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ABSTRACT Deep learning attempts medical image denoising either by directly learning the noise present
or via first learning the image content. We observe that residual learning (RL) often suffers from signal
leakage while dictionary learning (DL) is prone to Gibbs (ringing) artifacts. In this paper, we propose
an unsupervised noise learning framework that enhances denoising by augmenting the limitation of RL
with the strength of DL and vice versa. To this end, we propose a ten-layer deep residue network (DRN)
augmented with patch-based dictionaries. The input images are presented to patch-based DL to indirectly
learn the noise via sparse representation while given to the DRN to directly learn the noise. An optimum noise
characterization is captured by iterating DL/DRN network against proposed loss. The denoised images are
obtained by subtracting the learned noise from available data. We show that augmented DRN effectively
handles high-frequency regions to avoid Gibbs artifacts due to DL while augmented DL helps to reduce the
overfitting due to RL. Comparative experiments withmany state-of-the-arts onMRI andCT datasets (2D/3D)
including low-dose CT (LDCT) are conducted on a GPU-based supercomputer. The proposed network is
trained by adding different levels of Rician noise for MRI and Poisson noise for CT images considering
different nature and statistical distribution of datasets. The ablation studies are carried out that demonstrate
enhanced denoising performance with minimal signal leakage and least artifacts by proposed augmented
approach.

INDEX TERMS Augmented noise learning, deep residue network, denoising, dictionary learning, inverse
ill-posed problem, unsupervised learning.

I. INTRODUCTION
Noise is the unwanted energy which is generally inter-
vened during the acquisition, transmission, and/or reconstruc-
tion of an image. Though the noise cannot be altogether
eliminated, however, it can be reduced at acquisition time.
Post-processing of acquired imagery using signal processing
algorithms is used to reduce its effects. In such applications,
denoising is a major challenge for the researchers [1]–[3].
Denoising is an inverse ill-posed problem [4] which is classi-
cally addressed by specifying a forwardmodel and then invert
it for the unknowns [5]. Recent developments are exploring
the use of deep learning techniques for the denoising [6]–[10].

Denoising is the fundamental step in the medical diagno-
sis [11], [12], since doctors and medical practitioners most
often rely on these processed images. In particular, magnetic
resonance imaging (MRI) and computed tomography (CT)
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including low-dose CT (LDCT) scans are used to observe
the internal structure as well as any defects like tumors or
injuries present inside the body. Generally, MRI, CT and
LDCT images are affected by the noise due to fluctuations
in temperature of the scanning room, disturbance in the scan-
ning machines and/or patient’s movement during the image
acquisition. Due to the noise, magnitudes of the pixel/voxel in
the images/image stack are perturbed which lead to artifacts
and loss of details in the images. It makes the diagnosis and
disease prediction complicated.

Therefore, the main considerations involved in medical
image denoising algorithms include: a) edges in the denoised
images should be preserved, i.e., filtering performed for
denoising should not blur out the finer details of imagery and
while at the same time, b) the visual quality of the denoised
images should be preserved and improved, and (c) minimal
signal leakage should be observed in the denoised images.
To this end, we propose a novel unsupervised deep learning
method augmenting patch-based dictionary learning (DL)
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and residual learning (RL) in order to learn the noise in
augmented manner and construct a novel dictionary-based
deep residue network (DRN) for denoising of 2D and 3DMRI
and CT data including LDCT images. We perform ablation
studies on the proposed DL and DRN parts in order to show
signal (image) leakage [13] in the estimated denoised images
and for better dissemination of results.

Rest of the paper is arranged as follows: we begin with
literature review in Section II. Section III provides moti-
vation and defines the problem. Section IV explains the
methodology used for denoising 2D/3D MRI and CT data
as well as LDCT images. We also present an analysis of the
proposed approach. The results obtained after implementing
our proposed model to the noisy MRI/CT/LDCT datasets
along with the ablation studies, quantitative, and quantitative
comparisons with state-of-the-art are shown in Section V.
Finally, the paper is concluded in Section VI with possible
future direction.

II. RELATED WORK
Over the years, various medical image denoising methods
have been proposed [14]–[20]. By and large, four broad
philosophies are adopted: (a) filtering, (b) transforma-
tion, (c) statistical, and (d) learning-based methods. With
the recent advances in computer technology and available
resources, learning-based methods have gained a lot of atten-
tion. Hence, we review the learning-based approaches for
denoising the MRI, CT and LDCT images.

