} = pn, P{Fn = 0} = 1 − pn,

with 0 ≤ pn = αAn/max{An} ≤ 1, C = max{An}/α and
0 < α ≤ 1 is the thinning factor; when α = 1 it is said that a
natural thinning is achieved.

Since the excitation coefficients in (2) are random vari-
ables, the array factor is a stochastic process. Its mean and
variance and the average power pattern are easily found to
be [12]

F(u) = FREF (u) = µ(u) (3)

σ 2
= |F(u)|2 − |FREF (u)|2 = P(u)− |FREF (u)|2

=

N/2∑
n=−N/2

(An/α)(max{An} − αAn) (4)

and

P(u) = |FREF (u)|2 + σ 2 (5)

in which (·) denotes the statistical expectation and P(u) is the
power pattern. It is noted that, thanks to the choice of C , F(u)
coincides with the (desired) reference array factor FREF (u).

The variance σ 2 is often employed as a rough estimation of
the side-lobe level. However, this does not precisely capture
the fluctuations that the power pattern exhibits around its
average. More accuracy can be gained by finding the cumu-
lative distribution function (cdf ) of P(u), that is

Pr (P(u) < ξ2) = Pr (|F(u)| < ξ ) (6)

When N is large and A−n = An, the Lyapunov’s Central
Limit Theorem (CLT) can be invoked and the real (FR(u))
and the imaginary (FI (u)) parts of F(u) are jointly nor-
mal [14] and uncorrelated. Therefore, (6) is a generalised
non-central chi-square distribution with two degrees of free-
dom, which, however, does not admit a closed form expres-
sion [14]. Moreover, it can be easily shown that µR(u) =
µ(u), σR(u) and σI (u), i.e., the mean of the real part,
the standard deviations of the real and imaginary parts of
the array factor (see the appendix for their expressions)
are periodic functions. Therefore, the array factor stationary
assumption [14], [19], which greatly simplifies thematter and
allows to find an approximation of (6), cannot be rigorously
employed. Nonetheless, it is at least possible to obtain the
variance of the power pattern that measures the dispersion
of the latter around its average. In particular, by taking into
account the expressions of the higher order moments of a
Gaussian random variable, we obtain

σ 2
P(u) = P2(u)− P(u)1

2

= F4
R(u)+ F4

I (u)− F
2
R(u)

2
− F2

I (u)
2

= 4F2
REF (u)σ

2
R(u)+ 2σ 4

R(u)+ 2σ 4
I (u) (7)

Hence, (7) can be employed in conjunctionwith the Cheby-
shev’s inequality

Pr
{
|P(u)− P(u)1| < k σP(u)

}
≥ 1−

1
k2

(8)

with k > 1, to find a lower bound for the probability
that the power pattern, at u, is inside the interval [P(u)1 −
k σP(u),P(u). + k σP(u)].
For thinned arrays, the number of elements that popu-

late the array is the random variable NA =
∑N/2

n=−N/2 Fn,
with mean N̄A = (α/max{An})µ(0) and variance σ 2

NA =

(α/max{An})2σ 2 and, because of the CLT, normal probability
distribution NA ∼ N (N̄A, σ 2

NA ).
Furthermore, since the spacing between adjacent radiators

is 0.5, then the directivity (and hence the gain since we are
considering ideal radiators) coincides with NA.
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III. SYMMETRIC THINNED ARRAYS
A more accurate statistical characterisation of thinned arrays
can be achieved if the array is assumed to be symmetric [20].
Basically, under the same framework as above, it is further
assumed that only half of the reference array is thinned, then
for each elemental radiator that survived the thinning proce-
dure, another one is symmetrically (with respect to the array
centre) deployed over the other half part. The corresponding
thinned array factor is then

Fs(u) = 2C
N/2∑
n=1

Fn cos (2πxnu) (9)

The CLT again yields Fs(u) ∼ N [µs(u), σ 2
s (u)], with

µs(u) = FREF (u) (10)

and

σ 2
s (u) = 4

N/2∑
n=1

(max{An}An/α − A2n) cos
2(2πxnu) (11)

At this juncture, an analogous of (8) can be obtained
as well. However, in this case it is possible to determine
the distribution of the power-pattern (or of the array factor
magnitude) in a very simple way, without resorting to any
approximation [20]. Indeed, in this case it is easy to verify
that

Pr
{
Ps(u) ≤ ξ2

}
= Pr {|Fs(u)| ≤ ξ}

aaaaaaaaa = Q
(
−ξ − µs(u)
σs(u)

)
− Q

(
ξ − µs(u)
σs(u)

)
(12)

with Ps(u) being the power pattern for the symmetric case
and Q(·) can be expressed in terms of the error function.
In particular, also themean and the variance of the array factor
magnitude can be easily evaluated in closed-form [20].

