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ABSTRACT We propose an artificial intelligence-based channel prediction scheme that can potentially
facilitate link adaptation in customized communication systems. Link adaptation is a key process for
wireless communication that requires accurate channel state information (CSI). However, the CSI may be
outdated because of computational and propagation delays. In addition, a subframe with no CSI reference
signal cannot provide CSI feedback. The proposed scheme solves these problems by predicting future
channels. Although traditional stochastic methods suffer from marginal prediction accuracy or unacceptable
computational complexity, neural networks allow time series prediction for channels even considering
constraints for practical application.We introduce a hybrid architecture for improving the prediction accuracy
of the neural network when extracting meaningful features. The proposed scheme uses a single hybrid
network that can predict channels in different environments. Simulations were performed using a spatial
channel model to evaluate the performance at the system-level, and the results indicated that the proposed
scheme effectively increases the prediction accuracy for the channel quality indicator and spectral efficiency.

INDEX TERMS Adaptive modulation and coding, artificial intelligence, channel prediction, customized
communication system, link adaptation, neural network, sixth generation.

I. INTRODUCTION
The fifth-generation (5G) technology standard for wireless
communication systems is becoming commercially available
worldwide [1]. However, despite the 5G era still being in its
infancy, academia and industry are beginning to focus on the
sixth-generation (6G) and beyond. Unlike previous genera-
tions, 6G will have revolutionary and stricter requirements.
A key concept for 6G innovation is expected to be the evo-
lution of wireless communication systems from connected
things to connected intelligence [2]. Intelligence, autonomy,
and context awareness are also expected to increase in impor-
tance [2]–[7]. Thus, 6G is expected to facilitate intelligent
user-centered communication services.

In this paper, we define a user-centered communication
system as a customized communication system for which
services are optimized according to user characteristics. This
allows the support method to be changed flexibly accord-
ing to the requirements of different users. A customized
communication system can be optimized according to user’s
life-style and experience by using big data. Adaptive services
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can be provided by considering the physical environment
context (PEC) such as the surrounding location, mobility,
and information from other users. One application of cus-
tomized communication systems is channel prediction based
on the user’s channel experience and PEC.When the location,
environment, and mobility are the same, artificial intelli-
gence (AI) can be used to learn the functions of previous
and future channels and to predict the channels of various
scenarios for improved link adaptation.

Link adaptation is a key process for satisfying the various
requirements of 5G new radio (NR) access technology and
involves the dynamic adjustment of the transmitted infor-
mation data rate (i.e., modulation scheme and coding rate)
to match the radio channel capacity to each user. Adaptive
modulation and coding (AMC) is a technique for determining
the proper modulation and coding scheme (MCS) depend-
ing on the channel quality and guarantees the throughput
for time-varying channels of mobile wireless communica-
tion systems. According to AMC, the user equipment (UE)
periodically measures the channel quality via a reference
signal (RS) and a signal-to-noise ratio (SNR) is utilized to
map the channel quality to the channel quality index (CQI).
The base station (BS) then selects an MCS by considering
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the CQI reported by the UE. The BS periodically transmits a
channel state information reference signal (CSI-RS), which
the UE used to estimate the channel quality, and the BS
acquires the CSI based on feedback from the UE. In practical
applications, however, the CSI feedback can be outdated
because of computational and propagation delays at both
the BS and UE [8], [9]. Moreover, a subframe without the
CSI-RS cannot provide CSI feedback. For 5G NR, CSI-RS
transmissions are supported at 5, 10, 20, 40, 80, 160, 320,
and 640 slots [10].

To address the performance degradation due to CSI
feedback delays, researchers have focused on developing
methods for predicting future channels and delivering the
predicted CSI to the BS [11]–[13]. Channel prediction has
attracted increased attention as an efficient technology that
can directly improve the CSI quality without requiring addi-
tional resources. There are two representative channel pre-
diction approaches as follows: autoregressive (AR) and sum
of sinusoids (SOS) [14]. AR models approximate future
channels based on past channels [15], [16]. SOS models
represent a channel as a superposition of a finite number of
sinusoids and assume that their parameters (e.g., the ampli-
tude, Doppler shift, and scatter) change much more slowly
than those of the channel [17]. Because AR models directly
estimate the model coefficients even when the channel is
time-variant, they are more suitable than SOS models for
realistic channel simulations [14]. However, AR models are
susceptible to damage such as additional noise [18].

