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ABSTRACT Recent years have seen many advances based on Deep Convolutional Neural Networks
(DCNNs) in the tasks of face recognition, most of which are developed to pursue high recognition accuracy.
In this paper, we propose a novel Fast FAce Recognizer (Fast-FAR), learning to improve the speed of
DCNN-based face recognition model without sacrificing recognition accuracy. Our fundamental insight is
that the computation increases exponentially with the depth of a network, the easily identifiable face images
can be accurately recognized by the cheap features (pixel values at shallow layers), while the challenging
samples that exhibit low quality, large pose variations or occlusions need to be processed by the expensive
deep layers. The major contribution of this paper is the Reinforcement Learning Agent (RLA), which is
proposed to learn a decision policy determined by a reward function. The policy adaptively decides whether
the recognition should be performed at an early layer with a high recognition confidence, or proceeding
to the subsequent layers, thus significantly reducing feed-forward cost for the easy faces. According to the
extensive experiments on the popular face recognition benchmarks, Fast-FAR reduces the inference time by
14.22%, 20.61%, and 7.84% on the dataset LFW, AgeDB-30 and CFP-FP, respectively.

INDEX TERMS Fast face recognition, reinforcement learning, deep convolutional neural networks.

I. INTRODUCTION
Face recognition has made great progress in recent years,
owing to the advancement of Deep Convolutional Neu-
ral Networks (DCNNs). With the works DeepID [1] and
DeepFace [2] firstly used to automatically learn features on
the large scale face datasets, DCNN-based methods have
dominated the field of face recognition. Some of the works
like DeepID2+ [3] and DeepID3 [4] focus on developing
advanced network structures to boost face recognition per-
formance. Recent works [5]–[12], [22] mainly explore the
design of loss functions to enhance the representation ability
for the learned features. FaceNet [13] uses the triplet loss
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to supervise the embedding learning, obtaining the state-of-
the-art face recognition performance. Later, Wen et al. [6]
propose a center loss to compact the intra-class clusters
to the center of each identity. L-Softmax [5] adds angular
constraint to each identity to learn discriminative features.
SphereFace [8] assumes that the linear transformation matrix
in the last fully-connected layer can be used as a represen-
tation of the class centres in an angular space, and proposes
the Angular Softmax (A-Softmax) loss to impose discrim-
inative constraint on a hypersphere manifold. CosFace [9]
reformulates the softmax as a cosine loss, and introduces a
cosine margin to further maximize the decision margin in the
angular space. In the very recent work [10], Deng et al. have
proposed the Additive Angular Margin Loss (ArcFace). They
calculate the angle between the feature and the target weight
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(center for each class), and then add an angular margin
penalty to the target angel on the angular space.
ArcFace achieves the best state-of-the-art face recognition
performance to date with more stable training of the network.

It seems most of the previous works are devoted to
the improvement of face recognition accuracy, only few
of them are proposed to reduce the recognition time.
In the work [25], Guo et al. propose a meta learning
approach for face recognition by building the domain-shift
batches through a domain-level sampling strategy and
apply back-propagated gradients/metagradients on synthe-
sized source/target domains by optimizing multi-domain dis-
tributions. Later, Chang et al. [24] apply data uncertainty
learning to face recognition, performing feature (mean) and
uncertainty (variance) learning simultaneously. Deng et al.
propose an improved version for Arcface [10], which encour-
ages one dominant sub-class that contains the majority
of clean faces and non-dominant sub-classes that include
hard or noisy faces. In the work [22], Tu et al. develop
a Multi-Degradation Face Restoration model which can
address face frontalization and restoration simultaneously for
face recognition.

To improve the recognition efficiency, Wu et al. [14] argue
that the labels for current training face images from the inter-
net are ambiguous and inaccurate, and propose a Light CNN
to learn a compact embedding on the large-scale training
data with the noisy labels, towards faster and more accu-
rate face recognition. Specifically, they introduce a special
case of maxout, i.e, the Max-Feature-Map (MFM) operation,
into each convolutional layer of a DCNN. The MFM works
as a separator to purify the informative signals from the
noisy data, as well as a filter to perform feature selection.
Experimental results have shown that the light CNN can
utilize large-scale noisy data to learn a Light model that
is efficient in computational resources and storage spaces.
However in the work [15], De et al. propose to acceler-
ate face recognition by the distillation technology, which
transfers the similarity information of a teacher network to
a small model (student network) by adaptively varying the
margin between positive and negative pairs. According to
their reported results, the method achieves a faster processing
rate (>10) and a lower memory occupation (1/6) on the dlib-
resnet-v1 face recognition model. However, the obtained face
recognition performance drops to some extent compared with
the complex teacher model.

