
Received July 5, 2021, accepted August 9, 2021, date of publication August 23, 2021, date of current version August 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106815

Sequence-Based Selection Hyper-Heuristic
Model via MAP-Elites
MELISSA SÁNCHEZ , JORGE M. CRUZ-DUARTE , (Member, IEEE),
JOSÉ C. ORTIZ-BAYLISS , (Member, IEEE),
AND IVAN AMAYA , (Member, IEEE)
School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico

Corresponding author: Ivan Amaya (iamaya2@tec.mx)

This work was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACYT) Basic Science Project under Grant
287479, and in part by the Research Group with Strategic Focus in Intelligent Systems at Instituto Tecnológico y de Estudios Superiores de
Monterrey (ITESM).

ABSTRACT Although the number of solutions in combinatorial optimization problems (COPs) is finite,
some problems grow exponentially and render exact approaches unfeasible. So, approximate methods,
such as heuristics, are customary. Each heuristic usually specializes in specific kinds of problems. Hence,
other approaches seek to merge their strengths. One of them is selection hyper-heuristics. However, they
usually provide scarce information about their sensitivity. Illumination algorithms may fix this issue since
they focus on exploration rather than exploitation while preserving the best solutions under different
criteria. Still, literature falls short when merging both approaches, representing a knowledge gap. This
work tests the feasibility of using an illumination algorithm, MAP-Elites (ME), for tuning a sequence-based
selection hyper-heuristic model for Balanced Partition problems. We choose ME since other researchers
have successfully applied it to a different COP. So, we may achieve a hyper-heuristic that represents the best
combination of heuristics while simultaneously gaining intel on the performance of diverse alternatives.
Our approach operates by creating a multi-dimensional map, where each design variable represents the
application of a heuristic. Afterward, ME generates mutated sequences and tests them to determine if they
represent a better-performing solution. We consider 1500 instances that include easy and hard instances,
analyzed under different scenarios to test our approach. We also include limit instances that are neither easy
nor hard. Our resulting data support the proposed approach, as it performs toe-to-toe with a synthetic oracle
and may even outperform it. This represents an outstanding result, since a brute-force approach is needed to
achieve such an oracle. So, merging ME and hyper-heuristics is a path worth pursuing. We also present how
each parameter affects the model performance and identify the critical and virtually irrelevant ones. This
serves as the groundwork for future works that focus on exploiting the most relevant parameters.

INDEX TERMS MAP-elites, balanced partition, hyper-heuristic, combinatorial optimization, heuristic.

I. INTRODUCTION
We can use a Combinatorial Optimization Problem (COP)
to represent real-life problems. Here, values must be selected
from a discrete domain while aiming to reach an optimal goal.
Examples include Balanced Partition and Job-Shop Schedul-
ing. The first case is akin to situationswithmultiple operators,
e.g., multi-core problems [1]. The second one usually maps
the planning of manufacturing processes [2]. Of course, liter-
ature is prolific with studies about other COPs [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Li .

Heuristics are common, straightforward methods for solv-
ing real-world COPs [4]. Despite their success, they are
problem-specific, and their mileage may vary as they do not
guarantee optimality. Their adequate performance is often
restricted to instances of the same nature as those the heuris-
tic was built for. So, performance levels for other kinds
of instances remain unclear and one must test them. These
drawbacks stem from their likeness to simple rules-of-thumb.
Hence, researchers have sought alternatives for improving
their trustworthiness [5]–[7]. Nonetheless, we bring up only
two of them: metaheuristics and hyper-heuristics.

Metaheuristics (MHs) have existed for quite some time.
It is customary for them to be linked to a biological metaphor.

116500 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4067-2488
https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0002-0517-2392

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

Genetic Algorithms (GAs), based on the theory of evolu-
tion [8], and Simulated Annealing (SA), inspired in crystal-
lization phenomena during the annealing of metals [9], are
among the earliest approaches. Since they are rather straight-
forward to implement, MHs have become mainstream for
solving optimization problems, including COPs [10]–[13].
Nowadays, research efforts include the automatic generation
of metaheuristics tailored to a given set of problems [14].

Similarly, hyper-heuristics (HHs) refers to a reasonably
recent proposal that has drawn attention because of its perfor-
mance [15], [16]. There are several types of HHs, and their
classification has grown from a relatively simple approach to
a complex mixture of perspectives [16]. Amongst them reside
selection hyper-heuristics, where the solver selects a low-
level strategy (such as a heuristic) from a pool (e.g., the set
of available heuristics) at each step of the solution. Selection
hyper-heuristics allow taking advantage of the strengths of
each available solver, as each one only needs to solve a
portion of the problem.

However, selection hyper-heuristics exhibit a couple of
drawbacks. One of them is the need to address each problem
instance and identify the current state of its solution so that
one may select a proper heuristic. The other one is that the
selection model must be able to traverse a search space that
can grow drastically as we add more heuristics. The reason
is that a selection hyper-heuristic must choose a heuristic at
each step of the solution process. So, an exhaustive approach
implies evaluating the effect of all heuristics every time the
system must decide which heuristic to apply. This, of course,
grows exponentially w.r.t. the number of available heuristics.
Although this approach sounds similar to algorithm portfo-
lios, they perform a single selection per problem instance
(when the search starts). Instead, HHs execute several selec-
tions throughout the search, as we just mentioned.

For the sake of clarity, we now mention a brief example.
Let us assume that algorithm portfolios can be laid out as a
sequence of the decisions they carry out for solving a given
problem instance. From this perspective, they have a single
element in the sequence. Conversely, hyper-heuristics may
exhibit as many as desired. So, one may consider selection
hyper-heuristics a superset of algorithm portfolios.

A HH does not directly solve a problem instance. Instead,
it seeks the right approach for a given situation. Then,
HHs operate on the solver space and not on the problem
space [17]–[19]. This approach has proved its worth when
solving COPs. For example, Garza-Santisteban et al. used
a Simulated Annealing (SA) algorithm to deal with JSSPs,
managing to outperform the oracle in some scenarios [20].
Yu et al. developed a hyper-heuristic resulting from the
hybridization of a multi-decoding framework with an Evo-
lutionary Algorithm [21]. Wu et al. developed several HHs
based on SA and using five heuristics that operate as their
foundations [22]. There are way more exciting works, but
it is unfeasible to discuss them all here. So, the interested
reader is directed towards [3], [15], [16], [18] for more
information.

Illumination algorithms are another strategy for solving
optimization problems that render an overview of the land-
scape associated with the fitness of the objective function.
In doing so, they provide optimal solutions under different
design considerations. The Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites, or simply ME) is an example
of this kind of strategy [23], [24]. MAP-Elites explores the
search space with a grid of high-performing solutions (elites)
in terms of user-defined features.

Although illuminating a domain has some advantages,
it also exhibits some drawbacks. The process is more
widespread and thus it scans more of the search space.
But, in doing so, ME analyzes promising solutions in less
detail than with traditional optimization methods. Despite
this, identifying promising solutions under different criteria
may prove worthwhile. So, advantages stem from the insight
of how solution combinations correlate with performance and
on the finding of multiple potential solutions [23].

Illumination seems akin to multi-objective optimiza-
tion [25]–[27]. But, the latter focuses on finding a set of
best-performing solutions, based on the criteria from two or
more objective functions. Conversely, illumination tackles a
single objective function, although also provides a set of best-
performing solutions. Illumination provides best-performing
solutions for different regions of each design variable.

Up to now, researchers have restricted most applica-
tions of ME to robotic tasks, such as the evolution of
robot arms [28], robot morphologies [28], and soft-bodied
robots [23]. Besides, they have also applied ME to con-
strained optimization [24], [29]. To the best of our knowledge,
literature contains no works where HHsmeetME. So, we aim
to fill that knowledge gap by evaluating the feasibility of
using ME for training selection hyper-heuristics that solve
the Balanced Partition problem. The reason: traditional HHs
fall short when providing information about their sensitivity,
which can be alleviated by using an illumination algorithm
throughout the training process. Since the problem can be
coded as a sequence of decisions (i.e., heuristics), ME can
be used for illuminating the search space of all possible com-
binations of heuristics. In this way, we may not only achieve a
good solver, but also information about the way performance
changes if the model, or its parameters, are altered. Hence,
this work has three major contributions:
1) It proposes a sequence-based selection hyper-heuristic

model powered by MAP-Elites and for solving the Bal-
anced Partition problem;

2) It analyzes the effect of several parameters over the
performance of the model, identifying those that are
critical and those with virtually no effect; and

3) It demonstrates that the proposed model outperforms
low-level heuristics, randomly-selected sequences, and
even a synthetic oracle (under the right conditions).

We have structured this paper as follows. Section II sum-
marizes fundamental concepts from our work and discusses
recent works on selection hyper-heuristics and MAP-Elites.
Then, Section III describes the proposed hyper-heuristic

VOLUME 9, 2021 116501

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

model, the instances, and the heuristics we used. Section IV
details the experimental setup (benchmark and algorithm
settings), followed by the data analysis (Section V). Finally,
Section VI wraps this work up, suggesting some paths for
future developments.

II. FUNDAMENTALS
This section presents some key concepts about the Balanced
Partition (BP) problem, hyper-heuristics, and MAP-Elites.
We begin by describing what the BP problem is and the
heuristics used to solve it. We then present hyper-heuristics
and how they operate. We focus on selection hyper-heuristics
since it is the approach we used in this work. After that,
we explainMAP-Elites and the waywe use it for optimizing a
given objective function. We conclude this section by relating
previous works done with MAP-Elites.

A. BALANCED PARTITION (BP)
Balanced Partition is a combinatorial optimization problem
that requires balancing out the total load of two sets of ele-
ments. The problem starts with a set of items S where each
item is associated with a weight. The task is to assign each
item in S to one out of two subsets, S1 and S2, in such a way
that their total weights become as close as possible. Thus,
any item distribution represents a solution to the BP problem.
The optimal solution is the one that minimizes the absolute
difference between the sum of the weights of the subsets.
There are two rules: the items can be assigned in any order,
and each item can only be assigned to one subset.

To validate the quality of a solution, one may use a simple
metric based on a quality indicator Q, such as

Q(S1, S2) ,
∣∣∣∑si∈S1 si −

∑
sj∈S2 sj

∣∣∣ . (1)

Here, Q stands for the absolute value of the difference
amongst set totals and, so, lower values are better. In fact,
the ideal (minimum) value for Q is zero, but this may not be
achievable in every instance.

Consider the following simple example. Imagine a prob-
lem instance given by S = {10, 20}. This problem has
several solutions, where none, a single, or both items are
moved into S2. However, the ‘best’ solutions are either S1 =
{10}, S2 = {20} or S1 = {20}, S2 = {10}. In both cases,
the sets are not fully balanced and Q = |10 − 20| = 10.
Nonetheless, this is the lowest Q value that can be achieved
and thus represents the best quality level. This metric also
has the advantage of being extendable to multiple problem
instances, where the average value of Q can be used for
assessing the quality of a solver over a set of instances. If
all instances are solved properly, the average Q value should
be small.

There are two parameters that affect the hardness of a BP
instance: the number of bits required for representing the
item with the largest value and the number of items within
the problem instance. According to Hayes [30], should their
ratio be smaller than one, the instance is considered easy to

solve, and perfect partitions can be expected to some degree.
Should it be larger than one, the instance is identified as hard
to solve, and it becomes unlikely to find perfect partitions.
In the limit case, i.e., when the ratio is close to one, we can
observe a phase transition phenomenon—an abrupt change in
the probability of finding perfect partitions.

Now, there are several scenarios in real-life where
resources must be evenly distributed. Therefore, the BP prob-
lem can be applied to a variety of contexts. Some common
examples include scheduling and grouping. However, there
are also moments when distributing the items into two sets is
not enough. Hence, variations of the problem arise, such as
the k-set Partitioning problem [31] and the Balanced Graph
Partitioning problem [32], [33]. The former keeps the same
overall structure but uses k subsets instead of two. The latter
seeks to partition a graph into even-sized components while
minimizing the number of edges. Figure 1 summarizes other
problems that can be modeled as Balanced Partition, includ-
ing: People Assignment [34], Routing [31], [35]–[38], Task
Allocation [39], [40], File Placement [41], [42] and Schedul-
ing [43]–[45].We briefly describe them in the following lines.

FIGURE 1. Some applications of the balanced partition problem that can
be modeled as different problem domains.

The People Assignment problem has the objective of dis-
tributing a group of people with different capabilities or
attributes in balanced subgroups or teams. This can prove
useful when creating balanced teams [34] or when sharing
rides [31]. The latter can also be modeled as a Routing
Problem [31], [36], [37]. However, there are other applica-
tions, such as Delivery Routing or Evacuation Planning [38].
For instance, some authors have proposed a Balanced Graph
Partitioning to reduce the overall computational complexity
of the problem for Ride-sharing Routes [36], [37].

Subsequently, the Fair Task Allocation Problem consists
of distributing n jobs to m workers [39]. Each job has a
numerical weight depending on its complexity. The objective
is to balance as much as possible the distribution of tasks
among the workers. A more complex variation combines
routing and task allocation: the Crew Scheduling and Routing
Problem [35]. It consists of determining the best route and
schedule for a single crew to accomplish the main job that
can be divided into tasks at different locations.

116502 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

In the case of the File Placement problem, the goal is to
improve transmission and retrieval of information by dis-
tributing data in F equally sized packets. Zhu et al. tackled
this problem for Private Information Retrieval context while
minimizing file length [42]. Similarly, Wang et al. strove to
characterize the placement and delivery of information in
Device-to-Device networks [41].

Finally, and as an example of the application to Schedul-
ing problems, one finds Multi-processor Scheduling. Here,
the goal is to improve the parallel execution efficiency of
tasks that share resources (e.g., external devices, sharedmem-
ory, and files). To solve this problem, there exist multiple
paradigms, such as a Partitioned Schedule [43], [45], a Global
Schedule [46], and a Semi-partitioned Schedule [44].