AI can be used to overcome the limitations of traditional
stochastic methods and obtain the advantages of channel
prediction. AI has attracted attention as a core technology for
6G, and it is widely used in communication systems [2]–[7].
Among AI applications, the recurrent neural network (RNN)
and long short-term memory (LSTM) are effective for time
series prediction and are being actively used for channel pre-
diction. Liu et al. [19] applied an RNN to predicting single-
and multiple-antenna channels. Jiang and Schotten [20], [21]
proposed a real-value RNN for implementation in a multistep
predictor. Neural networks with structures other than the
RNN have also been used for channel prediction [22], [23].
Neural network-based channel prediction is a data-driven
approach that can flexibly adapt to various scenarios.

Although existing prediction schemes that utilize not
only LSTM but also other neural network structures predict
multi-path channels as a whole, most focus on modeling
flat-fading multiple-input multiple-output (MIMO) channels.
Some previous studies have focused on frequency-selective
channels [17], [24]–[30]. Semmelrodt and Kattenbach [17]
and Jiang and Schotten [24]–[26] predicted channels
by converting the frequency-selective channel into inde-
pendent frequency-flat channels considering orthogonal
frequency-division multiplexing (OFDM). Lv et al. [27]
proposed a channel prediction scheme for a millimeter
wave (mmWave) MIMO-OFDM system that considers the
four following domains: array-frequency, array-time, angle-
frequency, and angle-time. Ahrens et al. [28] insisted

that a shift-invariant prediction model could be applied
to all subcarriers for channel prediction in the frequency
domain because the utilized bandwidth is always significantly
smaller than the carrier frequency. However, their assump-
tion may not hold depending on the environment. Finally,
Liu et al. [29] and Sui et al. [30] proposed channel prediction
in the time-delay domain. Liu et al. [29] were the first to
propose a MIMO-OFDM channel prediction model in time
domain, and Sui et al. [30] introduced a channel prediction
framework based on the temporal and spatial correlations
in MIMO-OFDM systems to prevent overfitting and ensure
efficient learning. Sui et al. [30] also argued that correlations
exist only for the same transmitting path in the channel
impulse response based on the wide-sense stationary uncorre-
lated scattering (WSSUS). They proposed a broad echo state
network (BESN) to predict the channel by path for every
antenna pair.

We propose a frequency-selective channel prediction
scheme based on a neural network with a hybrid architecture
(i.e., hybrid network). The proposed scheme can improve
the channel prediction framework based on temporal and
spatial correlations in MIMO-OFDM systems by deploying
an LSTM for time series prediction and convolutional neu-
ral networks (CNN) for capturing spatial information. The
proposed scheme uses a single hybrid network to predict
channels in different environments. We also propose a system
operation method for link adaptation. The performance of the
proposed scheme was verified through a system-level simula-
tion (SLS) with a standardized spatial channel model (SCM)
developed by 3GPP and 3GPP2 [31]–[33].
Notation: ‖ · ‖2 is the Euclidean norm, |· | returns its abso-

lute value, (· )∗ denotes the complex conjugate, ⊗ represents
the Kronecker product, Re(·) refers to the real part, Im(·)
denotes the imaginary part, CN×M stands for a N × M size
complex-valued matrix, and E[·] represents the expectation
operation.