Due to the high demand on real-time recognition, and
the computation limitation of many mobile devices such as
laptop and cell phones, the efficiency of DCNN-based face
recognition approaches still needs to be improved. In this
paper, we propose a generic framework, i.e., Fast FAce Rec-
ognizer (Fast-FAR), aiming to reduce the recognition time
for an arbitrary DCNN-based face recognition model. Typi-
cally, the recognition difficulty varies across face images, face
images with small pose variations and good visual quality can
be easily recognized by early layers of a network. A deeper
layer contains more parameters compared with a shallow

layer, therefore it occupies more computational resources.
If the subsequent layers can be saved for the easy face
images, the recognition time can be significantly reduced.
Based on this observation, we propose to adaptively learn a
decision for the recognition layer via reinforcement learning.
Specifically, our Face-FAR contains a main network to learn
discriminative representations for face images, and two sub-
networks, i.e., the Embedding sub-Network (E-Net) to com-
press the feature of different dimensions to a vector with fixed
length in the unified feature representing space, the Decision
sub-Network (D-Net) to determine whether the recognition
should be performed at current layer or proceed to the next
layer. The Reinforcement Learning Agent (RLA) is used to
examine the state of each layer at each step and decide on the
action (stop or proceed) by a reward function.

We apply our fast-FAR model to the wildly used CNN
backbone ResNet-50 to perform face recognition on various
face recognition benchmarks. Extensive experiments have
shown that fast-FAR saves computational burdens at least
7.8% for all the benchmarks during inference, while still
achieving state-of-the-art face recognition performance.

II. FAST FACE RECOGNITION
In this section, we explain our method in details. We first
give an overview for the proposed model and then describe
reinforcement learning on deep layer selection.

A. MODEL OVERVIEW
Our Fast-FAR contains a main network and two sub-
networks, i.e., the Embedding sub-Network (E-Net) and the
Decision sub-Network (D-Net). The main network ResNet-
50 (B) is used to learn discriminative features for face
recognition. E-Net E is used to convert an arbitrary feature
from each layer of B into an embedding space with fixed-
length, therefore the converted features are comparable in
the embedding space. D-Net produces two actions (stop or
proceed) from the converted features by maximizing the sum
of expected rewards on a given face image, to decide whether
the input face can be accurately recognized on the early layer
of the network. Fig. 1 illustrates the architecture of Fast-FAR.

The main network contains 4 blocks (B1, . . . ,B4) to gener-
ate high-level discriminative features, the dimensions of the
outputs from the 4 blocks are 56 × 56, 28 × 28, 14 × 14,
and 7 × 7, respectively. In the next step, the outputs of the
4 blocks will be taken as inputs by the D-Net, to compare with
each other, determinating which one is better for recognition.
However, the dimensions of the outputs from different layers
of the main network are different. To make them comparable,
we design the E-Nets (E1, . . . ,E3), which are connected
to the first three blocks of the main network (B1, . . . ,B3),
to convert the output features from different layers into the
same embedding space with a fixed size 7 × 7, i.e., the
feature space of B4. Actually the dimension of the features
from different blocks are predefined, the dimension of the
output features has no direct relationship with the number of
layers. In this work, we use ResNet-50 as the main backbone
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TABLE 1. The architecture of E-Net (E1, E2, E3 ). E1 has 4 convolutional layers, E2 has 3 convolutional layers, while E3 has 1 convolutional layer. [ks, fm, s]
represents kernel size, feature map number and stride, respectively.

for feature learning. However, we can use other popular net-
works as the backbones or dividing the main backbone into
different sub-networks, then the dimension of the output fea-
tures can be different. The architecture of E-Net is illustrated
in Table 1.

