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ABSTRACT A uniform linear array (ULA) or a multi-element planar array composed of uniform linear
arrays is the main applied research array for direction-of-arrival (DOA) estimation in array signal processing.
In recent years, the uniform circular array (UCA) is gettingmore attention because of its consistent azimuthal
beam resolution, but the DOA estimation algorithm of a UCA is complex and difficult to implement. To solve
this problem, a UCA positioning method based on virtual interpolation and subarray rotation (VISAR) is
proposed. This method effectively reduces the computational complexity of DOA estimation for a UCA,
and the simulation analysis of the algorithm shows that in terms of positioning performance, the proposed
algorithm is better than the existing virtual interpolation algorithms in the case of a low signal-to-noise
ratio (SNR).

INDEX TERMS Direction of arrival (DOA), uniform circular array (UCA), virtual Interpolation, subarray
rotation.

I. INTRODUCTION
In array signal processing, if the manifold of the array sat-
isfies the form of a Vandermonde matrix, such as a uni-
form linear array (ULA) [1], [2], an L-shaped array [3]–[5]
or a multivariate planar array composed of uniform linear
arrays [6], [7], then classical eigenvalue decomposition meth-
ods, such as multiple signal classification (MUSIC) [8] or
estimating signal parameter via rotational invariance tech-
niques (ESPRIT) [9], can be used to estimate the direction
of arrival. However, the effective aperture of linear array
changes with the azimuth, so the azimuthal beam width of
these arrays is inconsistent.

Because the manifold matrix of a uniform circular array
is not a Vandermonde matrix, the eigenvalue decomposition
method cannot be directly used to find the direction. But as
a special array antenna in array signal processing, due to the
symmetry it possesses, a UCA can scan a beam azimuthally
through 360◦ with little change in the beam width. Ioan-
nides [10] compares the UCA with a uniform rectangular
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array (URA) in the context of adaptive beamforming and
draws the conclusion that the azimuth measurement accuracy
is higher than that of a planar array composed of ULAs. Thus,
beamforming methods can be used for precise azimuthal esti-
mation of a UCA, such as minimum variance distortion-less
response (MVDR) [11]. However, when there is a deviation
between the supposed and true direction vectors, there will be
a sharp decline in the performance of the traditional MVDR
algorithm, and accurate results cannot be obtained. Phase
mode excitation beamforming is a more widely used beam-
forming algorithm for UCAs. Divas and Gibson [12] presents
this beamforming method in detail and demonstrates the
practical example of beam space radiation pattern synthesis.
Askari clarifies the conclusion in [13] that when array sensors
are directional and the optimum beamformer is deployed, the
sector transformed beamformer has better performance than
the ordinary transformed one. Although a UCA has better
azimuth resolution, in consideration of the beam width limi-
tation, it is difficult for a UCA to obtain accurate positioning
results just by using a beamforming algorithm.

Mathews and Zoltowski [14], [15] proposes a method com-
bining phase excitation beamforming and Bessel function
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transformation to transform the manifold of a UCA to a
form in which eigenvalue decomposition can be used to
estimate the DOA. Further research on this algorithm has
been performed. Belloni and Koivunen [16] analyzes the
error of this algorithm, provides design guidelines for choos-
ing the key UCA configuration parameters and proposes
a novel technique for bias removal. Xu et al. [17] pro-
poses an accurate and reliable technique to estimate DOA of
source signals based on random sample consensus algorithm.
Wang et al. [18] studies the performance of the algorithm
in the case of coherent sources. Pesavento and Bohme [19]
decouples the azimuth estimation from the elevation param-
eter to obtain a better positioning result in a search-free pro-
cedure when the elements are directional. Li and Chen [20]
improves the resolution performance under a low SNR by
introducing a phase shift matrix before weight vectors to
rebuild a conjugate symmetric beam space steering vector
in the process of phase mode excitation. In addition to the
above, Lian and Zhou [21] uses the propagator method to
estimate DOA in beam space for UCA. Because the method
does not use eigen-decomposition, it can reduce the com-
putational load significantly. Pan and Zhou [22] proposed
a method for UCA based on the manifold separation tech-
nique and propagator method, this algorithm provides close
to Cramer-Rao bound performance even under the limitation
of the element’s number. These methods can obtain accurate
positioning results, but the high algorithm complexity and
large transformation error in the calculation process make
them hard to implement.

