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ABSTRACT This paper presents a conformal spiral antenna that is miniaturized and with dual-resonant
for the wireless implantable capsule system. The spiral antenna conforms to a swallowable capsule with a
radius of 3 mm and a length of 26 mm without occupying the internal space of the capsule. The compact
antenna adopts two spiral arms to extend the effective current path for miniaturization. Biocompatible
flexible polyimide was used as the dielectric substrate and capsule shell, achieving conformal properties
of the antenna as well as compatibility with human tissue. The antenna has been simulated in different
environmental models. The bandwidth of the antenna can reach 39.16 % (1.82 GHz-2.76 GHz) and 12.06 %
(5.36 GHz-6.06 GHz) at 2.4 GHz and 5.8 GHz. The maximum gains of −35.2 dBi and −28.1 dBi can be
achieved at 2.4 GHz and 5.8 GHz, respectively. In addition, the transmission characteristics of the antenna
were experimentally verified in the minced pork and pig intestine. By analyzing the communication link,
the communication distance between transceivers at 2.4 GHz and 5.8 GHz can meet 14 m and 5 m. These
results show that the proposed antenna is suitable for wireless implantable capsule systems.

INDEX TERMS Implantable capsule system, conformal antenna, dual-resonant, spiral antenna.

I. INTRODUCTION
Nowadays, wireless technology is widely used in implantable
medical devices as it gets rid of the body from the limitations
of wired devices [1]. In recent years, implantable devices can
be implanted into the human body for the auxiliary treatment
of various diseases, including capsule endoscopes [2], cardiac
pacemakers [3], and intracranial pressure monitoring [4].

A wireless implantable capsule system with dual-band
wideband antennas is selected for transmission as capsule
speculum and cardiac pacemaker, as showing in Fig. 1. The
wireless implantable capsule is promising to be used in the
digestive system as a capsule speculum, and the heart as a
cardiac pacemaker as long as changing its internal structure.
The operating band of the proposed antenna could cover
2.42-2.48 GHz and 5.725-5.850 GHz, both of which belong
to the industrial, scientific, and medical (ISM) frequency
bands [5].
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FIGURE 1. Wireless implantable capsule system works in the body.

With the development of medical technology, the demand
for the transmission of real-time video is greater than for
the transmission of simple pictures [6]. The transmission
antenna with a wideband should be designed to meet the
transmission needs of the implantable capsule system to
be able to transmit video and other big data signals in
real-time. In addition, to adapt to the complex implanted
environment and improve the robustness of the antenna,
it is required that the implanted antenna should be achieved
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a wideband [7]. Due to the requirements for high data transfer
rates, the life cycle of the implanted system needs to be as
long as possible [8]. To extend the battery life, the antenna
can be made with dual-frequency or multi-frequency [9].
Features, so that the system has dual-mode working charac-
teristics. Therefore, designing a dual-frequency and broad-
band implanted antenna has important research value and
significance. In [10], a spiral patch, high-dielectric sub-
strate, and an open-end ground slot were used to achieve the
multi-frequency at 402 MHz, 1.6GHz, and 2.4 GHz, and the
maximum bandwidth of 219 MHz is obtained. Although this
design implements multi-frequency features, the bandwidth
is relatively small and takes up some space for implantable
devices. In [11], the proposed antenna is designed to operate
in 915 MHz and 2.45 GHz with the bandwidth of 107.5 MHz
and 560 MHz, by adding an open-ended ground slot, short-
ing pin, and hexagonal and T-shaped slots in the radiator.
Though its bandwidth can be increased, its complex structure
increases the dimensions of the device. In studies [12], [13],
although dual-band or multi-band characteristics are real-
ized, the problems of narrow bandwidth and large internal
space occupied still exist. Due to the limitations of space in
implantable devices, how to maintain antenna dual-band and
broadband while reducing the space occupied by the antenna
is the top priority. Some miniaturization techniques, such
as high dielectric constant substrate [14], [15], meandered
line [16], spiral line [10], opening slot [17], and adding
shorting pins [18], as well as stacked antennas [19], are
used to reduce the space. However, these miniaturization
technologies usually bring difficulties to the antenna design
and production process and still occupy the limited space.
Compared with the use of miniaturization, conformal can
improve miniaturization performance. The conformal struc-
ture can effectively use the surface of the capsule, to avoid
competing with the electronic components inside the capsule
for the valuable space of capsules [20], [21]. The conformal
characteristics are achieved by using flexible materials for
bending, such as in studies [22], although the proposed anten-
nas can be conformal with flexible materials, their perfor-
mance fails to achieve multi-band and wide-band. Based on
the above literature considerations, how to design a conformal
antenna that has wide dual-band characteristics and reduces
the contact area with the internal circuit is a problem worthy
of consideration.