It is remarked that (12) can be rewritten so that the
arguments of the Q-functions are positive and hence the
Q-functions can be approximated by the polynomial expres-
sion reported in [26] and [27], thus avoiding the use of
tabulated functions.

Moreover, instead of a lower bound as in (8), here the
η-percent level curve rη(u) can be precisely found as [20]

Pr
{
|Fs(u)| ≤ rη(u)

}
= Q

(
−rη(u)− µs(u)

σs(u)

)
− Q

(
rη(u)− µs(u)

σs(u)

)
= η%

(13)

Alternatively, one may be interested in howmuch the array
factor deviates from the reference one. In this circumstance,
say LB(u) = µs(u) − ξ σs(u) and UB(u) = µs(u) + ξ σs(u)
the lower and upper barriers within which Fs(u) should be
confined, then (13) particularizes as [29]

Pr {LB(u) ≤ Fs(u) ≤ UB(u)} = Q(−ξ )− Q(ξ ) (14)

Also for symmetric thinned arrays the actual number of
antenna elements is a random variable now given as NAs =

2
∑N/2

n=1 Fn, with mean N̄As = (α/max{An})µ(0) and vari-
ance σ 2

NAs
= (α/max{An})2σ 2

s (0). As for the previous case,
the directivity coincides with NAs .

IV. GLOBAL CHARACTERISATION
In the previous sections, we have shown that it is possible to
estimate the fluctuations of the power pattern through (8), for
the general asymmetric thinned arrays, and more precisely
through (13) or (14), for symmetric arrays. However, those
estimations are indeed punctual since the array factor is
characterised for each fixed u but not simultaneously over a
given internal of the angular variable. In order to estimate the
PSLL, as remarked in [14], one has to find the probability
distribution of the supremum of the array factor magnitude in
the whole side-lobe region. Analogously, previous formulas
can only allow to estimate (statistically) the deviation of the
array factor from the reference one for each given u, whereas
information relating to the entire observation range cannot be
determined.

To this end, in this section, we adapt to the present case
the methodologies introduced in [20] and [28]–[33], in which
random arrays were considered.

A. PSLL CHARACTERISATION
According to Skolnik et al.[12], the average relative side-lobe
level (SLL), when the excitation coefficients are real, can be
estimated as the ratio between the variance of the array factor
and the maximum value of the power-pattern mean, that is

SLL =
σ 2

P(0)
(15)

For symmetric thinned arrays, the variance of the array
factor is a function of u and so is the average relative side-lobe
level. In this regard, a more conservative definition, which is
analogous to (15), can be given as

SLL =
σ 2
s (0)

Ps(0)
(16)

with σ 2
s (0) being the maximum of the array factor variance.

However, often one is interested in determining the PSLL,
which in turn requires finding the following distribution

Pr {PSLL ≤ ξ} = Pr

{∣∣∣∣Fs(u)Fs(0)

∣∣∣∣ ≤ ξ ∀ u ∈ [u1, u2]
}

= Pr

{
Ps(u)
Ps(0)

≤ ξ2 ∀ u ∈ [u1, u2]
}

(17)

It is seen that (17) only takes into account the positive
values of the variable u, as for the case at hand, the array
factor magnitude is an even function. Moreover, u1 > 0 is
assumed to be the positive first-null ofµs(u) [13], [14], which
basically represents the main-lobe half-width, and u2 > 0 is
the starting point of the first grating-lobe ofµs(u) if the xn are
uniform, otherwise it is equal to 2.
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Determining Pr {PSLL ≤ ξ} requires finding the proba-
bility distribution that a random process is below a given
threshold over an interval of the variable u. This is a very
difficult task that here is even more complex as compared to
the case of equally-excited random arrays [14], [20], [28].
This is because, for statistically thinned arrays, Fs(0) =
2C