II. SYSTEM MODEL AND CONVENTIONAL SCHEMES
A. SYSTEM MODEL
We considered a MIMO-OFDM system where the BS and
UE have NT and NR antennas, respectively. The transmitted
signal passes through the SCM channel comprising N clus-
ters, which causes the multipath delay. Each cluster consists
of M rays. Fig. 1 shows the simplified channel model. For
the t th time slot, the channel impulse response between the
sth antenna element of the BS and uth antenna element of the
UE is given by

hu,s(t, τ ) =
N∑
n=1

hu,s,n(t)δ(τ − τn), (1)

where n is the cluster index, u = 1, 2, . . . ,NR is the antenna
index for the UE, s= 1, 2, . . . ,NT is the antenna index for the
BS, τ = 1, 2, . . . , τmax is the delay index in the discrete time
domain, τn is the multipath delay of the nth path in the dis-
crete time domain, and δ(·) represents the impulse function.
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According to the power delay profile of the channel model,
the complex path coefficient hu,s,n is given by

hu,s,n(t) =
√
Pngu,s,n(t), (2)

where Pn and gu,s,n are the gain and channel coefficient,
respectively, of the nth cluster. The channel coefficient of the
nth cluster is then expressed as

gu,s,n(t) =
M∑
m=1

Am
√
M

exp (jφm) exp (j2π fmt)

× exp (j
2π
λ
dT cosαn,m) exp (j

2π
λ
dR cosβn,m), (3)

where Am, φm and fm are the attenuation, phase shift, and
Doppler frequency, respectively, of the mth ray, λ indicates
the carrier wavelength in meters, dT and dR denote the dis-
tances between the BS antenna elements and between the UE
antenna elements, respectively, in meters, and αn,m and βn,m
are the angle of departure and angle of arrival, respectively,
for the mth ray of the nth cluster. These parameters vary
over time, and the process for generating each parameter is
described in the literature [31]–[33].

Let hn,t ∈ CNR×NT denote a MIMO channel matrix,
observed at the t th time slot of the nth cluster, whose ele-
ments are given by [hn,t ]u,s = hu,s,n(t). The fast Fourier
transform (FFT) can be used with (2) to derive the channel
frequency response for the t th time slot and k th subcarrier:

Hu,s(t, k) =
N∑
n=1

√
Pngu,s,n(t) exp (−j

2πτnk
NFFT

), (4)

where NFFT is the FFT size. FFTs can be replaced by the dis-
crete Fourier transforms. LetH(t, k) denote a MIMO channel
matrix observed at the k th subcarrier in the frequency domain
whose elements are given by [H(t, k)]u,s = Hu,s(t, k). At the
receiver side, the received signal in the time domain is con-
verted into the frequency domain after the cyclic prefix is
removed. The input-output relationship is then represented as

y(t, k) = H(t, k)x(t, k)+ n(t, k), (5)

where y, H and n are the received signal, transmitted OFDM
symbol and white Gaussian noise, respectively.

The least squares method can be used to estimate the
channel at the pilot position (i.e., CSI-RS). The channel at
the pilot position is given by

Ĥp(t, k) = argmin
Hp
‖yp(t, k)−Hp(t, k)xp(t, k)‖22, (6)

where yp, Hp and xp represents the received signal, channel
and transmit signal, respectively, at the pilot position. To esti-
mate the channel at resource elements other than the pilot
positions, we can exploit a two-dimensional interpolation
method. Link adaptation can be performed by using the esti-
mated channels in the time domain, ĥn,t , n = 1, 2, . . . ,N ,
computed with an inverse FFT.

FIGURE 1. Simplified SCM channel model and the power delay profile.

B. CONVENTIONAL CHANNEL PREDICTION ALGORITHMS
In AR model-based algorithms, the predicted complex path
coefficient is given by

h̃(t + 1) =
Ra∑
r=1

d(r)h(t − r), (7)

where h̃ and h are the predicted complex path coefficient and
the past complex path coefficient used as the input, respec-
tively, Ra denotes the AR model order, and d(r) indicates
the time-variant AR coefficient that is computed by using the
minimummean squared error (MMSE) criterion [34]. For the
sake of simplicity but without loss of generality, we excluded
the indices of the antenna elements.

Sui et al. [30] proposed a channel prediction frame-
work called group forward variable selection-based BESN
(GFVS-BESN). It considers a broad learning system and
reduces the time consumed during the training stage com-
pared to prediction schemes using other neural networks.