B. HYPER-HEURISTICS (HHs)
Heuristics are common for solving challenging real-world
Combinatorial Optimization Problems, mainly due to their
computational simplicity. Such methods rely on problem-
specific knowledge to operate and often produce time-cost
efficient solutions. However, their performance can vary as
they do not guarantee optimality.

Several approaches have emerged throughout the years to
overcome the optimality issue. Hyper-heuristics are among
the most recent ones. They aim to provide more general-
ized solutions by combining two or more heuristics as a
problem is solved. In doing so, they match the advantages
of solvers seeking to perform well over a set of problems
instead of focusing on excellent results for a reduced subset
of instances [15].

Hyper-heuristics can be classified with different crite-
ria [15]. One of them leads to those that generate new heuris-
tics and those that select among existing ones. The former
does so by modifying or combining existing heuristics. The
latter selects from a set of heuristics throughout an iterative
search process. Nonetheless, the goal of both types of HHs is
to improve the search process. Although both approaches are
relevant, in this work, we focus on selection hyper-heuristics.

We are aware that many different types of selection HHs
are described in the literature [16]. For example, there
are HHs that work on batches of instances [47] and HHs
that decide the next heuristic based on a reward/penalty
strategy [48], [49] or on a threshold acceptance criterion
[50], [51]. Among the different HHs described in the liter-
ature, two types are of particular interest for this work: rule-
based HHs and sequence-based ones [3]. The former can be
represented as a collection of rules, where a condition and an
action make up each rule. The latter are more straightforward.

To establish appropriate conditions for a rule-based hyper-
heuristic, we require a mapping for problem instances. This
can be done, for example, by defining a set of features
associated with the problem domain variables. For the BP
problem, this can be given by the ratio of items belonging to
one set. The action dictates the heuristic to be used when such
a rule is triggered. Now, the decision about which rule is trig-
gered usually falls to the rule closest to the current problem

state [52]. Bear in mind that this model can be represented as
a matrix, where rows stand for rules and columns, except the
last one, represent feature values for the rule conditions. The
final column corresponds to the action to use for the rules.
Hence, this model is not limited to having a fixed number of
rules per heuristic, which adds to its flexibility.

Sequence-based hyper-heuristics simply select heuristics
by following a fixed sequence. Hence, they do not require
any mapping of problem instances, although it may be incor-
porated to create hybrid approaches. Instead, their training
seeks to find a proper heuristic ordering that maximizes
performance over the set of instances.

Regard that the rationale behind this model is to identify a
crucial sequence of heuristics. So, it is somewhat expected
for sequences to be shorter than the number of choices to
make when solving an instance. Because of this, it is also
essential to consider how the sequence is cycled. Some not
infrequent approaches found in the literature include the
repetition of each element in the sequence, restarting the
whole arrangement, and even mirroring the sequence [3].
Sánchez-Díaz et al. already analyzed the behavior of the first
approach [53] and so, in this work, we focus on the other two.
The authors calculated how many times the whole sequence
required to be repeated for making all the decisions for a sin-
gle instance. Then, they repeated each action in the sequence
by said amount. The sequence is increased in backward order
to account for non-integer repetitions. So, the last heuristics
in the sequence may be repeated one more time than the first
ones.

There are several workswhere authors have used sequence-
based selection hyper-heuristics. Among the most relevant
and recent ones, one may find the works of Kheiri and
Keedwell [54], Kheiri et al. [55], and Kheiri [56]. They pro-
pose a sequence-based selection hyper-heuristic framework
optimized with a hidden Markov Model to analyze and pro-
duce sequences of heuristics. They test this model with the
Inventory Routing Problem [56] and the Nurse Rostering
Problem [54], [55]. Ahmed et al. also apply this concept to
solve the Urban Transit Route Design Problem [57]. A dif-
ferent approach was followed by Yates and Keedwell, where
they use a logarithmic return to determine the sequences
with the best performance [58]. These results demonstrate
the potential of sequence-based selection hyper-heuristics for
achieving the best performance and faster run times over
other HHs.

C. MAP-ELITES (ME)
Multi-dimensional Archive of Phenotypic Elites
(MAP-Elites, ME) is an illumination algorithm that was
recently introduced [23]. An illumination algorithm is a tool
for finding optimal solutions to a given problem. However,
they differ from optimization algorithms since they seek to
‘illuminate’ the search space rather than exploit it. In this
sense, an illumination algorithm focuses on exploration rather
than exploitation. The reason for doing this is that it allows
finding the optimal loci to a problem domain, but under

VOLUME 9, 2021 116503

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

different design considerations, which can be particularly
useful at the initial stages of a design process [59].

MAP-Elites has gained attention in the Evolutionary Com-
putation community due to its simplicity and general appli-
cability. The idea with ME is to map the highest-performing
solutions (elites) within a discretized N -dimensional search
domain (feature space), based on problem-specific fea-
tures. These features are not necessarily correlated to the
actual objective function. However, they describe some
domain-specific properties of the candidate solutions, and
the user is usually interested in seeing the effect of varying
them. This search domain is also known as behavior space
[23], [28], [60], but we opted for the first name in this work.

Through this mapping, the algorithm ‘illuminates’ the
search space by showing the potential trade-off of each area
w.r.t. the features of interest [29]. For example, when design-
ing a robot like a walking gait, the space of possible behaviors
can be described by how much each leg is involved in a gait,
whereas the performance is measured by speed [28], [60]. So,
one has an estimate of the maximal speed that the robot can
reach for different leg involvement levels.

The benefits of MAP-Elites are diverse and rely mainly
on the diversity of solutions given by the illumination of
the solution space in terms of user-defined features. It gives
the user insight into how combinations of characteristics
correlate with performance [24]. According to Mouret and
Clune [23], other benefits include:
• Improved optimization performance over some current
state-of-the-art search algorithms;

• The search for a solution in a single cell is aided by the
simultaneous search for solutions in other cells; and

• Returning a large set of diverse, high-performing indi-
viduals in a map can be used to create new types of
algorithms or to improve the performance of existing
ones.

For the sake of brevity, we now concisely mention the
general idea behind MAP-Elites. A more detailed discussion
of this algorithm is left for Section III, where we show how
we adapted it for training sequence-based selection HHs. The
algorithm initialization includes the generation of a set of
random candidate solutions and their localization. To this
end, each solution is evaluated and assigned to a cell within
the grid (feature space). The best solutions within each cell
are preserved. Afterward, an iterative process begins, encom-
passing the random selection of solutions for crossover and
mutation operations. The offspring are placed within the
grid. Should the cell be already occupied, both solutions
are compared, and the best one (i.e., the elite) prevails. The
final result is a grid that contains the best solutions for each
cell.

Up to now, most applications of MAP-Elites have been
restricted to robotic tasks. However, ME has also been used
in applications such as: developing neural networks for com-
puter vision tasks [23], tackling the Workforce Scheduling,
and Routing Problem (WRSP) [24] and enhancing Genetic
Programming [61]. To the best of our knowledge, there is only

one case where MAP-Elites has been applied for constrained
optimization [29]. In this regard, Fioravanzo et al. showed
that ME cannot compete on all problems with state-of-the-
art algorithms, such as those using gradient information or
incorporating advanced constraint handling techniques. Nev-
ertheless, they found that ME has a higher potential for
finding constraint violations versus objectives trade-offs and
providing new information about the problem. Hence, they
state that ME could be an effective building-block for design-
ing new constrained optimization algorithms.

III. PROPOSED APPROACH
In this work, we combine hyper-heuristics and MAP-Elites
to solve the Balanced Partition problem. Our motivation is
two-fold. First, we want to find optimal solutions to a set
of problem instances. Second, we strive to provide a user
with the effect of different parameter configurations and the
trade-off between using two pools of heuristics. It is worth
noting that we arrive at this idea after analyzing the work
by Urquhart and Hart where they used ME for tackling the
real-world workforce scheduling and routing problems [24].
However, we use ME for illuminating the space of heuristic
combinations and thus focus on the hyper-heuristic model
instead of the problem solution.

A. OVERVIEW
To link MAP-Elites within the hyper-heuristic model,
we assign an integer for each heuristic, which acts as an ID. In
this way, a number always represents the same heuristic (see
Sect. III-C for details). Also, we represent a sequence-based
hyper-heuristic as an array of such IDs. Each one of them
indicates the heuristic to use at the corresponding step in
the sequence. We use the term cardinality (C) for referring
to the length (number of steps) of the hyper-heuristic [62].
For example, the array {1, 2, 1} represents a sequence-based
hyper-heuristic with C = 3, where the Max heuristic is used
as the first and third steps and the Min as the second one.

With this link established, one can use ME to train
sequence-based selection hyper-heuristics. Here, we assume
that each dimension in the feature space belongs to one
element in the sequence: a step. Moreover, the set of available
heuristic IDs represents the domain of each dimension. Thus,
the size of the search space that ME illuminates isHNs , where
H is the set of heuristics and Ns is the number of steps in the
sequence.

Since we expect sequences to be shorter than the total num-
ber of decisions required for solving the instance, there must
be a way to reuse the sequence. We consider two approaches:
restart and reflection. In the first case, the sequence begins
anew. In the second one, the sequence repeats itself in a
backward fashion. Bear in mind that, in practical terms, this
corresponds to extending the sequence to cover the total
number of decisions. Nonetheless, it does not affect the size
of the search domain as the base sequence is already defined.

Figure 2a displays the effect of using one looping scheme
or the other for a hyper-heuristic with C = 3. As one

116504 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

may see, only the fourth decision changes. When using a
restart scheme, the model uses heuristic h4. But when using
a reflection scheme, it employs h3 instead. Even if this seems
negligible, it will become more relevant as the sequence-
based hyper-heuristic becomes longer and more diverse.
Conversely, symmetric hyper-heuristics (e.g., {1, 2, 1} and
{2, 3, 4, 4, 3, 2}) lead to the same decisions regardless of
the looping scheme. Also, note that the first C decisions
are the same for both looping schemes, so excessively long
sequences (e.g., those where C exceeds the number of deci-
sions) will have the same performance.

Moreover, Figure 2b shows the relationship between a
hyper-heuristic and the grid ME illuminates. For the sake of
simplicity, we only show some dimensions. Particularly, we
represent the third dimension by each layered map with trans-
parency. In this way, what ME provides is an overview about
the performance level that can be expected when selecting
different values for the first two dimensions of the problem.
In our case, this is done by selecting the best performance
level across the remaining dimensions. Such a mapping has
the added benefit of hinting at the effect that the first two
dimensions hold over the performance of the model.

B. INSTANCES CONSIDERED IN THIS WORK
In this work, we use the sets of instances shown in Table 1.
We generated such instances by randomly assigning integer
values to a fixed number of items. Hence, the parameters that
we consider for the generation are the number of elements
within the instance and the number of bits required for repre-
senting its largest one. This allows us to create instances with
different difficulty levels based on the ratio between the latter
and the former.

For this work, we label each set using the following pattern:
Set-numElements–numBits-numSet. Note that whenever we
omit the last number, it implies that there is only one set with
the same number of elements and bits. So, Set-25-4 refers to
the only set where instances have 25 elements and up to four
bits per element.

TABLE 1. Sets of instances generated and used in this work. Instance Set
name description found in Sec. III-B; NS: Number of sets with the given
number of bits and elements; NI: Number of instances within each set.
DI: Difficulty level of each instance within the set.

C. HEURISTICS CONSIDERED IN THIS WORK
In this work, we implement a set of five simple
heuristics representing problem-specific rules that provide
computationally-efficient solutions for one or more problem

FIGURE 2. Some details about the proposed hyper-heuristic model.

instances. When solving an instance, we assume that all
items are initially assigned to the first subset. Then, we
progressively move them to the second subset (with each
step of the solution) until it contains half or more of the total
instance load. Remark that we do not allow items to return
to the first subset to preserve a constructive approach in the
solving process.

Even though there are several heuristics for solving par-
tition problems, we select the following ones because of
their simplicity: Max, Min, 2-Max, 2-Min, and Median.
The former moves the largest item. Min, on the other
hand, moves the smallest one. The following two heuristics,
2-Max and 2-Min, adhere to a similar procedure but instead
select the second largest and smallest item, respectively. The
remaining heuristic, Median, moves the middle element in
the sorted instance. In the case of a sequence with an even
number of elements, the previous element is selected.

Figure 3 displays a simple example of the items that each
heuristic would select at two consecutive steps of the solu-
tion process. For the second step, the example assumes that

VOLUME 9, 2021 116505

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

the previous item was selected with the Median heuristic.
Each heuristic has a consecutive ID, starting at one and in
the aforementioned order. So, ID three represents heuristic
2-Max, for example.

FIGURE 3. Example of items selected for movement based on the
different heuristics. For the sake of simplicity, we assume that the
instance is already sorted.

D. ALGORITHM
We propose using a simplified MAP-Elites algorithm with
no crossover, where each genome represents a sequence-
based hyper-heuristic (Pseudocode 1).We adapt such amodel
from the one presented by Mouret and Clune [23]. To favor
diversity, we force newly generated solutions to mutate into
one different from their parent. Also, the average normalized
quality level indicates the performance of a candidate hyper-
heuristic (a genome), which we evaluate over a training set.
This implies that one must divide the fitness Q achieved on
each instance into the total load of the instance, as shown
below:

Q′(Q, S) ,
Q∑
si∈S si

, (2)

where si represents each itemwithin the set of items S, i.e., the
instance. In using such a normalization, one can clearly
identify the portion of an instance that remains unbalanced.
In other words, it represents how close the sets are to a perfect
split. A value of one indicates that all items are on one set
(worst possible fitness). Conversely, a value of zero relates to
a perfect split. This metric simplifies the comparison between
instances with different parameters.