∑N/2
n=1 Fn is a random variable as well, which is not inde-

pendent onFs(u). Therefore, the distribution ofFs(u)/Fs(0) is
required. In order to avoid this difficulty, we instead consider
a less complicated (though approximated) problem by assum-
ingFs(0) ≈ µs(0). This assumption is justified by the fact that
the coefficient of variation, CV (u) = σs(u)/µs(u) � CV (0)
for u > u1. This basically means that the dispersion of the
array factor for u = 0 is less marked than in the side-lobe
region. Note that this assumption is implicit in [13]. Accord-
ingly, in order to estimate the PSLL distribution, we consider
the simpler problem

Pr
{
P̂SLL ≤ ξ

}
= Pr

{
|F̂s(u)| =

|Fs(u)|
|µs(0)|

≤ ξ ∀ u ∈ [u1, u2]
}

(18)

However, determining Pr {P̂SLL ≤ ξ} is still a difficult
problem which has been approached by several approximate
methods. Among them, the up-crossing method yielded in
many cases better estimations [20], [28]–[33]. Therefore,
it will be exploited herein. This method aims to estimate
how many times the stochastic process F̂s(u) up-crosses (i.e.,
crosses with a positive slope) a given level in the side-lobe
region. Say ξ the level we are interested in and Nξ the
random variable that counts the times |F̂s(u)| up-crosses it,
then Pr {P̂SLL ≤ ξ} = 1 − Pr {Nξ ≥ 1}. Hence, thanks
to the Markov’s inequality Pr {Nξ ≥ 1} ≤ Nξ , a lower
bound for Pr

{
P̂SLL ≤ ξ

}
can be achieved. However, a more

precise result can be obtained. In fact, if it is assumed that
the up-crossings occur according to a Poisson random point
process [23], then [30], [31]

Pr
{
P̂SLL ≤ ξ

}
≈ Pr

{
|F̂s(u1)| ≤ ξ

}
e−Nξ (19)

and (19) is the sought after estimation for the P̂SLL distri-
bution. However, we still need to compute Nξ . To this end,
following the seminal paper of Rice [34], and its development
reported in [35] and [36], we obtain

Nξ =

∫ u2

u1
du
∫
∞

0
γ f
|F̂s||F̂s|′ (ξ, γ ; u)dγ (20)

where f
|F̂s||F̂s|′ is the joint pdf of |F̂s(u)| and its first deriva-

tive in the side-lobe region. It is worth remarking that a
completely analogous of (20) can be written for the case of
asymmetric thinned arrays. However, in that case, an easy
computation can be achieved only when F̂(u) is assumed
to be wide-sense stationary and by assuming the real and
the imaginary parts of F̂(u) and their derivatives being four
uncorrelated and Gaussian processes [22]. These assump-
tion do not hold true indeed. For the symmetric case, such

assumptions are not required. In fact, since the array factor is
a real process, the determination of the up-crossings of |F̂s(u)|
is equivalent to the simultaneous study of the up-crossings
of F̂s(u) and F̃s(u) = −F̂s(u). Since F̂s(u) and F̂ ′s(u) =
dF̂s(u)/du are jointly Gaussian (of course the same holds for
F̃s(u) and F̃ ′s(u) = F̃s(u)/du), then the expected number of
the up-crossings of the level ξ is given as follows [35] (with
u understood)

Nξ =

∫ u2

u1

σF ′

σs

√
1− ρ2 φ

[
µs − ξ µs(0)

σs

]
× [φ(τ )+ τ8(τ )] du

+

∫ u2

u1

σF ′

σs

√
1− ρ2 φ

[
−µs − ξ µs(0)

σs

]
×
[
φ(τ ∗)+ τ ∗8(τ ∗)

]
du (21)

in which

τ (u) =
σs(u)µF ′ (u)− σF ′ (u)ρ(u)[µs(u)− ξ µs(0)]

σs(u)σF ′ (u)
√
1− ρ2(u)

(22)