Sometimes the virtual interpolation technique can be
applied for formation transformation if the formation of
an array does not satisfy the DOA estimation algorithm
requirements. The array interpolation method is first pro-
posed by Bronez [23], and there are some improved
algorithms [24]–[26]. Most of these kinds of methods can
be directly used in arbitrary arrays [27]. For a linear array,
Zhou transforms a coprime array to a ULA by virtual inter-
polation and reconstructs the Toeplitz covariance matrix for
DOA estimation with an increased number of degrees of free-
dom byminimizing the atomic norm of a virtual measurement
vector in a gridless manner [28]–[30]. Qin et al. [31] fills the
holes in a sparse array to form a ULA by shifting the physical
array by half the wavelength along its axis. The virtual inter-
polation technique can also be applied to a UCA for DOA
estimation. Sun proposes an algorithm for a UCA in [32],
called the twice virtual interpolation algorithm (TVIA). This
method uses virtual interpolation twice to obtain two virtual
arrays, and there is a rotation invariant factor between the
virtual arrays and original array. The elevation angle can
be calculated by one-dimensional ESPRIT and substituted
into the real array manifold to search the azimuth angle by
one-dimensional MUSIC. This method is much simpler, but
the elevation and azimuth angles cannot be estimated in pairs
and one-dimensional search is still needed, which leads to
high computation and storage costs. Based on this method,
Xu et al. [33] proposes a method termed multi-direction

virtual array transformation algorithm (MVATA), which con-
structs twomulti-direction virtual arrays to obtain the rotation
invariant factor between the virtual arrays and actual array.
The DOA estimation can be performed by one-time ESPRIT.
The elevation and azimuth angles are obtained in pairs, and
there is no need to use MUSIC to search the spectrum;
thus, the computations and costs can be distinctly reduced
compared with TVIA.

In this paper, a DOA estimation algorithm for a UCA
based on virtual interpolation and subarray rotation (VISAR)
is proposed. The algorithm symmetrically divides a UCA
into two groups of subarrays along the X-axis and Y-axis.
It uses the subarrays rotated 180◦ about the virtually inter-
polated reference elements and the nonrotated subarrays to
form a new rotation invariant array for which ESPRIT can
be used to estimate the DOA. Compared with TVIA and
MVATA, the algorithm has lower computational complexity
in the interpolation process, and the single target positioning
performance of the algorithm is better than that of TVIA and
MVATA under the low SNR incoherent noise environment.

II. SIGNAL MODEL AND TVIA AND MVATA APPROACHES
A. SIGNAL MODEL
As shown in Figure 1, in the Cartesian coordinate system,
a UCA array composed of N elements is on the X − Y
plane. The radius of the circle is r , and the origin of the
coordinate system coincides with the center of the array.
A single narrowband sound source emitted from the far field
impinges on the array.

FIGURE 1. Uniform circular array signal receiving model.

The received signal can be expressed as

X(t) = AS(t)+ N(t) (1)

S(t) is the sound source, N (t) is the additive noise vector
of 1 × N , obeying the Gaussian distribution (0, σ 2), and the
manifold can be expressed as

A =
[
ejξ cos(ϕ−γ1), . . . , ejξ cos(ϕ−γm)

]T
(2)

where ξi = 2πr
λ

sin θi and γm = 2πm
N ,m = 1, 2, . . . ,N .
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The steering matrix expressed in the above formula is not a
Vandermonde matrix, so DOA estimation cannot be directly
conducted by using the classical eigenvalue decomposition
methods.

B. TVIA AND MVATA ALGORITHMS
According to [29] and [30], TVIA and MVATA both con-
struct two virtual arrays that have rotational invariance with
the original arrays through virtual interpolation, and DOA
estimation is performed on the whole array formed by the
original array and virtual arrays via eigen-decomposition.

In the interpolation process, the two algorithms divide
the area near the target into several sectors and calculate
the array manifolds of the original array and virtual arrays
in the sectors. Then, the relationship between these arrays
can be obtained. The following is a brief introduction of
interpolation algorithm in [30].