In this approach, a dual-band spiral antenna is investi-
gated. It is conformed to a wireless implantable capsule
system with the size of π× 32× 26 mm3. We implanted
the antenna in the large intestine model and heart sim-
ulation model to verify the stability. To ensure safety,
the specific absorption rate (SAR) has been analyzed. The
entire system is also conducted in the different aforemen-
tioned heterogeneous implanted organs. A lot of experi-
ments have been verified our design. Minced pork and pig
intestine are used as the measured materials environment
to the simulated human body. A significant result has been
obtained.

II. DESIGN AND ANALYSIS OF ANTENNA
A. THE STRUCTURE OF THE ANTENNA
The implantable antenna works inside the body; and the size
must be small enough, without affecting the surrounding
tissues. The conformal structure is one of the best for the
antennas which takes up almost no space [23]. The antenna
proposed in this work uses a conformal design of the spiral
structure and the hemispherical structure of the capsule. The
structure of the antenna is mainly made up of two spiral arms.
One arm is composed of a rectangular patch surrounding a
hemispherical function. Another is obtained by rotating the
first arm 180 degrees around the center. The hemispherical
parameter function is as follows

xt =
√
r2 − (S × t/2π )2 × sin t (1)

yt =
√
r2 − (S × t/2π )2 × sin t (2)

zt = S × t/2π (3)

In the above function, t is a variable, the range of t is
0-n × 2π , n is the number of turns of the spiral, r is the
radius of the hemispherical spiral, and S is the pitch. The
xt is the position coordinate function in the x-direction of
the variable t , the yt is the position coordinate function in the
y-direction of the variable t and the zt is the position coordi-
nate function in the z-direction of the variable t . As illustrated
in Fig. 2(a), the two spiral arms relate to two strip lines and
are distributed on both sides of the annular dielectric substrate
under the spiral arms.

FIGURE 2. Structure of antenna and wireless implantable capsule,
(a) antenna (b) wireless implantable capsule.

The dielectric is polyimide with 0.15 mm thickness which
has a relative permittivity εr of 3.5, loss tangent tanδ of 0.008.
The antenna is installed inside the top of the capsule with a
length of K and a diameter of d at both ends of the sphere.
The thickness of the outer layer of the capsule is 0.15 mm
thick.

B. THE SIMULATION ENVIRONMENT
The wavelength in the human body is shorter than in the free
space due to the antenna is affected by the relatively high
permittivity of the human tissue, which works to profitably
miniaturize the physical size of the antenna [24]. A simple
muscle model, a large intestine model, and a heart model
were established to simulate different working environments.
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Electromagnetic properties of human tissues in various parts
are tabulated in Table 1 [25].

TABLE 1. Dielectric properties of biological tissues at 2.4 GHz
and 5.8 GHz.

C. PARAMETER STUDY AND DISCUSSION
We implant the antenna in the single muscle simulation
model which dimension is π× 502× 100 mm3 as shown
in Fig. 3. According to the effective current distribution at
2.4 GHz and 5.8 GHz of the antenna in Fig. 4, we can see
that different parts of the antenna excite the resonance at
different frequencies. We analyze some important antenna
structural parameters. Firstly, the antenna mainly depends on
the spiral arm radiation, so the spiral arm around the number
of turns parameter n and the winding line width L of the spiral
arm have a great impact on the performance of the antenna.
|S11| with different numbers of turns n and the winding line
width L are presented in Fig. 5.