Hence, we propose the embedding lossLe to draw the con-
verted features closer to the feature of the last convolutional
layer. For a main network that has M convolutional blocks,
Le is defined as

Le =
1
N

M−1∑
i=1

N∑
j=1

(E(fi,j)− fj)2,

where M − 1 denotes the first M − 1 blocks of the main
network, N denotes the sample number of one mini-batch,
E(·) represents feature converting by the E-Net, fi,j is the
feature produced by the j-th sample in the i-th block, and fj is
the feature of j-th sample produced by the last layer.
The loss Le ensures E-Net produce features similar with

that of the last block. However, as no identity information is
imposed on the converted features, they can hardly discrim-
inate face identities. To this end, we introduce the discrim-
ination loss Ld to enhance the discrimination ability for the
converted features in the embedding space. Ld is defined as

Ld =

M∑
i=1

LArc(fi),

where fi is the converted feature from i-th block of the main
network, and Larc denotes the ArcFace [10] loss function.
Different from traditional softmax loss, ArcFace loss nor-
malizes the bias to 0 and the length of weights and embed-
ding features to 1 by l2 norm, simplifying the original linear
mapping of softmax loss to s cos(θj) which is expressed as

LArc = −
1
N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j6=yi e
scosθj

,

where m is the angle margin, N and n are the batch size and
the class number, respectively, and s is the estimate re-scale
value of embedding features before and after normalization.
ArcFace enhances the intra-class compactness and inter-class
discrepancy by adding an additive angular margin penalty m
on the target (ground truth) angle, which can significantly
improve the discriminative power for the learned features for

face recognition. By employingLarc on the embedding space,
we obtain Le, making all the converted features dropped
into the same identity metric space with small intra-class
distance and large inter-class distance. Therefore, the overall
loss function for the converted features is:

Lc = Le + λLd

where λ is the weight constants of the two loss functions.
When the combination loss Lc is smaller than 0.001, the
training can be stopped.

B. LEARNING TO DROP EXPENSIVE LAYERS
The D-Nets (D1, . . . ,D3) takes as input the fixed dimension
features that converted by E-Nets (E1, . . . ,E3), and decides
whether the learning should stop at current layer or proceed
to the next layer. During training, the feature extraction at
each block has two options, i.e., stop and use the current
feature for face recognition, or proceed to the next block for
feature extraction. It can be viewed as a Markov Decision
Process (MDP), where an agent can make two actions (stop
or continue). The final goal is to find an earliest layer that
can accurately recognize the input face image. We propose to
train an our Fast-FAR end to end by the Q-learning algorithm
of deep Reinforcement Learning (RL), which contains a set
of states S and actions A, and a reward function R. At each
step at the l-th block, the agent checks the current state Sl
and takes an action from Al , to decide whether performing
face recognition using the current block, or proceeding to
the next block. The reward function R makes the agent learn
the best decision to select action and balance the recognition
accuracy (using deeper layers) and speed (stop earlier if
effective enough).

In our model, the state Sl is the feature map Fl at l-th block.
The action set A includes one stop action and one continue
action. The reward R function is defined as

R(Sl, Sl+1)

=



1 {k| max
k=1,...,N

W T
k fl + bk} = g & A = stop

−1 {k| max
k=1,...,N

W T
k fl + bk} = g & A = continue

1 {k| max
k=1,...,N

W T
k fl + bk} 6= g & A = continue

−1 {k| max
k=1,...,N

W T
k fl + bk} 6= g & A = stop
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FIGURE 1. Overview of the proposed method. The backbone is divided into 4 blocks, i.e., B1-B4. The three Decision sub-Networks D1-D3 are connected
to the corresponding main blocks B1-B3, while E1, E2, and E3 are embedded into the D1, D2, and D3 respectively for feature conversion. The backbone
takes images as input and generate feature maps at each block (B1-B4). The E-Net converts an arbitrary feature from each layer of Bi into an embedding
space with fixed-length for comparison. The D-Net makes a decision whether the learning should stop at current layer or proceed to the next layer.

TABLE 2. Ablation study results by using different loss combinations. ‘‘M’’ represents the main network (ResNet-50), ‘‘B1 - B4’’ represent the 4 blocks of
‘‘M’’, respectively. The number in each column of ‘‘B1 - B4’’ represents the images that processed by each block of ‘‘M’’. ‘‘Acc’’ means the face recognition
accuracy, and ‘‘Time’’ represents the recognition time.