τ ∗(u) =
−σs(u)µF ′ (u)+ σF ′ (u)ρ(u)[µs(u)+ ξ µs(0)]

σs(u)σF ′ (u)
√
1− ρ2(u)

(23)

µF ′ (u) and σ 2
F ′ (u) are the mean and the variance of F ′s(u) =

dFs(u)/du, respectively; ρ(u) is the Bravais-Pearson cor-
relation coefficient between Fs(u) and F ′s(u); 8(x) =
(2π2)−1

∫ x
−∞

exp(−y2/2)dy and φ(x) = d8(x)/dx (see
Appendix). As remarked above, (21) fully takes into account
the non-stationarity of the array factor and the computation
only requires a one-dimensional numerical integration (with
respect to u). It is worth noting that for the asymmetric
case, even under the approximate framework of [22], a two-
dimensional numerical integration is required. Moreover,
(21) is also an advance with respect to [20], in which a
two-dimensional numerical integration is still required for the
exact determination of Nξ .

B. STANDARDISED ERROR
The same approach as used for the P̂SLL characterisation can
be followed in order to (statistically) quantify how much the
thinned array factor deviates from the reference one. More
in detail, as a measure of such a deviation we consider the
standardised error ε(u) = [Fs(u)−µs(u)]/σs(u). This choice
is consistent with (14), which, however, provides the proba-
bility that |ε(u)| ≤ ξ only for a fixed u. As remarked above,
to globally characterise the deviationmeasure, we need it over
a generic interval [uA, uB] of the full-scan range [−2, 2] [21].
This basically requires to rephrase (18) as

Pr

{
S = max

u∈[uA,uB]
{|ε(u)|} ≤ ξ

}
(24)

so that, by using once again the up-crossing method, it yields

Pr {S ≤ ξ} ≈ P {|ε(uA)| ≤ ξ} e−Nξ (25)

in which the distribution of |ε(uA)| is easily obtained
from (12), and now

Nξ =

∫ uB

uA
du
∫
∞

0
γ f|ε||ε|′ (ξ, γ ; u)dγ (26)
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with f|ε||ε|′ being the joint pdf of ε(u) and its first derivative.
Also for this problem, it is worth remarking that a completely
analogous of (26) can be written for the case of asymmet-
ric thinned arrays, but computation can be easily achieved
only when εA(u) = [F(u) − µ(u)]/σ (u) is assumed to be
wide-sense stationary, which does not hold true. Instead, for
symmetric thinned arrays, it is easily obtained and the mean
of the up-crossings has a very simple and computationally
convenient expression, that is

Nξ =

√
2
π
φ (−ξ)

∫ uB

uA
σε′ (u) du (27)

in which σε′ (u) is the standard deviation of the derivative of
ε(u) (see Appendix) and φ(x) is defined as in the previous
section. Also, in deriving (27) it has been taken into account
that ε(u) is a zero mean and unitary variance process and that
the Bravais-Pearson correlation coefficient between ε(u) and
its derivative is equal to zero (see Appendix).

V. NUMERICAL ASSESSMENT
In this section, some numerical examples are presented
in order to validate the theoretical findings. In particular,
we focus on the PSLL and the S distributions in (19) and (25),
which globally characterise the array factor.

The experimental array factors are obtained via Monte
Carlo simulations (2000 trials are used) by employing a sam-
ple step in the variable u of 1/(10L), which is 5 times smaller
than the sampling step required by the bandwidth of the
sample paths of the power pattern. Furthermore, the analysis
is conducted only for u ∈ [0, 1], as the array factor is an even
and periodic function and therefore the information relative
to the full-scan range, [−2, 2], can be completely deduced
starting from the interval [0, 1]. Therefore, in the following
numerical analysis, u1 is the positive first-null of |µs(u)|,
u2 = 1 and [uA, uB] ≡ [0, 1]).
Two reference arrays are considered, with the excitation

coefficients {An} being samples of a Taylor current distri-
bution [37] with n̄ = 5 and a side-lobe level equal to
−25dB (addressed as FREF1 (u) ) and −35dB (addressed as
FREF2 (u) ), respectively.