FIGURE 3. Antenna working in the single muscle simulation model.

It is observed that as the turns of the spiral arm changed,
the effective path of the current increased, and the whole
operating frequency moved with n changing from 0.85 to
1.6, as shown in Fig. 5 (a). The |S11| with different L is
presented in Fig. 5 (b). It is observed the higher frequency
point decrease and bandwidth in the low band increases as
the winding line width L increases, which means that the
change of L has a more obvious impact on the high frequency.
According to the above results, the optimal n is 1.35, and the
optimal size L is 0.5 mm.
In addition to the spiral arm, we have studied the influence

of the size of the ground plane and the width of the antenna’s
microstrip. The |S11| with different heights of the ground H
is shown in Fig. 6 (a). The |S11| with different widths of the
antenna’s microstrip W is shown in Fig. 6(b). The |S11| has
not changed much when change the H and W , which means
that the antenna is stable.

The parameter n affects the bandwidth at 2.4 GHz, and
L affects the frequency at 5.8 GHz as shown in Fig. 5.

FIGURE 4. The effective current distribution of the antenna at (a) 2.4 GHz,
and (b) 5.8 GHz.

FIGURE 5. Simulated |S11| with different the number of turns n and
winding line width of the spiral arm L, (a) is n with different size, and
(b) is L with different size.

We studied the influence of the parameter n on the gain
at 2.4 GHz and the influence of parameter L on the gain
at 5.8 GHz as shown in Fig. 7. The parameter n and L affects
both bandwidth and gains at 2.4 GHz and 5.8 GHz.

According to the above results, the optimal size of the
antenna is tabulated in Table 2.

TABLE 2. Dimensions of the proposed system (unit: mm).

D. SIMULATION WITH COMPLEX HUMAN MODEL
After analyzing the parameters of the antenna, the antenna
was placed in a more complex simulation environment
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FIGURE 6. Simulated |S11| with different the height of the ground H and
the width of the antenna’s microstrip W, (a) is H with different size, and
(b) is W with different size.

FIGURE 7. The influence of the parameters on the gain, (a) is the
influence of the parameter n on the gain at 2.4 GHz, and (b) is the
influence of the parameter L on the gain at 5.8 GHz.

to simulate to further verify the stability of the antenna per-
formance. The large intestine model and heart model were
established to simulate the working environment. The large
intestine model is fat, muscle, and mucosa membrane from
the outermost layer to the innermost layer. The thickness of
this fat, muscle, andmucosamembrane is 15mm, 20mm, and
30 mm, respectively. The simulation model is a cylinder with
a height of 100 mm, as shown in Fig. 8. And then, we estab-
lished the heart model with fat, outer mucosa membrane,
muscle, and mucosa membrane from the outermost layer to
the innermost layer. The thickness of this fat, second layer

FIGURE 8. The environment of the proposed system is a capsule
speculum working in the large intestine model.

mucosal membrane, muscle, and internal mucosa membrane
is 10 mm, 5 mm, 10 mm, and 35 mm. The model is a
sphere with a radius of 60 mm, as shown in Fig. 9. Then
we compared the |S11| in a complex and simple environment
as shown in Fig. 10. According to the results, the proposed
antenna could work stably in different environments due to
the stability of the antenna structure and the protective effect
of the capsule shell.

FIGURE 9. The environment of the proposed system as a cardiac
pacemaker working in the heart model.

FIGURE 10. Simulation of antenna |S11| in different environments.