Jiang and Schotten [24] proposed a predictor based on deep
recurrent neural networks including LSTM. Although they
designed their predictor for flat fading channels, it can be
applied to frequency-selective channels by converting them
into a set ofN narrow-band subcarriers. In other words, it pre-
dicts channels in the frequency domain. Therefore, neural
networks are likely to have vertical stacks of vast layers,
which increase the risk of overfitting.

Hochreiter and Schmidhuber [35] proposed the LSTM
network, which is a kind of RNN that can be exploited
for channel prediction. The LSTM network is good at han-
dling sequence dependencies and time series prediction. The
LSTM utilizes a cell to store the long-term state, which is
mainly controlled by the three following gates: the forget
gate, input gate, and output gate. The LSTM network com-
prises multiple LSTM cells that are connected in cascade.
Let L denote the number of LSTM cells or inputs to refer-
ence. The weight matrices and biases for the LSTM cells are
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denoted byWf , bf ,Wi, bi,Wc, bc,Wo and bo. Fig. 2 shows
the structure of the LSTM network.

The forget gate determines whether the information from
the previous state contributes to the next cell state. For the vth

LSTM cell, this is expressed as

fv = σ (Wf · [sv−1, xv]+ bf ), (8)

where xv is the current input, sv−1 is the previous state and
σ (· ) represents the sigmoid function. The input gate deter-
mines how much of the input of the current network is saved
to the cell state. The related equation is as follows:

iv = σ (Wi· [sv−1, xv]+ bi),

c̃v = tanh(Wc· [sv−1, xv]+ bc). (9)

The cell state is then updated as follows:

cv = fv ⊗ cv−1 + iv ⊗ c̃v. (10)

The outputs of the LSTM cell are calculated as follows:

ov = σ (Wo· [sv−1, xv]+ bo),

sv = ov ⊗ ReLU(cv). (11)

Finally, the output of the last LSTM cell goes through the
fully connected (FC) layers. Each hidden layer consists of
a linear operation and nonlinear activation function. In this
case, the mean-squared error (MSE) is used to train the
LSTM. Jiang and Schotten [24] utilized a deep LSTM net-
work built by stacking multiple LSTM layers, which is also
described in Fig. 2.

III. PROPOSED CHANNEL PREDICTION SCHEME
FOR THE AMC SOLUTION
A. NETWORK ARCHITECTURE FOR CHANNEL PREDICTION
The hybrid network in the proposed scheme connects an
LSTM, CNN and FC layer in series and repeatedly. The
hybrid network overcomes the drawbacks of conventional
deep learning methods for channel prediction, which have to
be retrained with a new network whenever the channel envi-
ronment changes. The hybrid network can predict channels in
various environments with one integrated network because of
the FC layer, which receives the channel environment as an
additional input. In addition, it can capture temporal and spa-
tial correlations. The channel prediction accuracy is improved
by the CNN,which can consider spatial correlations to extract
meaningful features.

The composition and role of the hybrid network are as
follows. Features are extracted by considering the spatial
correlation between antenna elements. The features are then
transformed according to the environment by using the PEC
as an additional network input. The LSTM then uses these
features for time series prediction, and the CNN regen-
erates channels with the predicted features. In summary,
the hybrid network consists of the following four parts:
CNN-based feature extraction, FC layer-based reflection of
the PEC, LSTM-based feature prediction, and CNN-based
channel reproduction. In particular, the hybrid network

FIGURE 2. Architecture of the LSTM cell and deep LSTM.

is similar to the structure of a U-net as proposed by
Ronnerberger et al. [36]. U-net consists of a contracting path
for downsampling, an expanding path for upsampling, and a
bottleneck. In contrast, the hybrid network exploits the FC
layers and LSTM instead of the bottle neck to enable channel
prediction. Fig. 3 shows the structure of the hybrid network.

According to the WSSUS, correlations exist only for same
transmitting path [30]. Therefore, the hybrid network predicts
the channel for the nth path by using the same path for every
antenna pair. In this study, we considered only N paths with
the largest channel gain. We also assumed that the delay of
each tap does not change.