Assume the elevation and azimuth of the target are in
2θ ∈ [θl, θm] and 2ϕ ∈ [ϕl, ϕm], respectively, and 1γ is
the interpolation step. Thus, 2θ and 2ϕ can be discretized as

2θ = {θx = θl + (x − 1)1γ |1 < x < X , θx < θm} (3)
2ϕ = {ϕy = ϕl + (y− 1)1γ |1 < y < Y , ϕy < ϕm} (4)

The manifold of the original array Af can be presented as

Af = [· · ·A(θx , ϕy) · · · ], θx ∈ 2θ , ϕy ∈ 2ϕ (5)

A′ and A′′ are the manifolds of the two virtual arrays.
Suppose that there are relationships B′ and B′′ such that

A′f = BHk1 · Af (6)

A′′f = BHk2 · Af (7)

B′ and B′′ are calculated by the singular value decompo-
sition method. With the singular value decomposition of Af ,
the following can be obtained:

Af = U[
∑

, 0][V1,V2]H (8)

where U is the N × N left singular matrix,
∑

is the N × N
singular value matrix, [V1,V2]T is theW ×W right singular
matrix, and the size of matrix V1 is W × N . Combined
with (6), (7), and (8), the relationships B′ and B′′ can be
obtained.

B′ = U
∑−1

VH
1 (A

′
f )
H (9)

B′′ = U
∑−1

VH
1 (A

′′
f )
H (10)

Then, the signal received by the virtual arrays can be calcu-
lated by using the signal received by the original array and the
relationships B′ and B′′. Finally, according to the rotational
invariance between the virtual arrays and the original array,
the ESPRIT algorithm is used to estimate the DOA.

The interpolation process of the TVIA algorithm is only
performed along the vertical axis, as shown in Figure 2. After
calculating the elevation by using the ESPRIT algorithm,
TVIA uses MUSIC to search the azimuth. Different from
TVIA, the virtual arrays of the MVATA algorithm and the

FIGURE 2. Array configuration of TVIA.

original array have a deviation angle in the elevation direc-
tion, as shown in Figure 3. Therefore, the MVATA algo-
rithm using the ESPRIT algorithm can obtain the elevation
and azimuth angles in pairs. These two methods have many
advantages, but the interpolation process requires consider-
able computation and has errors.

FIGURE 3. Array configuration of MVATA.

III. PRINCIPLE OF THE PROPOSED ALGORITHM
According to the central symmetry and even number of ele-
ments of a UCA, the relationship of the coordinate angle
between the elements is

γN/2+m = γm + π, m = 1, 2, . . . ,N/2 (11)

Expressed by a trigonometric function, this becomes

cos(ϕ − γN/2+m) = − cos(ϕ − γm) (12)

It is easy to know that the centrosymmetric elements in
the array manifold are conjugate to each other. Therefore,
the manifold of the array can be divided into two parts,
and the corresponding circular array is also divided into two
symmetric subarrays.

A = [b(θ, ϕ), c(θ, ϕ)]T (13)

where

b(θ, ϕ) = [ejξ cos(ϕ−γ1), . . . , ejξ cos(ϕ−γN/2)] (14)

c(θ, ϕ) =
[
ejξ cos(ϕ−γN/2+1), . . . , ejξ cos(ϕ−γN )

]
=

[
e−jξ cos(ϕ−γ1), . . . , e−jξ cos(ϕ−γN/2)

]
(15)

The corresponding elements in c(θ, ϕ) and b(θ, ϕ) are
conjugate to each other.
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Let the subarray with steering vector c(θ, ϕ) be rotated
180◦ about the coordinate origin. At this time, the rotated sub-
array coincides with the subarray with steering vector b(θ, ϕ),
and the received signal phases of the corresponding elements
are consistent between these two subarrays. If other reference
points are used as the center of rotation, then the distance
between the corresponding elements of the two subarrays will
be consistent, and it is easy to know that the phase difference
will be the same.

Considering the problem of array segmentation, assumed
that the received signal is a narrowband far-field signal,
the normalized vector of the target direction is

−→
TO(X ,Y ,Z ),

the coordinates of the origin are O(0, 0, 0), and the coordi-
nates of actual elements are Pi(xi, yi, 0), i = 1, 2, . . . , 12.