III. RADIATION PERFORMANCE EVALUATION
A. RADIATION PERFORMANCE AT DIFFERENT
ORIENTATIONS
When the antenna enters the human digestive tract, its posi-
tion and orientation will be changed. We study the radiation
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pattern in different orientations 0, 45, and 90 degree-directed
as shown in Fig. 11. The radiation patterns at 2.4 GHz are
shown in Fig. 12. By increasing the direction angle, the
antenna radiation pattern is changed. The gains at 2.4 GHz
are −35.2 dBi, −35.0 dBi and −35.0 dBi at orientations 0,
45 and 90 degree-directed, respectively. The gains at 5.8 GHz
are −28.1 dBi, −27.6 dBi and −25.9 dBi at orientations 0,
45 and 90 degree-directed, as shown in the Fig. 13. And the
peak radiation efficiencies at 2.4 GHz and 5.8 GHz are 1.23%
and 1.47 %, respectively. So high-quality performance of the
antenna can be ensured at different capsule orientations inside
the body.

FIGURE 11. The system is inserted inside the model with three typical
orientations of 0 degree, 45 degree, and 90 degree-directions.

FIGURE 12. Simulated 2D far-field patterns with three typical implant
orientations at 2.4GHz, (a) is 0 degree, (b) is 45 degree-directions,
(c) is 90 degree-directions.

FIGURE 13. Simulated 2D far-field patterns with three typical implant
orientations at 5.8 GHz, (a) is 0 degree, (b) is 45 degree-directions,
(c) is 90 degree-directions.

B. THE SAR OF SYSTEM
The safety problem of the implantable antenna should be
considered, where the specific absorption rate (SAR) is usu-
ally regarded as the evaluation standard for the implantable
antenna, that the SAR levels averaged over 1-g of human
tissue should be less than 1.6 W/kg [25]. Fig.14 displays the
SARof the antenna in different simulationmodels at 2.4GHz.

FIGURE 14. SAR of the antenna in the simulation model at 2.4 GHz, (a) in
the large intestine simulated model, (b) in the heart simulated model.

Fig. 15 displays the SAR of the antenna in different simula-
tion models at 5.8 GHz. The simulation models are the large
intestine and heart simulated models as shown in Fig. 8 and
Fig. 9. The maximum averaged SAR in 1-g of the large
intestine and the heart at 2.4 GHz and 5.8 GHz are listed
in Table 3 when the input power is 1W. According to the
results, we can calculate the maximum input power of the
antenna in the large intestine simulation model and heart
simulated model at 2.4 GHz and 5.8 GHz when the SAR
of the antenna is less than 1.6 W/kg. The SAR and the max
allowed input power are listed in Table 3.

FIGURE 15. SAR of the antenna in the simulation model at 5.8 GHz, (a) in
the large intestine simulated model, (b) in the heart simulated model.

TABLE 3. Maximum SAR values (input power = 1 W) and allowed input
power for the antenna in the large intestine and heart.

The comparisonwith the proposed antennas in the previous
work is displayed in Table 4. Compared with other dual-band
or multi-band antennas, the proposed antenna achieved wide
dual-band and conformality.

IV. MEASUREMENT RESULTS ANALYSIS
Fig 16 is the antenna designed according to Table 2, measured
in minced pork and pig intestine. The antenna is composed of
a radiating patch wrapped around the capsule shell to verify
the performance of the designed antenna structure.

Fig. 17 is the simulated and measured |S11| of the antenna
in minced pork and pig intestine, and the result shows the
bandwidth of the antenna could cover 2.42-2.48GHz and
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TABLE 4. Compared of the proposed antenna with prior work.

FIGURE 16. Photographs of the proposed double-arm helical antenna
and the test of the antenna in minced pork and pig intestine.
(a) comparison of antennas and ordinary medical capsules (b) the overall
structure of the antenna(c) test of putting the antenna in minced pork
and (d) in pig intestine.

5.725-5.850GHz in different environments. Fig. 18 compares
the simulated radiation patterns in the large intestine model
and heart model and measured radiation patterns. Fig. 18(a)
and Fig. 18(b) show the comparison of the simulation results
and actual measurement of radiation pattern when the antenna
at 2.4 GHz and 5.8 GHz. According to the compare results,
the antenna has good radiation characteristics in the simula-
tion and measurement environment.