The algorithm starts by generating amultidimensional map
with G elites, χ , and their performances P. Each of these
elites is referred to as a genome and represents a candi-
date solution. As stated previously, in our case, a genome
is a set of numbers (IDs) that represents a combination of
heuristics, i.e., a sequence-based hyper-heuristic. For the

remaining E-G iterations (where E is the total function
evaluations), the algorithm selects a random genome and
mutates it.

The mutation operator changes each element within the
genome by a random heuristic ID based on a mutation rate.
So, more than one element within the sequence can mutate in
a given iteration. Also, bear inmind that the oppositemay also
happen, thus preserving the genome. Should this be the case,
the algorithm selects a random element and changes it to a
random alternative, which favors diversity. Then, it evaluates
the resulting child.

Afterward, the child is assigned to the grid if the corre-
sponding cell is empty. Otherwise, the algorithm discards the
child since it represents a repeated solution. Bear in mind
that, at this point, the solution should be compared against the
one existing within the cell. Nonetheless, the discrete nature
of our approach and the number of heuristics we considered
make it possible for the map to be fully detailed. Hence,
each cell represents a single solution. Therefore, if the cell
is already occupied, there is no need to compare solutions as
they are the same.

E. TIME COMPLEXITY ANALYSIS
We now present a brief complexity analysis for our proposal.
To avoid overextending the manuscript, we have simplified it
as much as possible. Let us begin by mentioning that the time
complexity of our overall approach is given by TME-HH =

O{E ∗ #D ∗ THH}, where E is the number of function eval-
uations, #D is the length of the instance dataset, and THH
is the computing cost of a hyper-heuristic. This last term is
proportional to the cardinality (length) of the hyper-heuristic,
C , and the low-level heuristic with the highest computing
cost, Th. In a worst-case scenario, this same heuristic would
be applied until solving the problem. So, THH = O{C∗n∗Th},
since n stands for the number of elements from the longest
problem instance within the dataset D. The worst-case about
solving the Balanced Partition Problem would be using the
brute-force approach. It has a well-known time complexity
for this problem ofO{2n} This result gives us the upper limit
for our approach THH < O{2n} since we did use simpler
heuristics. Indeed, we must say that the implemented low-
level heuristics has Th = O{1} because they are just picking
up values from an instance set. Summarizing, we get that
TME-HH = O{E ∗ #D ∗ C ∗ n} corresponds to the time
complexity of the proposed methodology.

IV. METHODOLOGY
We pursued the three-stage methodology summarized in
Figure 4. First, we explored whether MAP-Elites provides
a benefit when solving the Balanced Partition problem. To
this end, we compared its performance against randomly
generated sequences. Then, we analyzed the effect of dif-
ferent parameters upon the performance of MAP-Elites.
Finally, we focused on verifying the performance of the
algorithm under more demanding tests. We used randomly

116506 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

Pseudocode 1 Simplified MAP-Elites Algorithm Used in This Work and Adapted From [23]
Require:

Training Parameters: Function evaluations E , number of initial genomes G, mutation rate µr , and instance dataset D
Hyper-heuristic Parameters: Steps within the sequence Ns, number of available heuristics Nh, and CyclingScheme

Ensure: Two maps, χ with the encoding of sequence-based hyper-heuristics and P with their performance
1: χ ← ∅ and P← ∅ F Preallocate empty Ns-dimensional maps
2: for all i ∈ {1, . . . ,E} do F Repeat for all function evaluations
3: if i < G then F Initialize using a random elite
4: HH ′← Random_Solution
5: else F Generate new solutions from elites within the map
6: HH ← Random_Selection(χ) F Randomly select an elite HH from the map χ
7: HH ′←Mutate(HH) F Create HH ′ by mutating HH
8: C ← #HH F Read the current hyper-heuristic cardinality or number of steps
9: p′← Evaluate_HH(HH ′) F Assess the performance of the hyper-heuristic

10: if χ (HH ′) == ∅ then
11: P(HH ′)← p′ and χ (HH ′)← HH ′ F Store the solution and its performance
12: return χ,P

13: procedureMutate(x) FMutation procedure for a given genome
14: x ′← x F Copy the original genome
15: for all x ′i ∈ x

′ do
16: if U(0, 1) < µr then x ′i ∼ U{1,Nh} F Change component i-th by a random heuristic ID

17: if x == x ′ then
18: i ∼ U{1,C} F Select a random component of x ′

19: x ′i ← Random_Change(x ′i) F Change x ′i to a different heuristic ID

20: return x ′

21: procedure Evaluate_HH(x, D) F Hyper-heuristic evaluation over a given dataset
22: pN ← 0
23: for all di ∈ D do
24: p← Run_HH(x, di) F Assess the HH performance over the instance di
25: pN ← pN + Q′(p, di) F Accumulate the normalized performance using Equation 2
26: return pN /#D F Return the average performance by dividing into the dataset length

27: procedure Run_HH(x, d) F Implement the hyper-heuristic x to solve the instance d
28: S1← d , i← 1, and iprev← 1 F Assign all items to the first set and initialize the step counters
29: while Status(d) == ‘unsolved’ do
30: S1, S2← xi{S1} FMove an item to the second set using the i-th heuristic
31: i, iprev← Next_Step(i, iprev, CyclingScheme) F Increase the step counter according to the cycling scheme

32: return Q(S1, S2) F Return the performance evaluated using Equation 1

33: procedure Next_Step(t , tprev, CyclingScheme) F Determine the next step value
34: tcurr← t
35: if CyclingScheme == ‘reflection’ then F Reflection scheme, e.g., it is 1, 2, 3, 3, 2, 1, 1, 2, . . . , for x = {1, 2, 3}
36: if (t == 1)&(t == tprev) then t ← t + 1
37: else if 1 < t < C then t ←2 t − tprev
38: else if (t == C)&(t == tprev) then t ← t − 1
39: else if CyclingScheme == ‘restart’ then F Restart scheme, e.g., it is 1, 2, 3, 1, 2, 3, 1, 2, . . . , for x = {1, 2, 3}
40: if t == #x then t ← 1, else t ← t + 1
41: return t, tcurr

VOLUME 9, 2021 116507

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

generated instances throughout all the stages, as mentioned
in Section III-B.

FIGURE 4. Three-stage methodology followed throughout this work.

A. EXPLORATORY TESTS
In these tests, our goal was two-fold. We strove to estimate
whether a combination of heuristics yields better perfor-
mance than any standalone heuristic. Also, we sought to
detect if MAP-Elites is a better alternative over randomly
selected sequences. With this, we aimed at laying out the fea-
sibility of using a sequence-based selection hyper-heuristic
powered by MAP-Elites. So, we split this stage into two
phases that use Set-10-4-1 to Set-10-4-3.

1) HEURISTICS VERSUS SEQUENCES
To have reference values, we solved the instance sets with two
base heuristics: Max and Min. Then, we analyzed the feasi-
bility of combining heuristics by using the simplest sequence-
based hyper-heuristics: {Max, Min} and {Min, Max}.
The remaining combinations (i.e., {Min, Min} and {Max,
Max}) can be disregarded as they consist of a repeated heuris-
tic, which is the same as the standalone version (i.e., Min
and Max, respectively). As we mentioned in Section III-D,
the performance of each set was assessed by the average of
the normalized metric shown in Equation 2.
Afterward, we studied whether longer sequences are bet-

ter than shorter ones. To this end, we generated random
sequences of the base heuristics (i.e., Min and Max) with 3,
5, 10, and 15 steps, and applied them to the same sets
of instances. Since the next step involves a comparison
against the MAP-Elites training, we selected the best random
sequence among a set of 10 candidates striving for a fair
comparison. We based this selection on the mean fitness
criteria of all ten sequences, and repeated the process 50 times
to account for randomness.

2) RANDOM GENERATION VERSUS MAP-ELITES
The main difference between MAP-Elites and random
sequences falls to the mutation operator. Therefore, this
test tackled the justification of such an operator. This time,
hyper-heuristics were trained with MAP-Elites, considering
a mutation rate of 0.3 and 3 initial genomes. To keep the

comparison fair, MAP-Elites ran for seven iterations, so the
total function evaluations remain at 10. The other param-
eters were preserved. We also generated hyper-heuristics
with 3, 5, 10, and 15 steps and repeated each experiment
50 times.

B. INITIAL TESTS
Since it seems feasible for MAP-Elites to train a sequence-
based hyper-heuristic (see Section V-A), in this stage,
we delved deeper into its analysis. Parting from datasets
Set-25-4, Set-25-25, and Set-25-50, we generated subsets
of training and testing instances with 30 different seeds to
avoid bias due to the random effects. In this way, we trained
sets of varying difficulty, where each instance has 25 ele-
ments. The seeds used for each split can be found at
http://github.com/iamaya2/CombinatorialProblemInstances.
For this testing stage, we trained hyper-heuristics, consider-
ing the following parameters:

• Number of steps in the sequence (Ns): 10
• Number of initial genomes (G): 6
• Mutation rate (µr): 0.3
• Available heuristics (H): {Max, Min}
• Number of function evaluations (E): 50
• Cycling Scheme (CyclingScheme): ‘restart’
• Number of repetitions (runs) per experiment: 50
• Training ratio: 50%

Then, we used each sequence to solve the testing sub-
sets and compare their performance. Afterward, we inves-
tigated how the following parameters affect hyper-heuristic
performance: CyclingScheme, Ns, G, and µr . For each
test, we kept the other parameters on the previously stated
values.

1) EFFECT OF CYCLING: RESTART VERSUS REFLECTION
Up until now, all the tests were performed using sequence-
based hyper-heuristics that restart the sequence. Hence,
at this point, we compared the effects of using a different
cycling scheme. So, we repeated the previous experiments
(i.e., we employed the same seeds for splitting the sets),
but we now trained hyper-heuristics with a reflection-based
(CyclingScheme) scheme.

2) EFFECT OF CARDINALITY
To better understand the effect of cardinality, we changed the
number of steps in the sequences to some arbitrarily selected
values between 5 and 20. Our objective was to study if there is
a pattern in the performance of shorter and longer sequences.
Moreover, we carefully assessed the hyper-heuristics perfor-
mance when their cardinality equals half the instance length
(cardinality). The reason for doing so is that our instances are
randomly generated through a uniform distribution. Hence,
we expected that half the items must be moved before achiev-
ing balance. So, we tested cardinality values of 5, 10, 12, 13,
14, 15, and 20.

116508 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

3) EFFECT OF INITIAL GENOMES
To test the effect of initial genomes, we set the number
of function evaluations to 50. Then, we implemented nine
different ratios between 10% and 90% for setting the number
of initial genomes between 5 and 45. Here, we expected
that hyper-heuristics with large values perform similarly to
a random selection, as ME would only have a few iterations
for improving.

4) EFFECT OF THE MUTATION RATE
The mutation in the algorithm provides diversity in the solu-
tions from one generation of the population to the next one.
As explained in Section III-D, this increases the chance of
occupying new cells in the grid by trying more possible
solutions. It is important to highlight that a very low mutation
rate could hinder the ability of the algorithm for diversifying
the solutions.While, if the mutation rate becomes excessively
high, it may transform our approach into the simple random
search used in the exploratory experiments. Hence, the need
for determining the precise effect of such a parameter. In this
experiment, we varied the mutation rate between 0.0 and
1.0 with increments of 0.1.

5) EFFECT OF THE TRAINING RATIO
For the prior tests, we split each dataset from Table 1 into
different training and testing subsets. However, having an
excessively high training ratio is undesirable as it makes
the process more computationally intensive. Unlike, training
with too few samples could hinder performance as not all
kinds of instances are represented. Both of these cases should
be avoided as they lead to unsought behaviors [63]–[65].
In this phase of experimentation, we aimed at testing the
effect of training with a different number of instances. In
this way, we explored the sensitivity of the proposed model
and determined a feasible level for future usage. So, we con-
sidered the following training ratios: 10%, 30%, 50%, 70%,
and 90%.

6) ORACLE
As a final point of comparison at this stage, we looked
forward to assessing how the hyper-heuristics fare when
matched against a more robust solver. To do so, we pro-
cured a synthetic solver commonly known as the oracle.
Such an oracle is able to perfectly select the best standalone
heuristic for each instance. Since this approach is unfeasible
to train, we deployed a brute-force process where we run
each heuristic and then extracted the best result. For these
tests, we trained five fresh hyper-heuristics per seed, using
the best parameter values obtained from the previous phases
(see Section V for the details), such as:
• Number of steps in the sequence (Ns): 15
• Number of initial genomes (µr): 15
• Mutation rate (G): 0.4
• Available heuristics (H): {Max, Min}
• Number of function evaluations (E): 50
• Cycling scheme (CyclingScheme): ‘restart’
• Training ratio: 50%

C. ADVANCED TESTS
The last stage of experiments aimed to evaluate the algo-
rithm under more exacting tests, distributed throughout three
phases. So, we analyzed how performance changes by mod-
ifying the quantity of available heuristics and changing the
nature of mutation operators. We also checked if the algo-
rithm is sensitive to the size of the instance by training hyper-
heuristics with larger sets.

1) EFFECT OF INCREASING THE POOL OF HEURISTICS
First, we added three heuristics to the search domain
of the algorithm: 2-Max, 2-Min and Median (see
Section III-C). In doing so, we amplified the search domain.
For example, if we consider sequences with the same car-
dinality (i.e., C = 15), the domain increases by almost
one million heuristic combinations. This, in turn, extends
the memory requirements of the proposed approach beyond
our capabilities. So, to keep things manageable, we reduced
the cardinality to C = 10, which only increased memory
requirements by a factor of 300. So, the tests from this stage
utilized the same datasets from Section IV-B but with the
following parameters:

• Number of steps in the sequence (Ns): 10
• Number of initial genomes (G): 15
• Mutation rate (µr): 0.4
• Available heuristics (H): {Max, Min, 2-Max,
2-Min, Median}

• Number of function evaluations (E): 50
• Cycling scheme (CyclingScheme): ‘restart’
• Number of repetitions (runs) per experiment: 50
• Training ratio: 50%

Moreover, we assessed how the oracle shifts by repeating
tests from Section IV-B6 with the extended heuristic set.