According to the normalized vector
−→
TO and the element vec-

tor
−→
P iO, the phase differenceφi of the received signal between

actual element Pi and origin coordinates O can be calculated.
Knowing that

∣∣∣−→P iO∣∣∣ is the distance between element Pi and

origin O, which is equal to the radius of the array r , and the

normalized distance
∣∣∣−→TO∣∣∣ is equal to 1, phase difference φi

can be expressed as

φi = −
2πr
λ
·

−→
P iO ·

−→
TO∣∣∣−→P iO∣∣∣ · ∣∣∣−→TO∣∣∣ = −

2π
λ
·

−→
P iO ·

−→
TO∣∣∣−→TO∣∣∣

= −
2π
λ
· (xi · X + yi · Y ) = φxi + φyi (16)

φi can be divided into the X-axis phase difference φxi and
Y-axis phase difference φyi according to the above formula.
Therefore, the array can be divided along the X-axis and
Y-axis.

Based on the above discussion, the UCA is divided into
four subarrays along the X-axis and Y-axis directions. If there
are elements on the X-axis or Y-axis, these elements are
shared by the subarrays that have been divided. The virtual
elements Vx1 and Vx2 are set up along the positive half of
the X-axis, and the virtual elements Vy1 and Vy2 are set up
along the positive half of the Y-axis. Inserting two elements
on the axis just satisfies with the conditions for the ESPRIT
algorithm after subarray rotation, and the computation is
minimal. The distance between virtual elements is set to d ,
as shown in Figure 4. The subarray on the positive half of the
X-axis is rotated 180◦ about Vx1 and Vx2, and the subarray
on the positive half of the Y-axis is rotated 180◦ about Vy1
and Vy2. The distance between the subarrays after rotation
is consistent and set to D. It is easy to know that D = 2d .
To prevent the grating lobes, D should be less than λ/2, so d
is less than λ/4.
Suppose that there is a UCA with N elements, and there

is no element on the axes. Let’s take dividing the array
along the X-axis as an example, as shown in Figure 5.
Ax1 is the subarray on the negative half of the X-axis after
the division, and Ax2 is the subarray on the positive half
of the X-axis that needs to be rotated. The virtual elements
Vx1 and Vx2 have been interpolated along the X-axis. On the

FIGURE 4. Virtual interpolation diagram.

X-Y plane, the coordinates of the virtual elements Vx1 and
Vx2 are expressed as Pvx1 (xvx1 , yvx1 , 0) and Pvx2 (xvx2 , yvx2 , 0).

FIGURE 5. Diagram of segmentation along the X-axis array.

First, consider the rotation of subarray Ax2 about virtual
element Vx1. The actual coordinates of subarray Ax2 are
Pi(xi, yi, 0), i = 1, 2, . . . ,N/2, and the coordinates of the
elements after rotation by 180◦ are Pi′(x ′i , yi

′, 0). The coordi-
nate rotation formula can be expressed as xi′yi′

zi′

 = R

 xi − xv1yi − yv1
0

+
 xv1yv1

0

 (17)

where, R is the rotation factor.

R =

 cos(−180◦) sin(−180◦) 0
− sin(−180◦) cos(−180◦) 0

0 0 1

 (18)

In combination with (16), after the rotation about the vir-
tual element Vx1, the phase difference φ′x2 becomes

φ′x2 = −
2π
λ
· (xi′X + yi′Y )

= −
2π
λ
·
[
(2 · xv1 − xi) · X + (2 · yv1 − yi) · Y

]
= 2φvx1 − φx2 (19)
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Similarly, when the subarray is rotated about the virtual
element Vx2, the phase difference φ′′x2 becomes

φ′′x2 = 2φvx2 − φx2 (20)

It can be seen from (14) and (15), that the elements of the
positive half axis guidance vector and negative half axis guid-
ance vector are conjugate to each other, and the relationship
of the phase differences relative to the origin between the
corresponding elements is φx2 = −φx1 . Therefore, the phase
difference 1φ between the elements of the rotated subarray
and the corresponding elements of the nonrotated subarray is
linearly related to the phase of the center of rotation Pvxi .

The phase information of virtual elements in the X-axis
direction can be expressed as

1φx =
2πd
λ

sin θ cosϕ (21)

In the Y-axis direction, it can be expressed as

1φy =
2πd
λ

sin θ sinϕ (22)

The array rotated about the X-axis is shown in Figure 6.

FIGURE 6. Diagram of VISAR along X-axis.