For the k-th face image from the class g in one mini-
batch, fl denotes the corresponding converted feature in the
embedding space, Wk and bk are the weight and bias in the
probability layer, respectively. {k| max

k=1,...,N
W T
k f + bk} is the

maximal conditional probability, and N denotes the number
of classes.

Q-learning algorithm learns an estimated value that
approaches the real one. In our model, the estimated value
is the max probability value of a set of actions (max

s=0,1
as), and

the real value is the rewards. The learning process iteratively
updates the action-selection policy by:

Q(Sl,Al) = Rl + γ max
A′

Q(S ′,A′),

whereQ(Sl,Al) means the estimated state when taking action
Al at state Sl , Rl is the overall rewards from the initial state,
max
A′

Q(S ′,A′) denotes the maximal action reward from state

Sl to Sl+1 and γ is the discount factor, The state Q(S,A) is
learned by D-Net.
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We train D-Net using the following loss function:

Lp =
1
N

3∑
i=1

N∑
j=1

(max
s=0,1

Qsi,j − R(Sl, Sl+1))
2,

where Qsi,j denotes the estimated state taking k-th action for
the j-th sample at i-th block.
The training process of Q-learning is described by the

pseudo-code in algorithm 1.

Algorithm 1 Training Process of Q-Learning
Q-learning:
Initialization: Initialize Q(S0,A0) by random values
between 0 and 1.
while not converge do

Repeat (for each step of episode)
Choose an action a from s using the policy of
Q-learning.
Take action a (a = 0 or 1), observe Q
Q(Sl,Al) = Rl + γ max

A′
Q(S ′,A′)

Calculate loss function Lp
end if Lp < ε, where ε is a small value.

III. EXPERIMENTS
A. IMPLEMENTATION DETAILS AND DATASETS
1) IMPLEMENTATION
Throughout the experiments, the size of face images are fixed
as 128× 128; the constraint factor λ and discount factor γ are
fixed as 1 and 0.5, respectively; the batch size is set to 8; the
initial learning rate lr for the main network, E-Net and D-Net
are set to 0.001, 0.0001 and 0.0001, respectively, lr decreases
10 times at every 2 epochs. Our model is implemented by
Pytorch, using one GTX 1080ti (12G) GPU. The model is
trained iteratively by the following three steps until conver-
gence. 1. Train the main backbone using ArcFace [10] loss;
2. Fix the parameters of the main network and train E-Net.
3. Fix the parameters of the main network and E-Net, train
D-Net.

2) DATASETS
We train our model on the MS1MV2 dataset, which is
semi-automatically refined from the MS-Celeb-1M [16]
dataset. The testing dataset includes LFW [17], AgeDB-30
[19], abd CFP-FP [20]. LFW contains 13233 images from
5749 subjects, 6,000 image pairs are randomly selected for
face verification. AgeDB-30 contains 16,488 images from
568 subjects. We evaluate on the age-invariant face verifica-
tion protocols, which has 10 folds each with 300 intra-class
and 300 intra-class pairs. CFP-FP consists of 500 subjects,
each with 10 frontal and 4 profile images. We evaluate on
the frontal vs. profile protocol, which contains 3,500 positive
pairs and 3,500 negative pairs.