2) EFFECT OF MUTATION OPERATORS
For the second phase, we changed the mutation operators. So,
we no longer employed those described in Section III-D but a
set of five operators that alter the hyper-heuristic. We strove
to use more disruptive mutation operators, to test their effect
in algorithm performance. So, at each function evaluation,
one of these operators was randomly selected and applied
as described below. To better illustrate the inner workings of
each operator, consider the following set of available heuris-
tics H = {h1, h2, h3, h4, h5} and the hyper-heuristic given by
HH = {h4, h5, h2, h1, h3}, which mutation targets.

Single-Point Flip selects a position i ∈ {1, . . . ,C} and
changes the element for any of the available heuristics
(selected at random). For example, let us assume that
i = 3. Since the new heuristic can be any hh ∈ H , let
us consider that h1 is selected. Then, the mutated hyper-
heuristic becomes: HH ′ = {h4, h5, h1, h1, h3}.

Neighbor-based Single-Point Flip selects a position i ∈
{1, . . . ,C} and changes the element by a copy of a
randomly selected neighbor. Again, let us assume that
i = 3 as an example. Then, the new heuristic can

VOLUME 9, 2021 116509

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

be either h5 or h1. Let us suppose that the former is
selected. Then, the resulting hyper-heuristic is HH ′ =
{h4, h5, h5, h1, h3}.

Neighbor-based Two-Point Flip is a variant of the
Neighbor-based Single-Point Flip in which two posi-
tions i, j ∈ {1, . . . ,C} copy one of their neighbors.
Let us suppose that i = 1 and j = 3. In the first
case, the available heuristics are {h3, h5}; do note that
the operator wraps around the sequence. In the sec-
ond one, they are {h1, h5}. Imagine that h5 and h1
are selected, respectively. Then, the hyper-heuristic
becomes HH ′ = {h5, h5, h1, h1, h3}.

Single-Point Swap interchanges heuristics at two randomly
selected locations, i, j ∈ {1, . . . ,C}. Let us assume that
i = 1 and j = 3. Thus, the resulting hyper-heuristic is
HH ′ = {h2, h5, h4, h1, h3}.

Two-Point Swap variant of the Single-Point Swap where
two pairs of elements are interchanged, i, j and k, l,
∀i, j, k, l ∈ {1, . . . ,C}. Let us assume that i = 3, j = 5,
k = 2, and l = 4. Thus, the resulting hyper-heuristic is
given by: HH ′ = {h4, h1, h3, h5, h2}.

Bear in mind that any of these operators can replace the
corresponding heuristic with the same one. Also, one may
include more operators, but we limited ourselves to these
five for the sake of simplicity. Moreover, we used the same
sets from Section IV-B and the parameters from the previous
phase (Section IV-C1) to compare data with the previous
operators.

3) EFFECT OF SETS WITH MORE ELEMENTS
Finally, and to ascertain the performance of the algorithm
for larger instances, we selected Set-40-4, Set-40-25, and
Set-40-50 for training new hyper-heuristics. Remember that,
as shown in Table 1, these sets have 40 elements per instance,
and preserve the number of bits (4, 25, and 50). So, we still
have instances with varying difficulty levels.

V. RESULTS
We present the experimental data generated at each testing
stage. To facilitate things for the reader, we preserve the
structure followed in Section IV.

A. EXPLORATORY TESTS
Since this stage contains two phases with comparable data,
we condense the information into Table 2. This way, one
may carry out comparisons across the different models more
easily. Notice that we provide the normalizedmean fitness for
each set, as well as an overall mean fitness.

1) HEURISTICS VERSUS SEQUENCES
Our data show that solving a set of instances with low-level
heuristics can result in a similar mean fitness value. However,
the opposite may also happen. Consider Table 2: For the first
set (Number of Set, NS, = 1), the difference in heuristic
performance is marginal (0.006 units). However, for NS= 3,

the gap rises to 0.037 units, representing a sixfold increase.
This evidences the variability of heuristics when tackling
problem instances. It also supports the need for developing
instance generators that can be tailored to specific heuristics,
such as the ones shown in [66]–[68].

Nonetheless, a stimulating effect appears when combining
both solvers, independently of the performance gap previ-
ously exhibited. If heuristics are combined following the
{Max, Min} sequence, the hyper-heuristic solves all sets
more efficiently and reduces the mean fitness in about 15%
of the best heuristic. But, using the opposite combination,
i.e., {Min, Max}, actually worsens all solutions, increasing
themean fitness in about 23% beyond the worst solution. This
implies that combining heuristics can be better than using
a single one. However, it requires additional processing for
finding a proper combination.

There are several ways to obtain an improved heuristic
combination. Nevertheless, for now, we want to determine
if randomly selecting heuristics is good enough. As can be
seen in Table 2, using longer sequences proves advantageous
for performance. Even combinations of three heuristics allow
finding the right configurations that outperform sequences
with C = 2 in about 20%.

Even so, such sequences seem to fall short as longer
sequences exhibit better performance, even on a per-instance
base, as Figure 5 shows. Nonetheless, cardinalities beyond
C = 10 seem to lead to no further improvements. This
is somewhat expected since instances contain ten elements,
and so no more than ten decisions are to be made. Hence,
going beyond this value does not make much sense. Still,
we added this scenario to validate the sequence-based model
functioning and determine whether the additional number of
combinations hinders the sequence performance.

There is, in fact, an interesting phenomenon. Throughout
each test, we performed ten function evaluations. Plus, there
are 8 different sequence-based hyper-heuristics with C = 3
and 32 with C = 5. So, it is likely that the algorithm finds
the best combination for C = 3, whilst this may not be the
case for C ≥ 5. Nonetheless, the former was outperformed
by the latter. Consequently, there seems to be a benefit at
the individual (instance) scale when using longer sequences.
As Figure 5a shows, using sequence-based hyper-heuristics
with C ≥ 10 allows finding solutions with about 10% less
discrepancy. Nonetheless, variability increases.

We may expect the previous result since the number of
combinations increases significantly (1024 for C = 10). So,
finding a good combination by selecting among ten randomly
generated sequences does not provide steady results. One
may improve upon this by implementing a more elaborate
method for finding proper sequences, as is shown in the next
phase.

2) RANDOM GENERATION VERSUS MAP-ELITES
As with random sequences, ME outperforms standalone
heuristics and sequences with C = 2 (Table 2). Moreover,
the behavior of hyper-heuristics for corresponding lengths of

116510 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

TABLE 2. Performance achieved by different solvers over the three sets of generated instances with 10 elements and 4 bits per element (Set-10-4-1 to
Set-10-4-3). Each result represents the normalized mean fitness over the whole dataset and averaged across 50 runs. NS: Number of the set being used.
SBHH: Sequence-based hyper-heuristic. CCC : Cardinality as described in Section III-A. Best values (per row) are highlighted in bold.

FIGURE 5. Performance of hyper-heuristics with different sequence lengths, for Set-10-4-1. Each dot represents the best fitness after 10 function
evaluations for each of the 50 runs. The dashed lines represent the performance achieved by the available heuristics, and by all sequences with a
cardinality of two.

both approaches is similar. However, this time performance
stabilizes for C ≥ 5. Nonetheless, it seems as if ME allows
for better performance, as indicated by the lower mean value
across all sets. In fact, ME got better results in 58.33% of the
12 scenarios (3 datasets, 4 cardinality values). Besides, for
two out of the three sets, the best performing hyper-heuristic
corresponds to one trained with ME, which relates to the one
with the best mean fitness across all sets.

To deepen upon the behavior ofME on a per-instance basis,
let us analyze the corresponding violin plots (Figure 5b). The
one with three steps exhibits the worst performance, although
most of the runs achieved the same fitness value. Note that the
random sequences also achieve this performance, as antici-
pated, but they do not exhibit the same consistency as ME.
It is expected that all sequences with C = 3 are generated at
least once throughout all random sequences. Hence, we may
conclude that such a value represents the best result that can
be achieved (under these conditions) for such a cardinality
value. Besides, ME is better at finding it.

Sequences with C = 10 and 15 exhibit a similar perfor-
mance due to the lengths of the instance and of the sequence.
Remember that we are looking to split an instance with ten
elements into two balanced subsets. There does not exist
a case where all pieces are moved to the second subset.
Consequently, a sequence with a cardinality value beyond the
number of elements within the instance would not execute
any extra steps.

These findings support the notion that there is a rela-
tionship between the cardinality of sequence-based hyper-
heuristics and the number of elements within the instance.
The ideal ratio between them is not necessarily one, as this
depends on the complexity of the problem, the difficulty
of the instances being solved, and the diversity among the
heuristic performance. For the instances analyzed in this
section, i.e., 10 elements and 4 bits each, a ratio of 0.3 seems
too low. Due to the exploratory nature of this section,
we do not run more detailed tests, but it seems that a ratio
between 0.5 and 1.0 works best. Also, any sequence-based

VOLUME 9, 2021 116511

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

hyper-heuristic longer than the instance is unnecessary since
the extra steps would not be executed and increases the
complexity of the model and, thus, the time required for
training it.

Finally, it is essential to highlight that ME seems to
improve the generation process stability. The more com-
pact violins evidence this in Figure 5b, which implies a
smaller standard deviation. Hence, using ME for training the
sequence-based hyper-heuristics is justified as it provides a
way of obtaining equal or better results in a more repeatable
way. So, we nowmove on to analyzing the proposed approach
in more detail.

B. INITIAL TESTS
Now that we have asserted the feasibility of using sequence-
based hyper-heuristics powered by MAP-Elites, we assess
their behavior under different scenarios. So, we use 30 dif-
ferent seeds for splitting each dataset into proper training and
testing subsets, with varying degrees of difficulty.

Figure 6 shows the ME performance on all splits of every
set. Each data point is given by the best performance achieved
by ME after training for 50 function evaluations. Moreover,
violins contain 50 points, which represents each of the 50 runs
for the corresponding split. As explained in Section IV-B,
we normalize data to facilitate comparisons and provide a
metric less biased by the size of items within an instance.
As one may see, all splits include some runs where the trained
sequence-based hyper-heuristic performs poorly. However,
they represent the outlying data.

Conversely, most data exhibit a median value that oscil-
lates within a defined range. In easy instances (namely,
Set-25-4), this range is given by [0.024, 0.028]. Although
there are some splits (such as the first one) where several
runs flaunt an improved performance, there is also a behavior
worth noticing. When migrating to more difficult instances,
such as those in Set-25-25 and Set-25-50, the range for the
median value shifts upwards, as expected. Nonetheless, this
range becomes the widest at the limit case, where the number
of bits per element equals the number of items within the
instance. This may indicate that instance behavior may relate
to such parameters, and thus one could use them for predict-
ing the behavior of unseen instances. Notwithstanding, this
exciting phenomenon escapes our scope, and so we do not
deepen upon it.

Let us now analyze the behavior of these hyper-heuristics
over unseen instances. To this end, Figure 7 summarizes
the median performance over each training and testing sub-
sets. There are some elements worth noticing here. First,
the aforementioned behavior where the limit case has the
widest performance range is also evident here. Also, it is a
tendency for achieving a better performance in the training
set. Although, this does not happen for every split (subset) of
each dataset. For example, with Set-25-4, the fitness on the
testing set was better than on the training set for 36.7% of
the splits. Similarly, this ratio was 23.3% for Set-25-50. Even
so, once again Set-25-25 (the limit case) exhibits a different

FIGURE 6. Performance achieved by sequence-based hyper-heuristics
(C = 10C = 10C = 10) trained with MAP-Elites (ME) over different training splits of the
datasets. Each dot represents the best fitness achieved after 50 function
evaluations. Each violin contains 50 points, representing all runs for that
split.

tendency, one where the median performance is virtually the
same for training and testing. But, one where performance on
the test was better for over half the splits (56.7%).

It is also crucial to examine the way in which the solu-
tion evolves for different conditions. So, we plot the dis-
tribution of fitness across iterations. This leads to a total
of 90 figures, because of the 30 splits for each dataset.
For obvious reasons, it is unfeasible to show them all here.
Instead, we only include some illustrative examples. Figure 8
shows an example of a good, an average, and a bad split
for instances within Set-25-4. As we can observe, instance
splitting affects performance. In some cases (e.g., Figure 8a),
hyper-heuristic generation becomes relatively stable, up to
the point where even the worst repetition exhibits a perfor-
mance quite close to the median one. Alas, in other cases
the opposite happens and some repetitions stagnate early on
(Figure 8c). Nonetheless, and even when this happens, only a
couple repetitions exhibit such a behavior. Thus, a minimum
of 90% of all repetitions (for each split) exhibit a good
performance.

116512 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 7. Performance achieved by sequence-based hyper-heuristics (C = 10C = 10C = 10) trained with MAP-Elites over training and testing subsets of Set-25-4,
Set-25-25, and Set-25-50. Each violin contains 30 dots, where each one represents the median performance over 50 runs of a different subset.

If we now focus on the best performance, there are also
some extraordinary elements. For example, there is at least
one repetition for all splits that ends up having a solution
with a fitness value below the 0.025 mark. There also are
four splits for which the best repetition yielded the best
solution right from the start. In one of those splits, such
a value sits below the 0.020 mark, representing one of the
best values achieved by all splits. Of course, this is only
natural as one would expect that at one moment or the other,
random number generation provides a good enough solution,
as is familiar with stochastic methods such as metaheuristics.
Finally, regarding the evolutionary process of the solutions,
the number of iterations seems reasonable, since the median
behavior for all cases behaves asymptotically towards the
end.