According to (21) and (22), when r , d , λ, and γm are
known,1φx and1φy can be deduced from the received signal
of any two elements in the array. Thus, the manifold of the
whole array can be expressed as

A′x

=

 ejβN/2+1 ejβN/2+2 · · · ejβN

ej(βN/2+1+1φx ) ej(βN/2+2+1φx ) · · · ej(βN+1φx )

ej(βN/2+1+2·1φx ) ej(βN/2+2+2·1φx ) · · · ej(βN+2·1φx )

T
(23)

The matrix above satisfies the form of a Vandermonde
matrix, where,

βi=ξ cos(ϕ − γi), i = N/2+ 1,N/2+ 2, . . . ,N (24)

It can be concluded that there is rotational invariance
between the virtual subarray and the nonrotated subarray after
virtual interpolation along and subarray rotation about the

X-axis, and the ESPRIT algorithm can be used for X-axis
direction DOA estimation. Similarly, the same result can
be obtained after virtual interpolation along and subarray
rotation about the Y-axis.

In the VISAR process, the phase information of the signal
received by the virtual elements, namely, (21) and (22), needs
to be computed. When there is a single target, the signal
received by any element in the UCA can be expressed as

y(t) = s(t)ej
2πr
λ

sin θ (cosϕ cos γm+sinϕ sin γm) + nm(t) (25)

Because the virtual elements are set up along the coor-
dinate axis, the received signal of virtual elements can be
easily calculated based on the received signal of any two
actual elements. However, when multiple targets exist, every
element in the array receives signals from multiple targets at
different times. Suppose there areK targets and (25) becomes

y(t)=s(t)
K∑
k=1

ej
2πr
λ

sin θk (cosϕk cos γm+sinϕk sin γm)+nm(t) (26)

There are multiple angle variables of different targets, and
the received signal of virtual elements cannot be obtained
from the received signal of any two actual elements. Hence,
the algorithm proposed by this paper is only applicable to a
single target.

According to (25), an element will introduce noise nm(t)
when receive the signal. Since the computation of the phase
information of the virtual elements needs to use the signals
received by any two actual elements, there is an error in the
phase information of virtual elements. However, it has little
effect; if the noise nm(t) is irrelevant, such as white Gaussian
noise.

IV. IMPLEMENTATION STEPS
1) The uniform circular array is divided into two groups of

symmetric subarrays along the X-axis and Y-axis, half
of which are nonrotated subarrays and the other half of
which are rotated subarrays.

2) Four virtual elements are interpolated along the X and
Y half axes as the rotation reference points.

3) After the rotation of subarrays about the reference
points, virtual subarrays are formed along the X-axis
and Y-axis.

4) Two new arrays are formed by the virtual subarrays and
nonrotated subarrays along the X-axis direction and
Y-axis direction. There is rotational invariance within
the two new arrays. ESPRIT can be used to estimate
the direction on the X-axis and Y-axis.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, the computational complexity of the pro-
posed algorithm is compared with that of TVIA andMVATA.
Assume that the element number of the uniform circular array
is N and the number of snapshots is M . The computational
complexity of the algorithm is shown in Table 1.
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TABLE 1. Comparison of computational complexity.

In [26], computational complexity analysis of TVIA and
MVATA is carried out, and that of MVATA is obviously
less than that of TVIA. However, this paper does not give
the computational complexity of linear virtual interpolation.
Before the comparison, the computational complexity of vir-
tual interpolation needs to be added.

Suppose that in the MVATA algorithm, the space near
the target is divided into K = 100 cones, and this value
is substituted into the corresponding formula in Table 1.
Figure 7 and Figure 8 show the variation curves of the vari-
ation in the difference between the total multiplications and
total additions of MVATA and VISAR with the number of
array elements N and snapshots M . It can be found from the
figures that the differences between the total multiplications
and the total additions are always greater than 0. Therefore,
it can be concluded that the computational complexity of the
VISAR algorithm proposed in this paper is much less than
that of the TVIA algorithm and MVATA algorithm.