V. LINK BUDGET ANALYSIS
Since different tissues and organs in the human body
have their electrical characteristics, their coal-consuming
characteristics will absorb electromagnetic waves. Energy,
internal and external objects will reflect, diffract, scatter,
and absorb electromagnetic fields to varying degrees, so the
communication channel between the implanted antenna and
the external device will be more complicated. To prove that

FIGURE 17. Simulated and measured |S11| of proposed antenna in
minced pork and pig intestine.

FIGURE 18. Comparison of the simulated and measured far-field
radiation gain patterns. (a) 2.4 GHz. (b) 5.8 GHz.

the designed antenna can work normally and measure the
effective communication distance of the implanted antenna
in actual work, it is necessary to analyze the communica-
tion link. To simplify the calculation and make a prelimi-
nary assessment of the communication performance of the
implantable antenna, we simply set the external channel envi-
ronment as a free-space propagation model, with dB as the
unit, the formula of path loss Lf is as follow [26]

Lf = 20 log10 (4πd/λ) (4)

where d is the distance between the transmitting and receiving
antennas, and λ is the free-space working wavelength. Link
margin (LM) with the change of communication distance
is used to measure the communication performance of the
implanted antenna. The expressions related to the link margin
are as follows [26]

LM = CNRlink − CNRrequired (5)
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TABLE 5. Communication link budget-related parameters.

FIGURE 19. Link budget analysis at 2.4 GHz and 5.8 GHz when antenna
works in minced port and pig intestine.

CNRlink = Pt + Gt − Lf + Gr − N0 (6)

CNRrequired = Eb/N0 + 10 log10 Br − Gc + Gd (7)

N0 = 10 log10 (k)+ 10 log10 (Ti) (8)

Ti = T0(NF − 1) (9)

The CNRlink refers to the ratio of the signal power received
by the external antenna at a certain distance and the noise
power density when the implanted antenna is transmitted at
a certain power. The CNRrequired refers to the carrier-to-noise
ratio required by the receiving end to meet the requirements
of a certain communication rate and bit error rate and is
related to the sensitivity of the receiver. Here we adopt the
BPSK modulation method, the bit error rate is required to
be less than 1 × 10−5, and the bit rate Br is 1 Mb/s. Cur-
rently, the input power of the antenna working at 2.4 GHz
and 5.8 GHz frequency is 7.60 dBm and 2.60 dBm, and
the external receiving antenna adopts a circularly polarized
antenna with a gain of 2.15 dBi. The above other values
are listed in Table 5. The above formula can calculate the
change of the communication link margin with the distance,
as shown in Fig. 19. The transceiver distance reaches 14 m

and 5 m when the communication link margin reached more
than 20 dB at 2.4 GHz and 5.8 GHz.

VI. CONCLUSION
A spherical spiral structure and the conformal characteris-
tics of the capsule shell are used to design a miniaturized
implantable antenna that can be used as a capsule specu-
lum and cardiac pacemaker. The Dual-band feature is imple-
mented at 2.4 GHz and 5.8 GHz. In the simple muscle
model established, the influence of the structure of the pro-
posed antenna on the antenna is studied. The actual work-
ing environment of the antenna is simulated by building
the large intestine model and heart model. The situation of
different angular angles of the antenna in the process of
the digestive tract system is also considered for simulation.
Through the IEEE C95.1-1999 guidelines, the study of SAR
ensures the safety of the proposed antenna to patients. Then
compared with the previously proposed dual-band implanted
antenna, the proposed antenna is distinct from the previ-
ously proposed antenna. We made a comparison of mea-
sured results in minced pork and pig intestines with the
simulation to verify the feasibility of the antenna designed.
Finally, by analyzing the communication link, the transceiver
distance can reach 14 m and 5 m when the communica-
tion link margin reached more than 20 dB at 2.4 GHz
and 5.8 GHz.
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