There are some common elements regarding the evolution
of ME in the remaining datasets. For example, they both have
good (Figures 8d and 8g), regular (Figures 8e and 8h), and bad
runs (Figures 8f and 8i). Furthermore, as problems become
more difficult (i.e., the number of bits rises), the best solution
impoverishes, as expected. Even so, such value does not rise
too much. For instances with 25 bits, all splits included a
run where the fitness sat below the 0.027 mark. This value
grows to 0.031 for the most challenging instances (50 bits).
Despite of this, the best solution across all runs and splits is
quite similar for both sets of instances, as it hovers around the
0.025 mark. Again, there are some splits where the the algo-
rithm achieved the best value due to the initial randomness
(6 and 3 for 25 and 50 bits, respectively). Moreover, there are
splits where the median performance behaves asymptotically
towards the final function evaluations, though somemay ben-
efit from some additional evaluations. This is understandable,
as these problems are more complex than those with 4 bits.

1) EFFECT OF CYCLING: RESTART VERSUS REFLECTION
So far we have run tests considering a restart cycling scheme.
Thus, it is relevant to analyze the effect of reflecting the
sequence. As Figure 9 shows, the algorithm virtually retains

training performance. However, the overall performance in
the testing sets significantly decreases when using the reflec-
tion cycling scheme. Previously, the median performance for
training and testing subsets was similar. Now, the median
fitness values for the testing subsets are about twice those
for training. Moreover, there is no single split where hyper-
heuristics perform better on the testing subset than on the
training one, as it is evident from Figure 9. In contrast,
the previous cycling scheme (i.e., restart) allows for such an
improvement for 23% of more of the splits. All of this implies
that the reflection looping scheme has lower generalization
capabilities. So, we certainly do not encourage its use, at least
for this particular problem. However, we do not discard the
possibility that it may become a good alternative in other
domains; this must be thoroughly explored in future works.

There also are some exciting elements regarding the fitness
evolution of this cycling scheme. For some splits, e.g., the
fourth one from Set-25-4, the behavior (Figure 10a) is vir-
tually the same as before (cf. Figure 8a). This corroborates
similar trends in the training scenarios. Others, however,
alter their behavior a bit more, although not that much. For
example, the split shown in Figure 10b exhibits a poor per-
formance for the restart cycling scheme (Figure 8f). But, for
the reflection one, it stands at a medium level, since even
the worst run improves to a good value; though it does so
towards the end of the iterations. Moreover, the worst run
is about 0.01 units better than for the restart scheme. Con-
versely, the split shown in Figure 10c used to have a medium
performance (cf. Figure 8e), but changing the cycling scheme
lowers it to a poor one. Nonetheless, variations scarcely go
beyond these margins, and there are only slight changes in
the behavior, thus preserving the overall shape of fitness
evolution.

2) EFFECT OF CARDINALITY
Our data reveal that the cardinality (sequence length) of a
hyper-heuristic indeed affects its performance (Figure 11).
We briefly showed this in the exploratory tests, where we

VOLUME 9, 2021 116513

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 8. Fitness evolution (50 runs) of hyper-heuristics trained for 50 iterations using MAP-Elites, for different instance subsets. Three samples are
shown to evidence the different behaviors achieved.

FIGURE 9. Median performance of hyper-heuristics (C = 10C = 10C = 10) trained with MAP-Elites (ME) following a reflection looping scheme. Data are shown for
train and test sets. Each dot within violins represents the median performance of 50 hyper-heuristics over each of the splits for the dataset.

116514 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 10. Fitness evolution (50 runs) of hyper-heuristics trained for 50 iterations using MAP-Elites with a reflection cycling scheme, for different
instance subsets. Three samples are shown to evidence the different behaviors achieved.

compared the performance of short sequences. Nonetheless,
we now explore such an effect in more detail, particularly
for cardinality values between 5 and 20. Bear in mind that
we selected such an upper limit to provide the flexibility of
moving most items when solving an instance, though it is
seldom required.

There are some noteworthy elements. For starters, in most
scenarios, there is a similarity between cardinality values
of 5 and 10, and between 15 and 20. Despite this, hyper-
heuristics with a cardinality of 15 exhibit the best perfor-
mance for all but one scenario in both, training and testing
subsets. They are only outperformed for the hard testing sub-
sets, where hyper-heuristics with C = 14 prove to be better.
It implies that, as the problem becomes more challenging,
it becomes harder to generalize a proper behavior for slightly
larger sequences. The evidence for this rests on Figure 11c,
where training with C = 15 provides a better performance
than forC = 14, but which does not hold for unseen instances
(Figure 11f), hinting at some kind of overfitting.

In any case, C = 14 and 15 are values nearly close to
half the number of items within each instance. So, there
may be a two-fold reason for such behavior. The first part
falls to the nature of the problem: to split a set of numbers
into two subsets where the total weights have the smallest
possible difference. The second one rests on the nature of
the instances: they are generated randomly and based on
a uniform probability distribution. Hence, we can assume
that instances are somewhat balanced, and thus we need to
distribute about half the items. This threshold seems to apply
to the three sets, and so it disregards the number of bits.
In summary, in usingMAP-Elites (ME), we find a generalized
set of decisions for solving a set of problem instances, which
may go up to the point of virtually defining one action for
properly moving each item.

Let us delve deeper into the behavior of the cardinality
values. Even though the median training performance for
C = 5 and 10 in easy (Figure 11a) and hard (Figure 11c)

instances is quite similar, those hyper-heuristics trained with
C = 5 seem to generalize better to unseen instances
(Figures 11d and 11f, respectively). Even so, they are unable
to surpass those trained with medium cardinality values
(i.e., 13–15). This strengthens the idea of not requiring heuris-
tic sequences with cardinality values beyond half the instance
length.

Such a phenomenon also sheds light on a striking pat-
tern: there seems to be a critical value for the cardinal-
ity that represents its worst alternative. For the instances
we consider, such a critical value seems to be 10–12.
In this way, smaller and larger values (e.g., C = 5
and 15) lead to a better generalization. Of course, regard
that higher cardinality values increase the computational bur-
den as more memory is required to store the fitness map
of elites. So, it becomes paramount to ponder the trade-off
between performance gain and computational requirements
increase.

It is also interesting to see that the behavior for the limit
case is, once again, different from the others. Even so, the
overall distribution from training (Figure 11b) is preserved
on the testing subsets (Figure 11e). In this case, there is no
relevant performance gain derived from changing the cardi-
nality value, but using C = 15 seems better.

There is a behavior liaised to instance difficulty regarding
the number of splits where hyper-heuristics perform better
on the testing subset than on the training one. As instances
become more challenging, the number of such splits dimin-
ishes, as expected. For hard instances, at most 36.67%
of the splits show such an improvement, whereas for the
medium and easy ones 56.67% and 53.33%, respectively,
do so. It is also remarkable that, for the hard instances,
the highest levels of improvements relate to C = 5,
which then decrease monotonically. Conversely, medium
instances show a stable behavior, and easy instances show
an u-shape pattern while also exhibiting the highest values
for C = 5.

VOLUME 9, 2021 116515

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 11. Median performance distribution of sequence-based hyper-heuristics trained with MAP-Elites and considering different values of cardinality
for each dataset. Each dot within a violin represents the median performance of 50 runs for a different instance subset.

FIGURE 12. Median performance distribution of sequence-based hyper-heuristics trained with MAP-Elites and
considering different values of initial genomes for dataset Set-25-50. Each dot within a violin represents the
median performance of 50 runs for a different instance subset.

3) EFFECT OF INITIAL GENOMES
Our data suggest that the number of initial genomes has
little effect on the performance of hyper-heuristics. Indeed,
performance for 4 and 50 bits has the same shape, while it
becomes virtually unaltered for 25 bits (with some outlying

values). Even so, Figure 12a shows that training with 20 or
more initial genomes seemingly leads to bettermedian perfor-
mance. Moreover, for the testing set (Figure 12b) it becomes
evident that hyper-heuristics trainedwith 15, 20, and 35 initial
genomes generalize better, as indicated by the lower fitness

116516 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 13. Median performance distribution of sequence-based hyper-heuristics trained with MAP-Elites and
considering different values of mutation rate for dataset Set-25-25. Each dot within a violin represents the
median performance of 50 runs for a different instance subset.

metric. But, using 35 initial genomes implies that the algo-
rithm allocates 70% of the function evaluations at the start,
leaving most of the process to a random search. So, we deem
it better to use either 15 or 20 initial genomes.

4) EFFECT OF THE MUTATION RATE
As with the previous parameter, the effect due to mutation
rate seems to be marginal. Of course, it can be because
the mutation is enforced even if the mutation rate is low
(see Section III-D). Consider the behaviour for 25 bits
(Figure 13) as an example. In every case, a mutation rate
of zero (i.e., varying a single component per iteration) has
a poor median performance. As the mutation rate rises, there
is a small performance improvement. Medium values, such
as 0.4 and 0.5 offer a slightly better training performance
(Figure 13a), while also allowing for a better generalization
(Figure 13b). This strengthens the idea that variation of a
single component is not disruptive enough, and so, values
offering the chance of varyingmultiple components seem bet-
ter. Nonetheless, if the value becomes too high performance
again worsens as it becomes the simple random search.

5) EFFECT OF THE TRAINING RATIO
Figure 14 shows the effects of using different train-
ing ratios. For the training subset, the behavior changes
depending on the kind of instance being solved. For easy
instances (Figure 14a), the median performance wors-
ens in a monotonic fashion. But, for hard instances
(Figure 14c) it exhibits a multimodal behavior, with the worst
median value at 30%. In the limit case (Figure 14b), such
a value also peaks at 30% and from that point onward it
improves.

The observed patterns can be explained by recognizing
that small training ratios imply that the algorithm tailors
hyper-heuristics to a handful of instances. Therefore, in some

runs, it may select instances with opposing nature so that the
training cannot fashion a high-performing hyper-heuristic.
The opposite scenario is also feasible: a selection of instances
with a similar nature. Hence, the training process yields seem-
ingly great hyper-heuristics, even if they may suffer from
overfitting. As the training ratio grows, it becomes easier to
select a more diverse training set, so performance begins to
stabilize.

Despite the variation inherent to the training subsets, data
for testing subsets seem relatively stable. The median per-
formance slightly improves for easy (Figure 14d) and hard
(Figure 14f) instances, though it stays virtually stable for
limit ones (Figure 14e). Even so, the overall behavior remains
similar for training ratios of 30% and upwards. This means
that, even though using more training instances leads to some
improvements, the additional computational burden may not
justify its usage.

Bear in mind that hyper-heuristics may use any solver at
each step of the solution process. Consequently, the only way
of knowing the performance over a given set of instances is to
solve it. Thus, most of the computational burden associated
with the training facet comes from the continuous solution
of its instances. Hence, doubling the number of training
instances can easily double the computational effort. Plus,
going from 30% of the training instances to 90% has a huge
impact while it does not even allow for a 5% reduction of the
overall fitness metric. Based on this, we decide on using a
training ratio of 50% for upcoming tests, seeking to preserve
the improved generalization without excessively increasing
the cost of training hyper-heuristics.

6) ORACLE
By this point, we have explored the effect of different
parameters upon the performance of MAP-Elites. However,
it is also vital to assess how such a performance relates to
that of heuristics. Even so, to only consider the low-level

VOLUME 9, 2021 116517

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 14. Median performance distribution of sequence-based hyper-heuristics trained with MAP-Elites and considering different training
ratios (percentages) for all datasets. Each dot within a violin represents the median performance of 50 runs for a different instance subset.

heuristics used as a basis for the hyper-heuristics seems
too shallow, as we already demonstrated that they could be
outperformed (see Section V-A). Thus, we include an addi-
tional contestant, which corresponds to a synthetic oracle (see
Section IV-B6). Take in mind that this more complex solver
runs all heuristics for every instance and reports the best data.
Thence, it can appropriately select among each low-level
heuristic (Max, Min) and naturally provides better results
than any of them. Although it also represents an impractical
approach. Nonetheless, we deem it useful for comparison
purposes.

Figure 15 shows the behavior of all solvers for the first
split of all instance sets, where each dot represents the fitness
of a given instance from the testing subset. As one may
see, heuristics exhibit a varied performance across instances,
but their union stands as a good solver. This implies that
each heuristic is better at solving a different portion of the
instance set. Moreover, hyper-heuristics present a valid alter-
native, as they not only replicate the behavior of the synthetic
oracle, but also offer an improved median performance in
most scenarios. For example, the oracle achieved a median
quality level of 0.0279 for the easy instances, whilst the best
hyper-heuristic lowered that value to 0.0175, representing a
reduction of about 37%. Besides, any single hyper-heuristic

outperformed the oracle in 38–53% of the corresponding
instances.

Since the behavior may change for different splits, it is
also essential to analyze the global landscape. So, Figure 16
condenses data for all 30 splits. In each split, we gener-
ated new hyper-heuristics that adapt to its particular training
data. So, each dot within a violin represents the average
quality level for the testing subset of a given seed. As one
may see, low-level heuristics perform poorly when used
by themselves. In contrast, the oracle shows a meaning-
ful improvement. This means that datasets are varied and
that it is paramount to select among available heuristics
properly.

It is noteworthy that hyper-heuristics match the oracle
performance level, and for some cases, they even surpass it.
The distribution of performance levels for all datasets is
clearly better than for the oracle, except for some outlying
instances. Besides, hyper-heuristics have a somewhat sta-
ble performance across different runs, especially in terms
of median performance. This is evident by the small range of
the last violin, where we condense themedian performance of
all 50 runs across each split. Even in the worst-case scenario
(an instance in the second run of Set-25-50), the hyper-
heuristic performed better than all heuristics when solving

116518 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 15. Performance achieved by all solvers over each instance in the first split (testing subset) of all datasets.