1) CNN-BASED FEATURE EXTRACTION
Unlike conventional LSTMs, this partial network extracts
meaningful features by considering the spatial correlation
between antenna elements for effective learning. A CNN
can capture spatial information by using convolutional fil-
ters [37]. Thus, it is used here to easily extract and handle
features for obtaining the spatial correlation between antenna
elements.

This partial network is similar to the contracting path of
U-net. Because convolution is performed without padding,
the size of the feature map is reduced. Although max-pooling
was not considered in this study, it can be applied depending
on the input dimensions, and parameters such as the filter
size can be adjusted. The following parameters were used
in this study. The network input is a NR × NT × 2N tensor
that contains channel matrices for each cluster, which are
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FIGURE 3. Architecture of the hybrid network for the proposed scheme.

divided into real and imaginary matrices (i.e., Re{ĥn,t } and
Im{ĥn,t }, respectively, for all n). The first convolution layer
consists of 2N filters of size 2 × 2 (stride 1), the second
layer is composed of 2N filters of size 3 × 1 (stride 1),
and the third convolution layer is made up 2N filters of size
3 × 1 (stride 1). Finally, the CNN is connected to an FC layer
with 64 units. Each layer has a rectifier linear unit nonlinear
activation function. The CNN extracts ne × 1 feature vectors
from channels of N clusters as inputs and finally outputs
the neN × 1 feature vector. It can compress the amount of
information needed to improve the prediction accuracy for
effective training of the LSTM.

2) FC LAYER-BASED REFLECTION OF PEC
Conventional LSTMs are limited because the prediction
accuracy decreases when the channel environment varies.
Here, the channel environment is input to the FC layer after
the CNN so that channels can be predicted for various envi-
ronments with only an integrated network. In other words,
the FC layer adds the PEC to the neN × 1 feature vector
extracted from the CNN. The feature vector is transformed to
increase the prediction accuracy by reflecting the PEC, which
is represented by the 3D location of the UE, indoor/outdoor
condition, and mobility. Thus, the PEC is given as a 7 × 1
vector containing this information. The 3D location is a real
number; the coordinates are given in a Cartesian coordinates
where the BS is the origin. The indoor/outdoor condition is
indicated by 1 bit. The mobility is the velocity (km/h) of the
UE relative to the BS in Cartesian coordinates. The number
of neurons is given by (32, 32). The transformed feature
vector output of the FC layer is expressed as an nf N × 1
vector.

3) LSTM-BASED FEATURE PREDICTION
In this partial network, the features extracted in the previous
process are predicted in time series. The dimensions of the
LSTM input are reduced by the previous processes to increase
the prediction accuracy and decrease the computational com-
plexity. The structure of the network is the same as that shown
in Fig. 2 except that the input is the extracted features. For a
deep LSTM with 12 memory cells, L features are utilized to
predict the future.

4) CNN-BASED CHANNEL REPRODUCTION
This partial network reproduces channels from the predicted
feature vectors and is similar to the expanding path of U-net.
The structure is the inverse of that used for the CNN-based
feature extraction. The deconvolution layer can be utilized if
max-pooling was used in the previous step. The output is an
NR×NT×2N tensor that contains channels for each cluster in
the same form as the input. In other words, the output com-
prises Re{h̃n,t }, Im{h̃n,t } for all n. Eventually, the predicted
channels is obtained. The hybrid network is trained according
to the MSE.

B. AMC SOLUTION-BASED CHANNEL PREDICTION
The proposed scheme utilizes the hybrid network in the
time domain for channel prediction. The AMC solution is
obtained in the following two phases: training and prediction.
Fig. 4 illustrates two phases and multistep prediction.