VI. SIMULATION ANALYSIS
In this section, three experiments are presented to show the
characteristics of the proposed VISAR algorithm and the
performance improvement compared with TVIA and
MVATA in the single target case. A UCA of radius r = λ

with 12 elements is employed, where λ is the wavelength.
Virtual elements are located on the half-axes d and 2d from
the origin, and the search step size of TVIA and MVATA
is set to 0.1◦ in the comparison experiment. Assume that a
narrowband signal impinges on the array and the elevation
and azimuth of the target are 15◦ and 10◦. The noise is
spatially and temporally white Gaussian incoherent noise.
SNR is the ratio of the received signal power to noise power,
and the unit is dB in the experiments.

A. EXPERIMENT 1
Suppose that the snapshot number is 500. After 500 Monte
Carlo simulations, the positioning result diagram of the pro-
posed algorithm when the SNR is 10 dB is shown in Figure 9.

FIGURE 7. Comparison diagram of multiplication.

FIGURE 8. Comparison diagram of addition.

The figure shows that the results tightly converge near the
real position of the target. Hence, the VISAR algorithm can
accurately position the target.

B. EXPERIMENT 2
To obtain the relationship between the algorithm performance
and distance d between the virtual elements and the ori-
gin, the root-mean-square errors (RMSEs) of VISAR when
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FIGURE 9. Positioning results of VISAR.

FIGURE 10. The effect of d on the performance of VISAR.

d takes different values are compared. From the above, it is
known that d cannot be larger than λ/4, so we take d equal to
λ/8, λ/6, λ/5 and λ/4 as examples to compare the RMSEs.
The RMSE is calculated according to the formula

RMSE =

√
1
T

∑T

t=1
(
∧

θ −θ )2 + (
∧
ϕ−ϕ)2 (27)

where, T is the Monte Carlo simulation number, set to 500.
∧

θ and
∧
ϕ are the estimated elevation and azimuth, θ and ϕ are

the true elevation and azimuth.
Assume that the elevation and azimuth between the target

and origin are 20◦ and 30◦, the snapshot number is 400,
and the Monte Carlo number is 500. When d is less than
λ/4, with increasing d , the array length becomes larger.
Understandably, the phase sensitivity of the whole array is
also increased, as shown in Figure 10, and the positioning
performance improves.

C. EXPERIMENT 3
The RMSEs of the positioning results are calculated to
compare the positioning performances of TVIA, MVATA
and VISAR.

Assume that the interpolation region of the azimuth
is [5◦, 15◦] and the interpolation region of the elevation is
[10◦, 25◦]. Virtual elements of VISAR are set at λ4 and λ

2 on

FIGURE 11. Comparison of algorithm performance.

FIGURE 12. Comparison of estimated success rat.

the X-axis and Y-axis, respectively, so the distance between
the subarrays after rotation is λ2 . The snapshot number is 400.
Figure 11 shows the positioning performance when the SNR
is −5dB ∼ 40dB. ‘Ideal TVIA’ and ‘Ideal MVATA’ are the
performance curves of TVIA andMVATAwhen virtual arrays
exist.

Figure.12 shows the comparison of the estimated success
rate between VISAR, TVIA and MVATA. In the TVIA algo-
rithm and MVATA algorithm, the interpolation regions of
the azimuth and elevation are still defined as [5◦, 15◦] and
[10◦, 20◦]. Since the assumed azimuth and elevation of the
target are 10◦ and 15◦, the correct azimuth and elevation
angles are estimated to be those within ±0.05◦ of the actual
values. The range of SNR is −10dB ∼ 20dB.
It can be seen from the figures that in the case of a low SNR,

the performance of the VISAR algorithm is significantly
better than that of MVATA and TVIA in the single target case.

VII. CONCLUSION
To reduce the computational complexity of the uniform circu-
lar array positioning algorithm, this paper proposes a uniform
circular array positioning algorithm based on virtual inter-
polation and subarray rotation. The array is symmetrically
divided into two groups of subarrays along the X-axis and
Y-axis, the subarrays are rotated about the virtual

116766 VOLUME 9, 2021



T. Liang et al.: DOA Estimation Method for UCA Based on VISAR

interpolation elements to form new arrays with the nonrotated
subarrays, and ESPRIT is used to calculate the positioning
results in the end. By comparison with TVIA and MVATA,
it can be concluded that the VISAR algorithm proposed in
this paper has lower computational complexity, and its single
target positioning performance is better than that of TVIA and
MVATA under the low SNR incoherent noise enviroment.
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