FIGURE 16. Performance achieved by all solvers for each split of all datasets (testing subsets). HHM shows the median performance
of 50 hyper-heuristics trained on their corresponding splits.

FIGURE 17. Hyper-heuristic performance of feasible designs illuminated by MAP-Elites after 100 function evaluations. Each plot condenses data for
15 dimensions observed from the first two.

their best instance. What is more, there is always a minimum
of one hyper-heuristic that outperformed the oracle for all
datasets. These results imply that hyper-heuristics clearly
outperform single low-level heuristics and even their ideal
selector.

Since the idea of MAP-Elites is to provide information
about the performance of different ‘‘design alternatives,’’ we
now analyze some of the generated grids. Figure 17 displays
the performance map for one split (training subset) of all
datasets from the first two decisions perspective. Notice that

VOLUME 9, 2021 116519

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

each dimension only has two points, which correspond to the
available heuristics at these steps. Nonetheless, the total num-
ber of dimensions equals the cardinality, so each map shows
the information for 15 dimensions. We collapsed the remain-
ing dimensions by analyzing the best possible scenario. Also,
observe that we increase the number of function evaluations
to 100 for these plots to achieve a better-illuminated map.

These maps reflect that the highest-performing sequences
vary across sets. Easy (Set-25-4, Figure 17a) and limit
(Set-25-25, Figure 17b) instances exhibit a clearly opposing
behavior, where the highest-performing solution starts with
the opposite sequence ({Min,Max} and {Max,Min}, respec-
tively) and where the worst-performing solution starts by
repeating opposing heuristics (Min and Max, respectively).
In contrast, hard instances (Set-25-50, Figure 17c) show a
more balanced performance, where both combinations are
right, and both standalone heuristics perform poorly. In any
case, the first two steps are paramount for the performance of
hyper-heuristics. Hence, a poor initial choice can be critical
for the whole sequence. Even though performance changes
from one kind of instance to the other, it is always better to
mix heuristics at the first two decisions, even if one cannot
determine the best combination.

C. ADVANCED TESTS
Now that we have verified the effect of diverse algorithm
parameters, we discuss the resulting data from more complex
tests to validate its capabilities.

1) EFFECT OF INCREASING THE POOL OF HEURISTICS
Figure 18 presents the performance of ME on all splits
of every set when using the pool of five heuristics
(see Section III-C): Max, Min, 2-Max, 2-Min, and
Median. Each data point is given by the best performance
achieved by MAP-Elites in the training subsets after 50 func-
tion evaluations. Moreover, each violin contains 50 points,
representing the average performance of each run for the
corresponding split.

There are notable differences in the behavior, compared
to the case using two heuristics (see Figure 6). For starters,
performance across runs follows a different distribution. In
the current case, each shape is softer, whilst in the previous
one (two heuristics), it exhibited condensed regions with
several extreme values.

A second difference is that stability improves. In the case
of two heuristics, the median performance oscillates in spans
of 0.004, 0.011, and 0.006, for instances with 4, 25, and
50 bits, respectively. By increasing the heuristic pool to five,
such ranges diminish to 0.003, 0.004, and 0.003. Not only
this represents a reduction between 25–64%, but it also hints
at a lower sensitivity to instance difficulty. Moreover, actual
median performance levels are better for all but one of the
tested subsets. The only exception is one split of instances
with 25 bits, but even in this case, both median performances
are close (a difference of about 0.001).

In a general sense, hyper-heuristics that draw from a larger
pool of heuristics exhibit better performance. This becomes
evident from comparing the best and worst runs of hyper-
heuristics choosing among two and five heuristics. Figure 6
showed that bad runs yielded a normalized quality of about
0.039, 0.043, and 0.043, for 4, 25, and 50 bits, respectively.
Meanwhile, Figure 18 depicts that analog values sit about
the 0.032, 0.037, and 0.037 marks. Similarly, best runs when
considering five heuristics yield values unfathomable for the
case of two heuristics.

FIGURE 18. Performance achieved by sequence-based hyper-heuristics
(C = 10C = 10C = 10) trained with MAP-Elites over different training splits of the
datasets, using five heuristics. Each dot represents the best fitness
achieved after 50 function evaluations. Each violin contains 50 points,
representing all runs for that split.

Figure 19 presents the minimum average fitness achieved
across the 50 runs of each split in both training and testing
subsets. It is impressive to see that the algorithm seems to
generalize quite well, up to the point that it always achieves
better results in the testing subsets than in the training ones.
This illustrates another benefit of using the larger heuristic
pool since, in the previous case, data for testing subsets
were slightly worse than for training. In fact, there is an
improvement in themedian value of thismetric for all training

116520 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 19. Performance achieved by sequence-based hyper-heuristics (C = 10C = 10C = 10) trained with MAP-Elites over training and testing subsets of Set-25-4,
Set-25-25, and Set-25-50 using five heuristics. Each violin contains 30 dots, where each one represents the best performance across 50 runs of a different
subset.

and testing scenarios. It represents fitness reductions between
27% and 44% w.r.t. the values achieved when working with a
pool of two heuristics. Moreover, such reductions represent
between 184% and 212% of the range achieved with the
reduced pool.

Table 3 shows the p-values resulting from the Wilcoxon
statistical test comparing the data for both pool sizes. We run
such tests for both subsets (training and testing) and focus
on different parameters (best, worst, and median performance
across runs). So, these values prove that increasing the pool
size leads to different performance distributions, at a signif-
icance level of 0.05. Besides, for most cases, this conclu-
sion holds even at a significance level of 0.01. In particular,
the best p-values are associated with the best runs, indicating
that it could be used as a metric for comparing performance,
and which relates to improvements in the best-case scenarios
that are larger than for the others.

TABLE 3. ppp-values associated to a Wilcoxon statistical test comparing the
results of experiments using pools of two and five heuristics. All tests
reveal statistically significant differences at α = 0.05α = 0.05α = 0.05.

Let us now compare how this improvedmodel fares against
an improved oracle that selects among the five heuristics
(Figure 20). Such an oracle also shows a clear improvement
derived from the extra heuristics (cf. Section V-B6). This
means that the newly added heuristics are indeed better at
solving some of the instances. Otherwise, the oracle would

not have selected them, and its performance would have
remained identical. Moreover, even though hyper-heuristics
also improved significantly, they did not do it as much as
the oracle. So, hyper-heuristics can no longer beat the oracle.
This is confirmed by the last violin, which once again con-
denses the median performance of the 50 hyper-heuristics.
Nonetheless, their behavior remains relatively better than that
of standalone heuristics. Moreover, they share some common
regions with the oracle, meaning that they may have repli-
cated it for some instances. Even so, such regions become
smaller as the problem grows in difficulty.

At this point, it becomes necessary to remind the reader
about the training process of hyper-heuristics. For all tests,
we considered amaximum of 50 function evaluations, includ-
ing those required for initialization. This means that we
trained hyper-heuristics with similar computational resources
when accessing two and five heuristic pools. But, the com-
plexity of each problem is far from similar. Remember that
ME illuminates the search domain, and hence seeks to explore
different solutions to a problem. Because of this, it keeps
track of a map of solutions. In our case, each dimension of
such a map is given by an element of the hyper-heuristic,
and its domain equals the number of available heuristics.
When considering the pool of two heuristics, ME seeks to
illuminate a space of 32768 (= 215) combinations. But, for
the other one, such a space grows to 510, nearly representing a
300-fold increase. Taking this into account, it is commend-
able that ME procures hyper-heuristics with such a perfor-
mance level as it only explores a tiny fraction of the search
domain (about 0.0005%).

2) EFFECT OF MUTATION OPERATORS
As a complementary test, we now change the mutation
scheme while preserving the increased pool of heuristics.
For this, we implement five kinds of mutation operators (see
Section IV-C2). The resulting data is quite similar to that
from the previous strategy (see Section V-C1), but we omit
detailed plots for the sake of brevity. Instead, it should suffice

VOLUME 9, 2021 116521

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 20. Performance achieved by all solvers (extended pool size) for each split of all datasets (testing subsets). HHM shows the median performance
of 50 hyper-heuristics trained on their corresponding splits.

FIGURE 21. Performance achieved by sequence-based hyper-heuristics (C = 10C = 10C = 10) trained with MAP-Elites (ME) over training and testing subsets of
Set-25-4, Set-25-25, and Set-25-50 using five heuristics and five mutation operators. Each violin contains 30 dots, where each one represents the best
performance across 50 runs of a different subset.

to say that median values and ranges for all runs of each of
the 30 splits are quite similar for both mutation schemes.

We also present the minimum average fitness variation for
each split (Figure 21). We choose this metric as it stands as
the one where differences are more evident. Also, bear in
mind that these values represent the best of 50 runs for each
split. It seems as if using this mutation scheme is counter-
productive for the proposed approach, as there is virtually
no improvement from training to testing subsets. Au con-
traire, the previous scheme allowed for improvements in all
scenarios (Figure 19). Despite this, both approaches provide
similar performance levels for the instances, which are not
statistically significant (Table 4).

3) EFFECT OF SETS WITH MORE ELEMENTS
Increasing the number of elements within instances,
i.e., using larger instances, does not hinder the proposed
model performance. Instead, the behavior from training to
testing holds whilst the overall performance improves. This
is somewhat expected as larger instances are supposed to be

TABLE 4. ppp-values associated to a Wilcoxon statistical test comparing the
results of using different mutation schemes. Highlighted values indicate
the cases where performance differences are not statistically significant.

easier than shorter ones (for the same number of bits per ele-
ment). Figure 22 shows the distribution of the best runs (out
of 50) for all training and testing subsets. The improvement
w.r.t. datasets with shorter instances (Figure 19 and Figure 21)
is clear. There is a reduction between 15% and 30% for this

116522 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 22. Performance achieved by sequence-based hyper-heuristics (C = 10C = 10C = 10) trained with MAP-Elites (ME) over training and testing subsets of
Set-40-4, Set-40-25, and Set-40-50 using five heuristics and five mutation operators. Each violin contains 30 dots, where each one represents the best
performance across 50 runs of a different subset.

FIGURE 23. Performance achieved by all solvers (extended pool size) for each split of all large datasets (testing subsets), considering the set of five
mutation operators. HHM shows the median performance of 50 hyper-heuristics trained on their corresponding splits.

metric in all training and testing subsets. Moreover, there are
some changes in performance distribution shapes, although
they are more evident for the training than testing subsets.
In particular, the performance for these instances seems
more evenly distributed along with the range of achieved
values.

The instances shown in Figure 21c represent an example
where training performance seems to follow a normal dis-
tribution with a mean of 0.0187 and a standard deviation
of about 0.0011. But with larger instances (Figure 22c),
the distribution becomes almost uniform for most of the
range. Even if this seems like a drawback (less stable per-
formance), it is quite the opposite. Training performance in
shorter instances spans for about 0.0045 units, whilst for
larger instances, it diminishes to about 0.0030. Considering
that median values improve for larger instances, onemay con-
clude that performance is better for these kinds of instances.
A statistical test between both performance sets reveals a
p-value of 3.02×10−11, indicating a significant difference
and reinforcing such a conclusion.

Let us now compare how the model fares against low-level
heuristics and their oracle (Figure 23). The overall behavior
is similar to that shown for shorter instances (Figure 20).
However, all solvers improved considerably; i.e., approxi-
mately 34.19% of the previous fitness metric. But, the ora-
cle remains undefeated. Nonetheless, hyper-heuristics are
pretty better than standalone heuristics. The performance
metric for the median hyper-heuristic (last violin of each
subplot) is, on average, 44.34% smaller than the best median
performance achieved by any standalone heuristic for any
difficulty. Also, once again, the model seems quite stable.
The performance of the median hyper-heuristic oscillates
across the different splits with a standard deviation of about
2.44×10−17 units. This is noteworthy as the oracle does
so with an approximate value of 0.0078. So, our proposed
approach leads to models less sensitive to instance length.

Likewise, we analyze some sample maps achieved with
our proposal (Figure 24). Bear in mind that we still run these
maps for 100 function evaluations, although the search space
is way bigger (510 vs. 215). So, in some cases, it becomes

VOLUME 9, 2021 116523

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

FIGURE 24. Hyper-heuristic performance of feasible designs illuminated by MAP-Elites after 100 function evaluations. Each plot condenses data for
10 dimensions observed from the first two. Blank spaces represent regions where one at least one vertex did not have performance data.

impossible to gather enough data for a complete map (we
are only evaluating 0.001% of the whole domain). Still, it is
noteworthy that some insights appear.

One of such insights is that theMedian heuristic should be
avoided as the first element in the sequencewhen solving hard
instances, as it leads to poorly performing hyper-heuristics.
However, it should only be avoided for easy instances if
the second step corresponds to the 2-Max heuristic. Simi-
larly, leading the solution process with heuristic 2-Min in
easy and hard instances works best. However, it must be
followed by heuristics Median or Min, depending on the
difficulty level of the instance. In any case, using the same
heuristic for the first couple steps is a bad idea (Figure 24).
Although the hindrance is not as effective as for smaller
instances (cf. Figure 17), it remains paramount to select a
proper combination of initial steps, as Figure 24c shows.

VI. CONCLUSION AND FUTURE WORK
In this work, we presented a constructive, sequence-based,
selection hyper-heuristic model powered by MAP-Elites
(ME), and assessed its feasibility. The reason: traditional HHs
fall short when providing information about their sensitivity.
Our approach seeks to find a proper combination of heuris-
tics for tackling combinatorial optimization problems, while
simultaneously providing information about the performance
level that can be expected if some changes are incorporated
into the model. To test the proposed approach, we tackled
1500 instances of the Balanced Partition problem. Our testing
included randomly generated instances with three difficulty
levels: easy, hard, and the limit case.