1) TRAINING PHASE
In the training phase, the UE receives a series of subframes
containing the CSI-RS. The UE estimates the channel coeffi-
cients and PEC in advance. Such data are then used to train
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FIGURE 4. Illustration of training phase and prediction phase.

the hybrid network. Thus, the training phase requires not
only large amounts of data to be collected in various environ-
ments but also more RS transmissions. The previous channel
coefficients and PEC serve as the network input, and the
output is a complex path coefficient that has passed through
different clusters. The objective of the hybrid network is to
minimize the difference between the predicted and labeled
data. Training continues until the prediction accuracy is less
than the target accuracy. Algorithm 1 summarizes the training
phase for obtaining the AMC solution.

2) PREDICTION PHASE
After training, the hybrid network predict channels that
cannot be estimated because of the lack of CSI-RS in the
subframe. The BS transmits L consecutive RSs, and the UE
estimates the channel according to the PEC. The UE then
predicts the channel for the next frame by using the trained
hybrid network. The SNR and CQI for the next frame can
also be predicted according to the predicted channel. The
UE reports the predicted CQI to the BS, which selects the
MCS based on the conventional outer loop link adaptation
technique of using a lookup table to map the SNR to the
CQI [38], [39]. The prediction can be repeated by using
the predicted channel as the input and corrected according
to the estimated channel with the RS that is received later.
Algorithm 2 summarizes the prediction phase for obtaining
the AMC solution.

C. COMPUTATIONAL COMPLEXITY
We analyzed the computational complexity of the hybrid
network. The hybrid network is divided into four networks
comprising the following three types of neural networks:
CNN, LSTM, and FC layer (i.e., deep-NN). The computa-
tional complexities of these neural networks have previously
been calculated in the literature [24], [40]. Thus, the com-
putational complexity per time step of the hybrid network is
given by O (2NC + NL + NF ), where NC , NL , and NF are
the numbers of parameters (i.e., weights and biases) of the
CNN, LSTM, and FC layer, respectively. The computational
complexity of each partial network is calculated as follows.
O (NC ) can be calculated simply asO (WFHFLC ), where the
CNN performs convolution by using LC filters with a width
WF and height HF [40]. If we assume that a single-input
single-output (SISO) channel is predicted, then NL is given
by NL = neNNp. Np is the number of parameters of LSTM
for the SISO channel predictor and is calculated as

Algorithm 1 Training Phase
1: Initialize weights of the hybrid network with random

numbers.
2: The BS transmits a series of subframes containing

CSI-RS.
3: The UE estimates the channel coefficients and PEC using

the received RSs.
4: repeat
5: Get channel coefficients for Ts time.
6: for t = L to Ts do
7: while n ≤ N do
8: Stack Re{ĥn,t−L+1}, Im{ĥn,t−L+1}, . . . ,

Re{ĥn,t−1} and Im{ĥn,t−1}.
9: end while
10: Train the hybrid network: use stacked data as the

input and use Re{ĥn,t } and Im{ĥn,t } as the label.
11: end for
12: until The prediction accuracy is less than the target

accuracy.

Algorithm 2 Prediction Phase
1: repeat
2: The BS transmits L consecutive RSs and the UE

receives them.
3: Prediction for time t + 1: input Re{ĥn,t−L+1},

Im{ĥn,t−L+1}, . . . ,Re{ĥn,t } and Im{ĥn,t } for n ∈
{1, 2, . . . ,N } to the trained network.

4: The output of the network consisting of
Re{h̃n,t }, Im{h̃n,t } for n ∈ {1, 2, . . . ,N }, is the
predicted channel coefficients.

5: The UE gets the CQI based on the predicted channel
and feeds it back to the BS.

6: The BS takes the MCS.
7: L channels including the predicted channel are again

input to the hybrid network to predict the next
channel.

8: until The BS transmits L consecutive RSs again.

Np =
HL∑
l=1

4
(
n(l−1)L n(l)L + n

(l)
L n

(l)
L + n

(l)
L

)
+ n(HL )L n(HL+1)L + n(HL+1)L , (12)

where n(l)L , l = 1, · · · , HL , represents the number of mem-
ory cells in the l th vertical layer, n(0)L and n(HL+1)L are the
number of input units and output units, respectively [24].
Suppose that the FC layer consists of an input layer, LF
hidden layers in which the number of nodes in the l th layer is
n(l)F , l = 1, · · · , LF , and an output layer. Then, the number
of parameters for the FC layer can be computed as

NF =
LF∑
l=0

n(l)F × n
(l+1)
F , (13)
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where n(0)F and n(L+1)F are the numbers of input nodes
and output nodes, respectively. Finally, the total compu-
tational complexity of the hybrid network is given by
O
(
nt
(
2NC + neNNp + NF

))
, where nt is the time step.