A. PSLL
In order to check the estimation of the PSLL distribution,
we consider three cases: N = 1000, N = 200 and N = 100.
It is worth remarking that for linear arrays the considered N
may be excessive. However, examples of linear statistically
thinned arrays with a very high initial number of elemental
radiators can be found in the literature as in [15], where even
N = 5000 was considered, and in [13] where N was set
equal to 2× 104. We would like to point out that the analysis
here is carried out for linear arrays for the sake of simplicity.
Indeed, it is applicable to any cut of the array factor of general
planar/volumetric arrays, for which the number of elements
can be actually high.

All the following figures in this section report the actual
experimental distribution of the PSLL corresponding to

|Fs(u)/Fs(0)| (blue solid lines), the experimental distri-
bution of the PSLL corresponding to the approximation
|Fs(u)/µs(0)| (magenta solid lines) and the theoretical dis-
tribution (red dashed lines) returned by (19). Also, in order
to compare our estimation with some previous literature
results, two other curves are shown as well. In particular,
the orange lines refer to the PSLL distribution resulting from
the Andreasen formula (in dB), that is [6]

PSLLdB = −10 log
(
NAs
2

)
− 10 log

[
1

1− 1
2 dAV

]
(28)

Note that NAs and dAV (the average spacing between adja-
cent elements) are random variables and thence PSLLdB is
also a random variable. Accordingly, the corresponding prob-
ability distribution is computed by using the 2000 trials as
for (19). The black curves, instead, represent the Brookner
estimation [15], [17]

Pr {PSLL ≤ ξ} =
(
1− e−NAs ξ

2
)N

2
(29)

which basically is obtained from the Lo sampling
method [13].

Looking at Figs. 2 and 3 it can be observed that the PSLL
distribution weakly changes while passing from FREF1 (u) to
FREF2 (u) and grows as the level of thinning increases. Indeed,
as expected, as the degree of thinning increases, the curves
move to the right. This, of course, is perfectly consistent
with the remark reported many times in the literature that
the PSLL mainly depends on the number of elements in the
array. Also, it can be seen that the assumption |Fs(u)/Fs(0)| '
|Fs(u)/µs(0)| works very well. Finally, what is more, the the-
oretical PSLL distribution in (19) is practically overlapped to
the actual one. This is true for both the considered cases and
for all the levels of thinning. Hence, the derived theoretical
PSLL distribution can be considered as an excellent tool to
foresee the PSLL in relation to the level of thinning one may
want to adopt. Note that this does not hold true for estimations
given by (28) and (29).

Figs. 4 and 5 show the same comparison when N = 200
and N = 100, respectively. Here, only the case of FREF1 (u)
is considered. As expected, the PSLL values increase as
compared to the previous examples. However, what matters
is that our estimation still shows an excellent agreement with
the experimental distribution, which is by farmuch better than
(28) and (29). It worth observing that the PSLL prediction
through (29) improves when the degree of thinning increases.
This could have been expected since, as remarked above, it is
based on the results derived in [13], which works for highly
thinned arrays. Nonetheless, our estimation is better even in
these cases.

B. STANDARDISED ERROR
The probability distribution of the supremum of the stan-
dardised error magnitude, S, introduced in (24) is checked
in Figs. 6 and 7, which refer to the cases related to FREF1 (u)
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FIGURE 2. Probability distribution of PSLL for FREF1
(u), N = 1000 and different levels of thinning. Experimental distribution of the supremum of

|Fs(u)/Fs(0)| (blue solid lines), experimental distribution of the supremum of the approximation |Fs(u)/µs(0)| (magenta solid lines), our estimation
returned by (19) (red dashed lines), estimation (28) (orange solid lines) and estimation (29) (black solid lines). The values of ξ are in dB.

FIGURE 3. Probability distribution of PSLL for FREF2
(u), N = 1000 and different levels of thinning. Experimental distribution of the supremum of

|Fs(u)/Fs(0)| (blue solid lines), experimental distribution of the supremum of the approximation |Fs(u)/µs(0)| (magenta solid lines), our estimation
returned by (19) (red dashed lines), estimation (28) (orange solid lines) and estimation (29) (black solid lines). The values of ξ are in dB.

and FREF2 (u), respectively. As can be seen, the experimen-
tal curves (in blue) and the theoretical prediction returned
by (25) (in red), are very similar. Therefore, it can be con-
cluded that (25) provides a very accurate estimation of the
probability that a generic sample path of the array factor is

globally between µs(u) − ξσs(u) and µs(u) + ξσs(u) (i.e.,
simultaneously for each u ∈ [0, 1]). Hence, this error charac-
terisation includes also the main beam region.