Data reveal that training with ME yields better results than
when one randomly selects heuristics. This is remarkable
as the model does not require features to analyze problem
states. The resulting hyper-heuristics are competitive. With a
reduced pool of heuristics, they always outperform the oracle.
With an extended pool of heuristics, performance worsens,
and although they replicate the oracle for some of instances,
they no longer outperform it. We believe this is due to the
explosion of the search domain, as we use the same amount
of computational resources for both kinds of tests. But the

search domain for the reduced pool was of 215 combinations,
whereas that of the extended pool surged to 510. So, allowing
for more iterations in the training phase should improve
the performance levels of the generated hyper-heuristics.
Nonetheless, bad performance levels are still better than those
of any heuristic when acting in a standalone fashion.

We also found that some parameters of our proposed
approach have a high impact on performance, while oth-
ers slightly affect it. Our data revealed that the cycling
scheme (restart or reflection), the cardinality (length) of a
hyper-heuristic, the training ratio, the heuristic pool size, and
the instance size, are crucial. For example, extending easy
instances from 25 to 40 elements enhanced the median hyper-
heuristic performance by 33.16%. Conversely, the number of
initial genomes and the mutation rate did not affect much.
Increasing initial genomes from 5 to 20 while dealing with
hard instances only hindered the median training perfor-
mance by 3.25%. Even a different mutation scheme, which
we considered to be more disruptive, had a modest effect.
Perhaps an even more robust scheme is required, and we
should explore this in future work.

Illuminating the space of ‘‘design alternatives’’ also led to
some insights. First, there is no single heuristic combination
(i.e., a sequence) that performed best for all cases. Second,
the first two decisions seemed paramount for hyper-heuristic
performance, even on larger sets. Even so, mixed sequences
were better than using the same heuristic twice. Although for
larger sets the effect diminished, it remained relevant. Finally,
this best initial combination of heuristics appeared to change
depending on the difficulty of the instance.

As it is only natural, our work has some drawbacks that
should be addressed. First and foremost: memory require-
ments. MAP-Elites requires storing the whole solution grid,
which in our case consisted of one dimension per cardinality
level, with a search domain equal to the number of heuristics
(per dimension). Moreover, we used Matlab for coding the
model, and a modest laptop for running the experiments.
Under these conditions, it was impossible to train HHs of car-
dinality 15 and 5 heuristics.We somewhat expected this issue,
as this implies storing a grid with 515 positions. Nonetheless,

116524 VOLUME 9, 2021

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

one may lessen its effect by migrating to more efficient
programming languages or data structures.

Another drawback relates to the solutionmodel and the test
bench. For this work, we restricted ourselves to a sequence-
based selection hyper-heuristic model, though other mod-
els exist. Notwithstanding, including more models would
extend the manuscript beyond a reasonable length. Similarly,
we only considered Balanced Partition for the sake of brevity.

We believe that these drawbacks aremore of an opportunity
than an issue. So far, we have shown that the proposed model
works, though it remains open to improvements. For example,
right now the cycling scheme is fixed. Hence, it shall prove
interesting to analyze how performance changes when adding
the cycling scheme as a variable to learn whether to use
reflection, restart, or other schemes.

Similarly, onemay easily extend the model to includemore
disruptive mutation operators that change the cardinality by
adding or removing steps. It shall also prove interesting to
analyze the behavior of the model for instances of varying
size and different nature. Even better, onemay use an instance
generator for tailoring instances to each heuristic and thus
create a more robust training dataset.

Anther path includes the development of a rule-based
hyper-heuristic. In doing so, one may use ME to obtain infor-
mation about the effect of different sets of rules. However,
finding the necessary features of each domain and linking
rules to a grid for ME represent drawbacks to overcome.
We believe that the following step must test the proposed
model with more complex combinatorial optimization prob-
lems, such as Job-Shop Scheduling or Knapsack. This would
allow for a more global assessment of its performance.

Finally, it is important to address that although this work
focuses on domain-specific hyper-heuristics, there are other
approaches. For example, the HyFlex framework seeks to
create cross-domain hyper-heuristics following a perturbative
approach [69]. So, one can also improve upon this work by
using ME to generate such kinds of hyper-heuristics.

REFERENCES
[1] J.-J. Han, Z. Wang, S. Gong, T. Miao, and L. T. Yang, ‘‘Resource-aware

scheduling for dependable multicore real-time systems: Utilization bound
and partitioning algorithm,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 12, pp. 2806–2819, Dec. 2019.

[2] G. P. Georgiadis, B. M. Pampín, D. A. Cabo, andM. C. Georgiadis, ‘‘Opti-
mal production scheduling of food process industries,’’ Comput. Chem.
Eng., vol. 134, Mar. 2020, Art. no. 106682.

[3] M. Sanchez, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, H. Ceballos,
H. Terashima-Marin, and I. Amaya, ‘‘A systematic review of hyper-
heuristics on combinatorial optimization problems,’’ IEEE Access,
vol. 8, pp. 128068–128095, 2020. [Online]. Available: https://ieeexplore.
ieee.org/document/9139914/

[4] Y. Yao, Z. Peng, and B. Xiao, ‘‘Parallel hyper-heuristic algorithm for
multi-objective route planning in a smart city,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 11, pp. 10307–10318, Nov. 2018.

[5] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic,
and E. Burke, ‘‘HyFlex: A benchmark framework for cross-domain
heuristic search,’’ in Proc. 12th Eur. Conf. Evol. Comput. Combi-
nat. Optim., Berlin, Germany, 2012, pp. 136–147. [Online]. Available:
http://arxiv.org/abs/1107.5462

[6] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, ‘‘MaxSAT
by improved instance-specific algorithm configuration,’’ Artif.
Intell., vol. 235, pp. 26–39, Jun. 2016. http://linkinghub.elsevier.com/
retrieve/pii/S0004370215001824, doi: 10.1016/j.artint.2015.12.006.

[7] Y. Malitsky and M. Sellmann, ‘‘Instance-specific algorithm configura-
tion as a method for non-model-based portfolio generation,’’ in Integra-
tion of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (Lecture Notes in Computer Science),
N. Beldiceanu, N. Jussien, and E. Pinson, Eds. Berlin, Germany: Springer,
2012, pp. 244–259, doi: 10.1007/978-3-642-29828-8_16.

[8] D. E. Goldberg and J. H. Holland, ‘‘Genetic algorithms and machine
learning,’’Mach. Learn., vol. 3, nos. 2–3, pp. 95–99, 1988.

[9] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[10] I. Boussaïd, J. Lepagnot, and P. Siarry, ‘‘A survey on optimization meta-
heuristics,’’ Inf. Sci., vol. 237, pp. 82–117, Jul. 2013.

[11] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, ‘‘A survey on
new generation metaheuristic algorithms,’’ Comput. Ind. Eng., vol. 137,
Nov. 2019, Art. no. 106040, doi: 10.1016/j.cie.2019.106040.

[12] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, ‘‘Metaheuristic
research: A comprehensive survey,’’ Artif. Intell. Rev., vol. 52, no. 4,
pp. 2191–2233, Dec. 2019, doi: 10.1007/s10462-017-9605-z.

[13] A. Vela, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, and I. Amaya, ‘‘Tailoring
job shop scheduling problem instances through unified particle swarm
optimization,’’ IEEE Access, vol. 9, pp. 66891–66914, 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9418993/

[14] J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, I. Amaya, Y. Shi,
H. Terashima-Marín, and N. Pillay, ‘‘Towards a generalised metaheuristic
model for continuous optimisation problems,’’Mathematics, vol. 8, no. 11,
p. 2046, Nov. 2020. [Online]. Available: https://www.mdpi.com/2227-
7390/8/11/2046

[15] N. Pillay and R. Qu, Hyper-Heuristics: Theory and Applications (Natural
Computing Series). Cham, Switzerland: Springer, 2018, doi: 10.1007/978-
3-319-96514-7.

[16] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, ‘‘Recent
advances in selection hyper-heuristics,’’ Eur. J. Oper. Res., vol. 285,
no. 2, pp. 405–428, Sep. 2020. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0377221719306526, doi: 10.1016/j.ejor.2019.
07.073.

[17] I. Amaya, J. C. Ortiz-Bayliss, A. Rosales-Pérez,
A. E. Gutiérrez-Rodríguez, S. E. Conant-Pablos, H. Terashima-Marín,
and C. A. C. Coello, ‘‘Enhancing selection hyper-heuristics via feature
transformations,’’ IEEE Comput. Intell. Mag., vol. 13, no. 2, pp. 30–41,
May 2018.

[18] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, A Classification of Hyper-Heuristic Approaches: Revis-
ited (International Series in Operations Research & Management Sci-
ence), vol. 272. Cham, Switzerland: Springer, 2019, pp. 453–477.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
91086-4_14

[19] P. Cowling, G. Kendall, and E. Soubeiga, ‘‘Adaptively parameterised
hyperheuristics for sales summit scheduling,’’ inProc. Sel. 4thMetaheuris-
tics Int. Conf., 2001, pp. 1–22.

[20] F. Garza-Santisteban, R. Sanchez-Pamanes, L. A. Puente-Rodriguez,
I. Amaya, J. C. Ortiz-Bayliss, S. Conant-Pablos, and H. Terashima-Marin,
‘‘A simulated annealing hyper-heuristic for job shop scheduling prob-
lems,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 57–64.
[Online]. Available: https://ieeexplore.ieee.org/document/8790296/

[21] C. Yu, P. Andreotti, and Q. Semeraro, ‘‘Multi-objective scheduling in
hybrid flow shop: Evolutionary algorithms using multi-decoding frame-
work,’’ Comput. Ind. Eng., vol. 147, Sep. 2020, Art. no. 106570, doi:
10.1016/j.cie.2020.106570.

[22] C.-C. Wu, D. Bai, J.-H. Chen, W.-C. Lin, L. Xing, J.-C. Lin, and
S.-R. Cheng, ‘‘Several variants of simulated annealing hyper-heuristic for a
single-machine scheduling with two-scenario-based dependent processing
times,’’ Swarm Evol. Comput., vol. 60, Feb. 2021, Art. no. 100765, doi:
10.1016/j.swevo.2020.100765.

[23] J.-B. Mouret and J. Clune, ‘‘Illuminating search spaces by
mapping elites,’’ 2015, arXiv:1504.04909. [Online]. Available: http:
//arxiv.org/abs/1504.04909

[24] N. Urquhart and E. Hart, Optimisation and Illumination of a Real-World
Workforce Scheduling and Routing Application (WSRP) Via Map-
Elites (Lecture Notes in Computer Science: Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), vol. 11101.
Cham, Switzerland: Springer, 2018, pp. 488–499. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-99253-2_39#citeas

VOLUME 9, 2021 116525

http://dx.doi.org/10.1016/j.artint.2015.12.006
http://dx.doi.org/10.1007/978-3-642-29828-8_16
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1007/978-3-319-96514-7
http://dx.doi.org/10.1007/978-3-319-96514-7
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1016/j.cie.2020.106570
http://dx.doi.org/10.1016/j.swevo.2020.100765

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

[25] M. Maashi, E. Özcan, and G. Kendall, ‘‘A multi-objective hyper-
heuristic based on choice function,’’ Expert Syst. Appl., vol. 41, no. 9,
pp. 4475–4493, Jul. 2014, doi: 10.1016/j.eswa.2013.12.050.

[26] M. Maashi, G. Kendall, and E. Özcan, ‘‘Choice function based hyper-
heuristics for multi-objective optimization,’’ Appl. Soft Comput., vol. 28,
pp. 312–326, Mar. 2015, doi: 10.1016/j.asoc.2014.12.012.

[27] M. S. Maashi, ‘‘Multi-objective hyper-heuristics,’’ in Heuristics and
Hyper-Heuristics: Principles and Applications, vol. 32. Rijeka, Croatia:
InTech, Aug. 2017, pp. 137–144. [Online]. Available: http://www.
intechopen.com/books/trends-in-telecommunications-technologies/gps-
total-electron-content-tec-prediction-at-ionosphere-layer-over-the-
equatorial-region0AInTec0A and http://www.asociatiamhc.ro/wp-
content/uploads/2013/11/Guide-to-Hydropower.pdf

[28] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, ‘‘Robots that can adapt
like animals,’’ Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[29] S. Fioravanzo and G. Iacca, ‘‘Evaluating MAP-elites on constrained opti-
mization problems,’’ in Proc. Genetic Evol. Comput. Conf. Companion,
Jul. 2019, pp. 253–254.

[30] B. Hayes, ‘‘Computing science: The easiest hard problem,’’ Amer. Scien-
tist, vol. 90, no. 2, pp. 113–117, 2002.

[31] C. Wu, E. Kamar, and E. Horvitz, ‘‘Clustering for set partitioning with a
case study in ridesharing,’’ in Proc. IEEE 19th Int. Conf. Intell. Transp.
Syst. (ITSC), Nov. 2016, pp. 1384–1388.

[32] S. Soltan, M. Yannakakis, and G. Zussman, ‘‘Doubly balanced connected
graph partitioning,’’ in Proc. 28th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, Jan. 2017, pp. 1939–1950.

[33] W. Fan, M. Liu, C. Tian, R. Xu, and J. Zhou, ‘‘Incrementalization of
graph partitioning algorithms,’’ Proc. VLDB Endowment, vol. 13, no. 8,
pp. 1261–1274, 2020.

[34] D. Solow, J. Ning, J. Zhu, and Y. Cai, ‘‘Improved heuristics for finding
balanced teams,’’ IISE Trans., vol. 52, no. 12, pp. 1312–1323, Dec. 2020.

[35] A. Moreno, P. Munari, and D. Alem, ‘‘Decomposition-based algo-
rithms for the crew scheduling and routing problem in road restora-
tion,’’ Comput. Oper. Res., vol. 119, Jul. 2020, Art. no. 104935, doi:
10.1016/j.cor.2020.104935.

[36] A. Tafreshian and N. Masoud, ‘‘Trip-based graph partitioning in dynamic
ridesharing,’’ Transp. Res. C, Emerg. Technol., vol. 114, pp. 532–553,
May 2020, doi: 10.1016/j.trc.2020.02.008.