IV. SIMULATION RESULTS
A. SIMULATION PARAMETERS
We evaluated the performance of the proposed prediction
scheme by utilizing an SLS based on the SCM of 3GPP. The
system had a bandwidth of 10 MHz and a carrier frequency
of 2.1 GHz. Each resource block had 12 subcarriers in total
and a subcarrier spacing of 15 kHz. A 3D urban micro-cell
was considered.We usedmutual information effective signal-
to-noise-ratio mapping to calculate the effective SNR. Table 1
presents the main parameters (refer to [31]–[33] for the other
simulation parameters).

To train the neural network, 50,000 input–label pairs were
generated. Specifically, the previous and current channel
coefficients after channel estimation were used as the input
and label, respectively. For the hybrid network, PECwas used
as an additional input. We set the batch size to 200, nf to
16, and number of epochs to 10,000 based on trial and error.
Batch normalization and an ADAM optimizer with an initial
learning rate of 10−6 were used. The filters and neurons were
weighted according to He initialization.

We compared four prediction schemes as follows: the AR
model, GFVS-BESN [30], conventional LSTM network [24]
(i.e., deep-LSTM), and the proposed scheme (i.e., hybrid
network). Because the PEC cannot be considered with exist-
ing prediction schemes other than the proposed scheme,
we generated multiple models or networks according to the
PEC and trained each. In particular, prediction schemes were
created by dividing each into five models according to the
radial distance from the BS. For example, a particular LSTM
network was trained to predict the channel of a UE that
is outdoors at a radial distance of 10–20 m from the BS
and speed of 3 km/h or less. Thus, the performances of the
conventional schemes could be compared with that of the
proposed scheme. The AR model was extracted by utilizing
the MMSE of 500 samples. For channel prediction with the
GFVS-BESN, we assumed that the spatial correlation matrix
is known exactly. We also exploited parameters introduced
by Jiang and Schotten [24] and Sui et al. [30] to evaluate the

TABLE 1. Main simulation parameters.

FIGURE 5. NMSE performances of the various schemes according to
distance.

GFVS-BESN and LSTM except for the number of cells of the
LSTM. An LSTM network with 60 memory cells was trained
to predict channels for 600 subcarriers instead of channels
of 16 paths in the time domain. We used a computer with an
Intel(R) Core(TM) i7-10700k CPU operating at 3.8 GHz and
16 GB of RAM. We also utilized Python 3.7 and MATLAB
(2018a). Table 2 presents the average time consumed during
the training stage per input.

B. PREDICTION ACCURACY
The normalized MSE (NMSE) was used to measure the pre-
diction accuracy:

NMSE = E
[∑

u
∑

s
∑

n (hu,s,n − h̃u,s,n)
2∑

u
∑

s
∑

n hu,s,n
2

]
, (14)
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FIGURE 6. NMSE performances of the proposed scheme according to the
number of past channels.

TABLE 2. Average time consumed during the training stage per input.

where hu,s,n and h̃u,s,n denote the correct and predicted com-
plex path coefficients, respectively.

Fig. 5 depicts the NMSE performances of the various
schemes according to the distance between the BS and UE
for L = 3. Fig. 5(a), (b), and (c) present the following
different scenarios: indoor or outdoor and pedestrian (UE
speed ≤ 3 km/h) or vehicular (UE speed = 30 km/h).
We tested 2000 independent UEs for each case. The channel
prediction error increased with the radial distance. Therefore,
the NMSE indicates the prediction error according to the
initial input of L consecutive channels with estimation error.
The NMSEs decreased with increasing distance from the BS
for all schemes and scenarios. However, the proposed scheme
improved the prediction accuracy by extracting significant
features. For all scenarios, the proposed scheme performed
better than the other schemes. In addition, the proposed
scheme was the most robust against channel estimation error.
Note that the proposed scheme was able to achieve this result
with a single unified network.