B. ABLATION STUDY
We first evaluate different loss combinations for E-Net to
reveal their effectiveness in our model. We consider four
combination variants, the main network without E-Net and
D-Net ( only the ArcFace loss is used) and three Fast-FAR
variants, i.e., the main network with E-Net and D-Net, and
combining with either or both of the embedding loss Le and
discrimination loss Ld. The four variants are used to compare
with each other. For better understanding of the running speed
of each variant, we calculate the inference time per image
and the image number recognized by each block of the main
network. The results are reported in Table 2. It is clear to
see that all Fast-FAR variants require less runing time than
the baseline M with comparable face verification accuracy,
the accuracy for M + E-Net + Le + Ld is even slightly
higher than that of M on LFW. All the testing images are
recognized at the last block for M , while quite a number
of the input images are recognized in advance for Fast-FAR
variants, this is the reason why the running time for Fast-FAR
variants are lower than that of the baselineM . For the variant
M + E-Net + Le + Ld, the percentages of the recognized
images by the 4 blocks are 8.38%, 21.17%, 44.98%, 25.47%;
11.04%, 20.58%, 45.14%, 23.24%; and 6.21%, 15.15%,
21.58%, 57.06% on the datasets LFW, AgeDB-30 and CFP-
FP, respectively. It saves about 14.22%, 20.61%, and 7.84%
running time on the three datasets, respectively, depending on
how many easy face images provided by the testing datasets.
More easy images contained within the dataset, less time
is required for Fast-FAR. By comparing the settings M +
E-Net + Le vs. M , and M + E-Net + Ld vs. M , it is
easy to conclude that both the embedding loss Le and the
discrimination loss Ld are effectiveness for the improvement
of face recognition. However, only using one of these two loss
functions, the recognition performance may drops slightly
compared with M (except the setting M + E-Net + Le on
AgeDB-30 dataset).

We visualize the feature that output by each block of the
main network, and compare them with the converted ones
by E-Net. Specifically, we randomly select three face images
from the test set and use the pre-trained model to extract the
mean features from each of the four blocks for visualization.
The results are shown in Figure 2. As can be seen, the features
output from the 4 blocks are presenting at different scales
(Col. A), even for the same identity. However, the scales for
the converted features are almost the same, meaning E-Net
have the capacity to convert the shallow-level feature to
high-level feature with the same scale, so that shallow-block
features can be compared with deep-block in the same
space.

C. COMPARISON WITH STATE-OF-THE-ARTS
We further compare face verification performance of our
Fast-FAR with state-of-the-art face recognition methods. For
a fair comparison with the very recently released work
ArcFace [10], we use ResNet-100 as the main network
the same with ArcFace, and employ ArcFace loss to train
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FIGURE 2. Feature visualization results. Results in column ‘‘A’’ are the original features that exacted from the main network, i.e.,
ResNet-50. Results in column ‘‘B’’ are the converted features by E-Net.

TABLE 3. Face verification performance (%) of different methods on LFW,
and AgeDB-30. ‘-’ means the result is not reported.

Fast-FAR. The results are shown in Table 3. Other method’s
results are copied from the paper [10]. Asmost of the compar-
ing methods have reported their recognition results on LFW
andAgeDB-30 while few of then reported the results on CFP-
FP, we only use LFW and AgeDB-30 for the comparison
of the popular face recognition methods. As can be seen,
Fast-FAR with ResNet-100 beats all the comparison methods
by a significant margin on both LFW and AgeDB-30. Specif-
ically, Fast-FAR outperforms the methods DeepID, VGG
Face, Softmax, Center Loss, SphereFace, CosFace by 0.11%,
0.63%, 0.5%, 0.3%, 0.16%, 0.07% on LFW dataset, and out-
performs Softmax, SphereFace and CosFace by 4.7%, 5.33%
and 2.47% on AgeDB-30 dataset. Especially on the compar-
ison with ArcFace which has the same experimental setting,
our Fast-FAR can improve the face verification accuracy by
0.05% on LFW dataset, and 1.88% on AgeDB-30 respec-
tively, with faster processing speed. The results indicate
that our Fast-FAR can achieve high-speed face recognition
without drops recognition accuracy.

IV. CONCLUSION
In this paper, we propose a novel and generic model to speed
up face recognition approaches that use Deep Convolutional
Neural Networks (DCNN). Based on the observation that
most of the easy face images can be well classified by the
shallow layers of a DCNN, we train our FAce Recognizer
(Fast-FAR) by a manner of reinforcement learning to adap-
tively learn the earliest layer where the give face image
can be accurately recognized. In the experiment, we eval-
uate our Fast-FAR by comparing with other recognition
methods on the popular face recognition benchmarks. The
results have demonstrated that Fast-FAR can significantly
reduce the recognition time, as well as achieving first-rate
face recognition performance. Observing from the experi-
mental results, the performances of our method on some
databases are slightly lower than state-of-the-arts. In the
future, we will focus on the architecture design of the Embed-
ding sub-Network and the Decision sub-Network, as well as
the block partition of the main network, with the goal of
further improving the recognition performance on all popular
face recognition benchmarks.
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