[37] V. Buchhold, D. Delling, D. Schieferdecker, and M. Wegner, ‘‘Fast and
stable repartitioning of road networks,’’ in Proc. 18th Int. Symp. Exp.
Algorithms, no. 26, 2020, pp. 1–15.

[38] W. No, J. Choi, S. Park, and D. Lee, ‘‘Balancing hazard exposure and walk-
ing distance in evacuation route planning during earthquake disasters,’’
ISPRS Int. J. Geo-Inf., vol. 9, no. 7, p. 432, Jul. 2020.

[39] C. Billing, F. Jaehn, and T. Wensing, ‘‘Fair task allocation problem,’’ Ann.
Oper. Res., vol. 284, no. 1, pp. 131–146, Jan. 2020, doi: 10.1007/s10479-
018-3052-3.

[40] Z.-W. Chen, H. Lei, M.-L. Yang, Y. Liao, and J.-L. Yu, ‘‘Improved task and
resource partitioning under the resource-oriented partitioned scheduling,’’
J. Comput. Sci. Technol., vol. 34, no. 4, pp. 839–853, Jul. 2019.

[41] J.Wang,M. Cheng, Q. Yan, and X. Tang, ‘‘Placement delivery array design
for coded caching scheme in D2D networks,’’ IEEE Trans. Commun.,
vol. 67, no. 5, pp. 3388–3395, May 2019.

[42] J. Zhu, Q. Yan, C. Qi, and X. Tang, ‘‘A new capacity-achieving private
information retrieval scheme with (almost) optimal file length for coded
servers,’’ IEEE Trans. Inf. Forensics Security, vol. 15, pp. 1248–1260,
2020.

[43] G. Aupy, A. Benoit, B. Goglin, L. Pottier, and Y. Robert, ‘‘Co-scheduling
HPC workloads on cache-partitioned CMP platforms,’’ Int. J. High Per-
form. Comput. Appl., vol. 33, no. 6, pp. 1221–1239, Nov. 2019.

[44] J. Shi, N. Ueter, G. von der Bruggen, and J.-J. Chen, ‘‘Partitioned schedul-
ing for dependency graphs in multiprocessor real-time systems,’’ in Proc.
IEEE 25th Int. Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA),
Aug. 2019, pp. 1–12.

[45] M. Yang, W.-H. Huang, and J.-J. Chen, ‘‘Resource-oriented partitioning
for multiprocessor systems with shared resources,’’ IEEE Trans. Comput.,
vol. 68, no. 6, pp. 882–898, Jun. 2019.

[46] A. Bertout, J. Goossens, E. Grolleau, and X. Poczekajlo, ‘‘Template sched-
ule construction for global real-time scheduling on unrelated multiproces-
sor platforms,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2020, pp. 216–221.

[47] S. Asta, E. Özcan, and A. J. Parkes, ‘‘Batched mode hyper-heuristics,’’ in
Learning and Intelligent Optimization, G. Nicosia and P. Pardalos, Eds.
Berlin, Germany: Springer, 2013, pp. 404–409.

[48] E. Lara-Cárdenas, A. Silva-Gálvez, J. C. Ortiz-Bayliss, I. Amaya,
J. M. Cruz-Duarte, and H. Terashima-Marín, ‘‘Exploring reward-based
hyper-heuristics for the job-shop scheduling problem,’’ in Proc. IEEE
Symp. Ser. Comput. Intell. (SSCI), Dec. 2020, pp. 3133–3140.

[49] Y. Pylyavskyy, A. Kheiri, and L. Ahmed, ‘‘A reinforcement learning hyper-
heuristic for the optimisation of flight connections,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[50] A. Muklason, G. B. Syahrani, and A. Marom, ‘‘Great deluge based hyper-
heuristics for solving real-world university examination timetabling
problem: New data set and approach,’’ Procedia Comput. Sci.,
vol. 161, pp. 647–655, Jan. 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050919318794

[51] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, ‘‘A reinforcement
learning–great-deluge hyper-heuristic for examination timetabling,’’ Int.
J. Appl. Metaheuristic Comput., vol. 1, no. 1, pp. 39–59, Jan. 2010, doi:
10.4018/jamc.2010102603.

[52] F. Garza-Santisteban, I. Amaya, J. Cruz-Duarte, J. C. Ortiz-Bayliss,
E. Ozcan, and H. Terashima-Marin, ‘‘Exploring problem state transforma-
tions to enhance hyper-heuristics for the job-shop scheduling problem,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/document/9185709/

[53] X. F. C. Sanchez-Diaz, J. C. Ortiz-Bayliss, I. Amaya, J. M. Cruz-Duarte,
S. E. Conant-Pablos, and H. Terashima-Marin, ‘‘A preliminary study on
feature-independent hyper-heuristics for the 0/1 knapsack problem,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/document/9185671/

[54] A. Kheiri and E. Keedwell, ‘‘A sequence-based selection hyper-heuristic
utilising a hidden Markov model,’’ in Proc. Annu. Conf. Genetic Evol.
Comput. (GECCO), Jul. 2015, pp. 417–424.

[55] A. Kheiri, E. Özcan, R. Lewis, and J. Thompson, ‘‘A Sequence-based
selection hyper-heuristic: A case study in nurse rostering,’’ in Proc.
11th Int. Conf. Pract. Theory Automated Timetabling (PATAT), 2016,
pp. 503–505.

[56] A. Kheiri, ‘‘Heuristic sequence selection for inventory routing problem,’’
Transp. Sci., vol. 54, no. 2, pp. 302–312, Mar. 2020.

[57] L. Ahmed, C.Mumford, and A. Kheiri, ‘‘Solving urban transit route design
problem using selection hyper-heuristics,’’ Eur. J. Oper. Res., vol. 274,
no. 2, pp. 545–559, 2019, doi: 10.1016/j.ejor.2018.10.022.

[58] W. B. Yates and E. C. Keedwell, ‘‘An analysis of heuristic subsequences for
offline hyper-heuristic learning,’’ J. Heuristics, vol. 25, no. 3, pp. 399–430,
Jun. 2019, doi: 10.1007/s10732-018-09404-7.

[59] A. Gaier, A. Asteroth, and J.-B. Mouret, ‘‘Data-efficient design explo-
ration through surrogate-assisted illumination,’’ Evol. Comput., vol. 26,
no. 3, pp. 381–410, Sep. 2018. [Online]. Available: https://www.
mitpressjournals.org/doi/abs/10.1162/evco_a_00231

[60] E. Samuelsen and K. Glette, ‘‘Multi-objective analysis of MAP-
elites performance,’’ 2018, arXiv:1803.05174. [Online]. Available: http://
arxiv.org/abs/1803.05174

[61] E. Dolson, A. Lalejini, and C. Ofria, ‘‘Exploring genetic
programming systems with MAP-Elites,’’ in Genetic Programming
Theory and Practice XVI. Cham, Switzerland: Springer, 2019,
pp. 1–16.

[62] J. M. Cruz-Duarte, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, and
H. Terashima-Marín, ‘‘A primary study on hyper-heuristics to customise
metaheuristics for continuous optimisation,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jul. 2020, pp. 1–8.

[63] G. L. Pappa, G. Ochoa, M. R. Hyde, A. A. Freitas, J. Woodward,
and J. Swan, ‘‘Contrasting meta-learning and hyper-heuristic research:
The role of evolutionary algorithms,’’ Genetic Program. Evolvable Mach.,
vol. 15, no. 1, pp. 3–35, Mar. 2014.

[64] J. Lever, M. Krzywinski, and N. Altman, ‘‘Points of significance: Model
selection and overfitting,’’ Nature Methods, vol. 13, no. 9, pp. 703–704,
2016.

[65] J. R. Woodward, C. G. Johnson, and A. E. I. Brownlee, ‘‘Connecting
automatic parameter tuning, genetic programming as a hyper-heuristic, and
genetic improvement programming,’’ inProc. Genetic Evol. Comput. Conf.
Companion, Jul. 2016, pp. 1357–1358.

[66] I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, H. Terashima-Marín,
and C. A. C. Coello, ‘‘Tailoring instances of the 1D bin packing problem
for assessing strengths and weaknesses of its solvers,’’ in Parallel Problem
Solving From Nature (PPSN XV) (Lecture Notes in Computer Science),
vol. 11101, A.Auger, C.M. Fonseca, N. Lourenço, P.Machado, L. Paquete,
andD.Whitley, Eds. Cham, Switzerland: Springer, 2018, pp. 373–384, doi:
10.1007/978-3-319-99259-4_30.

116526 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.eswa.2013.12.050
http://dx.doi.org/10.1016/j.asoc.2014.12.012
http://dx.doi.org/10.1016/j.cor.2020.104935
http://dx.doi.org/10.1016/j.trc.2020.02.008
http://dx.doi.org/10.1007/s10479-018-3052-3
http://dx.doi.org/10.1007/s10479-018-3052-3
http://dx.doi.org/10.4018/jamc.2010102603
http://dx.doi.org/10.1016/j.ejor.2018.10.022
http://dx.doi.org/10.1007/s10732-018-09404-7
http://dx.doi.org/10.1007/978-3-319-99259-4_30

M. Sánchez et al.: Sequence-Based Selection Hyper-Heuristic Model via ME

[67] L. F. Plata-González, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos,
H. Terashima-Marín, and C. A. C. Coello, ‘‘Evolutionary-based tailoring
of synthetic instances for the knapsack problem,’’ Soft Comput., vol. 23,
no. 23, pp. 12711–12728, Dec. 2019, doi: 10.1007/s00500-019-03822-w.

[68] I. Amaya, J. C. Ortiz-Bayliss, S. Conant-Pablos, and H. Terashima-Marin,
‘‘Hyper-heuristics reversed: Learning to combine solvers by evolving
instances,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 1790–1797. [Online]. Available: https://ieeexplore.ieee.org/document/
8789928/

[69] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic, and
E. K. Burke, ‘‘HyFlex: A benchmark framework for cross-domain heuris-
tic search,’’ in Evolutionary Computation in Combinatorial Optimization,
J.-K. Hao and M. Middendorf, Eds. Berlin, Germany: Springer, 2012,
pp. 136–147.

MELISSA SÁNCHEZ was born in Culiacan,
Sinaloa, Mexico, in 1996. She received the B.Sc.
degree in mechatronics engineering from the Tec-
nologico de Monterrey, in 2020.

From 2018 to 2020, she was a part of
the Research Group with Strategic Focus in
Autonomous Vehicles, Tecnologico de Monterrey.
From 2019 to 2020, she was a Research Assis-
tant with the Research Group with Strategic Focus
in Intelligent Systems, Tecnologico de Monterrey.

She also has experience in the industry as she worked at John Deere as a
Product Design Engineer. Since 2020, she has been working as a CAD Soft-
ware Engineer at Kalypso: A Rockwell Automation Company. Her research
interests include underwater autonomous vehicles (UAVs), combinato-
rial optimization problems solved through hyper-heuristics, and intelligent
systems.

JORGE M. CRUZ-DUARTE (Member, IEEE)
was born in Ocaña, N.S., Colombia, in 1990.
He received the B.Sc. and M.Sc. degrees in elec-
tronic engineering from the Universidad Indus-
trial de Santander, Bucaramanga, Santander,
Colombia, in 2012 and 2015, respectively, and
the Ph.D. degree in electrical engineering from
the Universidad de Guanajuato, Mexico, in 2018.
He was a Postdoctoral Fellow with the Research
GroupWith Strategic Focus in Intelligent Systems,

Tecnológico deMonterrey, Mexico, from 2019 to 2021, where he is currently
a Research Professor with the School of Engineering and Sciences.

His research interests include data science, optimization, mathematical
methods, thermodynamics, digital signal processing, electronic thermal
management, and fractional calculus.

JOSÉ C. ORTIZ-BAYLISS (Member, IEEE) was
born in Culiacan, Sinaloa, Mexico, in 1981.
He received the B.Sc. degree in computer engi-
neering from the Universidad Tecnologica de la
Mixteca, in 2005, the M.Sc. degree in computer
sciences and the Ph.D. degree from the Tecno-
logico de Monterrey, in 2008 and 2011, respec-
tively, the M.Ed. degree from the Universidad del
Valle de Mexico, in 2017, the B.Sc. degree in
project management from the Universidad Virtual

del Estado de Guanajuato, in 2019, and theM.Ed.A. degree from the Instituto
de Estudios Universitarios, in 2019.

He is currently an Assistant Research Professor with the School of Engi-
neering and Sciences, Tecnologico de Monterrey. His research interests
include computational intelligence, machine learning, heuristics, meta-
heuristics, and hyper-heuristics for solving combinatorial optimization prob-
lems. He is a member of the Mexican National System of Researchers,
the Mexican Academy of Computing, and the Association for Computing
Machinery.

IVAN AMAYA (Member, IEEE) was born in
Bucaramanga, Santander, Colombia, in 1986.
He received the B.Sc. degree in mechatronics
engineering from the Universidad Autónoma de
Bucaramanga, in 2008, and the Ph.D. degree in
engineering from the Universidad Industrial de
Santander, in 2015.

From 2016 to 2018, he was a Postdoctoral Fel-
low with the Research Group with Strategic Focus
in Intelligent Systems, Tecnologico de Monterrey.

Since 2018, he has been a Research Professor with the School of Engineering
and Sciences, Tecnologico de Monterrey. His research interests include
numerical optimization of both continuous and discrete problems, through
the application of heuristics, metaheuristics, and hyper-heuristics. For the
latter, he focuses on finding new ways of using feature transformations for
improving performance. He is a member of the Mexican National System of
Researchers, the Mexican Academy of Computing, and the Association for
Computing Machinery.

VOLUME 9, 2021 116527

http://dx.doi.org/10.1007/s00500-019-03822-w