Fig. 6 shows the prediction accuracy according to the
number of past channels (i.e., L) used for prediction. For all
schemes, the NMSE increased with up to three past channels,
and then it became saturated. The appropriate number of
past channels needed to be determined because the CSI
and feedback overheads increase with the number of past
channels.

C. LINK ADAPTATION PERFORMANCE
Next, the link adaptation performance was evaluated.
We assumed that 1) the neural networks learned in the training
phase, 2) the CSI-RS had a period of 10 ms, 3) three consec-
utive subframes including the CSI-RS were initially received
for the prediction (i.e., Ra = L = 3), and 4) the PEC could
be estimated correctly every time.

We tested 2000 independent UEs for 20 transmission
time intervals in each case. The previous channel predic-
tion was reused as the input for predicting the next channel

FIGURE 7. Multistep prediction performances in the prediction phase.

(i.e., multistep prediction introduced by Sui et al. [30]).
We compared the following five schemes: the baseline
scheme, AR model, GFVS-BESN, LSTM, and proposed
scheme. Each scheme used channel prediction for link adap-
tation. For the baseline scheme, when the subframe did not
have the CSI-RS, the CSI of the previous subframe was
used as-is.

Fig. 7 shows the multistep prediction performances of var-
ious schemes in the prediction phase. Fig. 7(a), (b), and (c)
present three scenarios. For the AR model, the results
extracted for UEs within 20 m from the BS are shown.
Fig. 7(c) shows only the results for UEs within 30 m from
the BS. The error propagation due to recursive processes was
lowest with the proposed scheme, even though the conven-
tional schemes used multiple models or networks.
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FIGURE 8. CDF of the average spectral efficiency in the pedestrian
scenario.

The performance was analyzed according to the root mean
square error (RMSE) of the signal-to-interference-plus-noise
ratio (SINR), which is used for CQI mapping and the false
alarm probability of the CQI. Table 3 presents SINR and
CQI obtained from the predicted channel given in Fig. 7. The
proposed scheme had the highest prediction accuracy for both
the SINR and CQI.

Figs. 8 and 9 show the cumulative distribution func-
tions (CDF) of the average spectral efficiency for each run of
the Monte Carlo simulation. The average spectral efficiency
reflects the correctly detected data bits, as introduced by
Seo et al. [41]. The correctly detected data bits were used
as a criterion to demonstrate that the proposed scheme not
only provides accurate CSI feedback compared to conven-
tional schemes but is also more efficient in terms of resource
usage. The average spectral efficiencies derived from cor-
rectly detected data bits were experimentally obtained for
the two following cases: pedestrians including indoor and
outdoor, and vehicles. Fig. 9 shows the results for UEs
within 30 m of the BS. Although the RS overhead increased
for exploiting the channel prediction scheme, the proposed
scheme showed a higher spectral efficiency than the baseline.

TABLE 3. Performance according to SINR and CQI predictions.

FIGURE 9. CDF of the average spectral efficiency in the vehicular scenario.

Thus, the results showed that the proposed scheme for chan-
nel prediction improved the link adaptation performance.

V. CONCLUSION
We proposed a neural network-based channel prediction
scheme and system operation algorithm for AMC that can
be applied to customized communication systems. The pro-
posed scheme utilizes a hybrid network to extract meaningful
features for improving the prediction accuracy. The scheme
also allows the channel prediction in different environments
with a single network. Simulation results revealed that the
proposed scheme improves the prediction accuracy for the
CQI and correctly detected data bits per frame compared
to existing schemes. Therefore, the proposed scheme can
solve the problems caused by delayed CSI feedback and
enable CSI feedback even for subframes without a CSI-RS.
This can potentially be combined with the reinforcement
learning-based method proposed by Mota et al. [42] to
improve the link adaptation performance even further.
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