Some comments are in order. First, it is noted that the
curves for different levels of thinning and for FREF1 (u) and
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FIGURE 4. Probability distribution of PSLL for FREF1
(u), N = 200 and different levels of thinning. Experimental distribution of the supremum of

|Fs(u)/Fs(0)| (blue solid lines), experimental distribution of the supremum of the approximation |Fs(u)/µs(0)| (magenta solid lines), our estimation
returned by (19) (red dashed lines), estimation (28) (orange solid lines) and estimation (29) (black solid lines). The values of ξ are in dB.

FIGURE 5. Probability distribution of PSLL for FREF1
(u), N = 100 and different levels of thinning. Experimental distribution of the supremum of

|Fs(u)/Fs(0)| (blue solid lines), experimental distribution of the supremum of the approximation |Fs(u)/µs(0)| (magenta solid lines), our estimation
returned by (19) (red dashed lines), estimation (28) (orange solid lines) and estimation (29) (black solid lines). The values of ξ are in dB.

FREF2 (u) are very similar. This does not mean that the abso-
lute difference between the reference and the thinned array
factor is the same. Indeed, it results from the definition
of the standardised error ε(u) = [Fs(u) − µs(u)]/σs(u),

which measures such a difference normalised to the stan-
dard deviation, and it is consistent with (14), which actu-
ally depends only on the threshold ξ . Second, it can be
appreciated that (25) returns, as expected, values which are
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FIGURE 6. Probability distribution of S for FREF1
(u), N = 1000 and different levels of thinning: Experimental (blue solid lines), returned by (25) (red

dashed lines). The values of ξ are in linear scale.

FIGURE 7. Probability distribution of S for FREF2
(u), N = 1000 and different levels of thinning: Experimental (blue solid lines), returned

by (25) (red dashed lines). The values of ξ are in linear scale.

much smaller than the ones returned by the punctual char-
acterisation given by (14). Indeed, for ξ = 3 the lat-
ter would return 99.73%. This emphasises the need for a
global characterisation of the array factor. Finally, an anal-
ogous of (29) for estimating the probability distribution

of S can be easily derived. However, as for the PSLL,
it does not give results that are as good as the ones returned
by (25).

As a concluding remark, wemention that the cases forN =
200 and N = 100 are omitted since the same circumstance
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TABLE 1. Empirical statistics (in dB) of the PSLL for symmetric and asymmetric statistically thinned arrays with N = 1000 and for µs(u) = µ(u) = FREF1
(u)

and FREF2
(u). The acronyms r .e., STAs and n.t . stand for remaining elements, statistically thinned arrays and natural thinning, respectively.

TABLE 2. Average relative side-lobe level (in dB) for symmetric (returned by (16)) and asymmetric (returned by (15)) statistically thinned arrays for
N = 1000 and for µs(u) = µ(u) = FREF1

(u) and FREF2
(u). The acronyms r .e., STAs and n.t . stand for remaining elements, statistically thinned arrays and

natural thinning, respectively.

TABLE 3. Empirical statistics (in linear scale) of δ when N = 1000 and for µs(u) = µ(u) = FREF1
(u) and FREF2

(u). The acronyms r .e. and n.t . stand for
remaining elements and natural thinning, respectively.

as for PSLL is obtained, i.e., (25) still works very well in
matching the experimental curves.

C. ASYMMETRIC VS SYMMETRIC THINNED ARRAYS
In this section we compare the assumed symmetric thinned
array layout with the more general asymmetric case. This is
done in order to appreciate how the forced symmetry impacts
on the achievable performance. To this end, of course,
the array aperture, the nominal number of radiators and the
reference current are kept the same for both the symmetric
and the asymmetric cases. Moreover, since An = A−n ∀ n,
the desired (reference) array factor is the same for the two
cases, i.e., µ(u) = µs(u).
As can be observed from Table 1, which compares

the peak side-lobe level statistics, when the number of
elements is high the deviation between the performance
of the two types of array is not very significant, even
though asymmetric arrays tend always to have slightly lower
PSLL. In Table 2, the side-lobe level estimations returned
by (15) and (16) is reported again for the two type of
reference arrays considered above. It is seen that these
commonly used estimations return strongly underestimated
PSLL; once again highlighting the need for a more accu-
rate PSLL prediction that we have tried to meet in this
contribution.

Finally, the comparison in terms of the error between sym-
metric and asymmetric thinned arrays is also conducted by a
Monte Carlo analysis, using the parameter

δ =
max{|Fs(u)− µs(u)|}
max{|F(u)− µs(u)|}

(30)

which represents the ratio between the maximum errors that
the symmetric and the asymmetric thinned arrays present
with respect to the desired array factor. The corresponding
results are reported in Table 3. It can be observed that, in some
cases δ < 1, meaning that symmetric arrays performed
better. As can be seen, on average, asymmetric thinned arrays
perform slightly better than the symmetric ones. However,
the PSLL and the standardised error results of symmetric
arrays can be analytically foreseen and used as an upper
bound for the former.

VI. CONCLUSION
We have shown that symmetric linear statistically thinned
arrays and the asymmetric ones exhibit similar behaviours
but the former have the advantage of being easier to char-
acterise. In fact, we reported the analytical estimation of the
probability distributions of the peak side-lobe level and of the
supremum of the standardised error magnitude. Monte Carlo
numerical experiments have shown that such estimations
work very well so that they can be actually used to foresee, for
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example, the peak side-lobe level according to the reference
array factor and the degree of thinning.

We emphasise that, though this study was limited to the
case of linear arrays, it can be directly applied, with minor
modifications, to the case of planar/volumetric arrays when
the latter are studied along the cuts of the radiation patterns.
This is an important aspect that we intend to investigate in a
future work.

Finally, we remark that our approach does not make cer-
tain assumptions that have been exploited in some previous
literature results. For this reason, it proved to be much more
precise than those results. Moreover, our approach is flexible
and one can characterise the array factor not only on a generic
portion of the full-scan range but also throughout the whole
full-scan range, and, therefore, also taking into account the
main-beam.

APPENDIX A
In this appendix we report the mathematical expressions of
all the quantities that have not been explicitly given in the
previous sections. The derivations are tedious but easy and
hence are omitted. The aim is to give the reader all the details
to implement our estimations.

In the asymmetric case, the variance of the real and imag-
inary parts of the array factor are

σ 2
R(u) =

N∑
n=1

An
α

[max{An} − αAn] cos2(2πxnu) (31)

and

σ 2
I (u) =

N∑
n=1

An
α

[max{An} − αAn] sin2(2πxnu) (32)

In the symmetric case, the mean and the variance of the
derivative of the array factor, F ′s(u) = dFs(u)/du, are

µF ′ (u) = −4π
N/2∑
n=1

Anxn sin(2πxnu) (33)

and

σ 2
F ′ (u) = 16π2


N/2∑
n=1

x2n

[
max{An}An

α
− A2n

]
sin2(2πxnu)


(34)

The covariance between the array factor and its derivative
is [20]

K(u) =
1
2
dσ 2

s (u)
du

= σs(u) σ ′s(u)

= −4π
N/2∑
n=1

xn

[
max{An}An

α
− A2n

]
sin(4πxnu) (35)

with σ ′s(u) = dσs(u)/du and the Bravais-Pearson correlation
coefficient between Fs(u) and F ′s(u) is

ρ(u) =
K(u)

σs(u)σF ′ (u)
(36)

The mean of ε′(u) is zero for each u, whilst its variance
is

σ 2
ε′ (u) =

σ 2
F ′ (u)−

{
σ ′s(u)

}2
σ 2
s (u)

(37)

Finally, the covariance between ε(u) and its derivative is
(taking into account that σ 2

ε (u) = 1)

Kεε′ (u) =
1
2
dσ 2

ε (u)
du

= 0 (38)

and so is the Bravais-Pearson correlation coefficient.
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