The learning-based denoising approaches can be divided
into three categories: supervised learning, semi-supervised
learning, and unsupervised learning. In supervised learning,
the model is trained with available data sets from which it
can learn features called pre-learning or it can learn these
features simultaneously during image reconstruction. It is
found that the images are denoised using the supervised
learning approach by incorporating wavelet transform (WT),
curvelet transform (CuT), and optimization techniques in
machine learning frameworks [21]. The compressed sens-
ing (CS) technique is used in denoising MRI images and
called as CS-MRI. The CS is included with a dictionary
learning approach to learn an overcomplete dictionary using
k-singular value decomposition (K-SVD) method to give a
sparse representation of an image [22]. CS-MRI is used to
reconstruct MRI images consuming less acquisition time in a
supervised way [23]. Again dictionary learning is used along
with CS to reconstruct MRI images by training the model
with denoised images [24]. Subsequently, Bayesian approach
is implemented with dictionary learning to denoise the MRI
images [25]. Recently, the deep learning approach is explored
with the classical methods to denoise the MRI images [26].
Supervised learning is practiced to enhance the quality of
MRI, CT, and LDCT images by removing noise and reducing
the artifacts from them [27]. Very recently, directionality
component is added to enhance the dictionary learning for
MRI image reconstruction [28]. However, when only DL

is used to denoise the image, there is formation of Gibbs
artifact, also known as ringing artifact in the high-frequency
regions of the images [29]. Along with this, there is a min-
imax problem if proper sparse thresholding is not chosen to
estimate the sparse coefficients from the dictionary and given
images [30], [31].

A semi-supervised deep learning approach is used to
reduce the noise from LDCT images without using original
projection data by training the model with less number of
denoised images [32], [33]. The LDCT images are mapped
to their respective normal-dose part in a patch-by-patch
manner using a deep convolutional neural network (CNN).
Again, for LDCT images, a residual encoder-decoder CNN
(RED-CNN) is formed by autoencoders and deconvolutional
network which help in noise removal along with structural
preservation and lesion detection [34]. This uses normal-dose
and LDCT images to train the network. Deep feed-forward
CNN is then used to reduce noise from the images taking
lesser number of clean images [35]. This uses residual learn-
ing (RL) while batch normalization is used for regularization.
Recently, a work on generative adversarial network (GAN) is
carried out to denoise the medical images [36]. GAN is mod-
ified to Wasserstein GAN (WGAN) in order to denoise the
MRI images in a semi-supervised manner [37]. A conveying
path-based convolutional encoder-decoder (CPCE) is used to
denoise the LDCT images using transfer learning concept
within GAN framework [38]. Also modularized adaptive pro-
cessing neural network (MAP-NN) is employed to denoise
the LDCT images in progressive manner [39].

It is a well-known fact in medical imaging that the avail-
ability of training dataset and ground truth are scare to
train the model with supervised or semi-supervised settings.
Therefore, a better approach is to investigate unsupervised
learning models that can learn on their own only from the
available images and could generate high-quality denoised
medical images. A lot of attention is being given to LDCT
as it reduces the risk on patients. To give promising results
for CT images and to keep the crucial information intact,
GAN is combined with perceptual similarity andWasserstein
distance using unsupervised learning [40]. In order to denoise
LDCT images, a tunable CycleGAN is proposed using only
one generator that makes use of adaptive instance normaliza-
tion (AdaIN) layers [41]. A deep neural network is recently
trained in an unsupervised way using Poisson unbiased risk
estimator (PURE) to denoise the LDCT image [42]. The RL
is a promisingmethod to learn the noise from the images, still,
overfitting occurs as it starts learning the image content along
with the noise [43], [44]. Due to this, a part of image content is
leaked in the estimated noise content. This leads to correlation
among the learned noise and obtained denoised image. The
use of skip connections in the RL method add to blur effect
in the denoised image. It is to match the dimensions of skip
layer and previous layer one has to use either convolution or
zero-padding [45]. Therefore, the use of RL in unsupervised
manner also limits denoising performance.
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III. MOTIVATION AND PROBLEM FORMULATION
In this section, we first provide motivation and then define
the problem for enhancing denoising of MRI, CT, and LDCT
images. In general, one may either (directly) learn the noise
from given images or learn an image representation which
in turn provides the noise content (indirect learning). It is
known that the RL is a widely used contemporary method to
learn noise (residue) from the images while dictionary learn-
ing (DL) is a well-accepted image representation method,
using which, one may indirectly learn the noise.

We observe that, a residue network, in general, invades
parts of image content into the learned noise, i.e., very often
may allow part of the image content into the learned noise,
and exhibits signal (image) leakage in the corresponding
denoised image as shown in Fig. 1 (a) and 1 (c). This shows
the local correlation values between estimated noise and
denoised image using [13]. Here, blue color indicates less
signal leakage. One can observe that a part of image informa-
tion is learnt along with the noise and contributed to signal
leakage by showing higher local correlation values. It mainly
happens due to overfitting by a residue network and hence
degrade the denoising performance (Fig. 1 (a) and 1 (c)). One
has to do extra convolutions or zero-padding to match the dif-
ferent dimensions at skip connections, which may introduce
blurring in the denoised image. The RL process very often
applies a heuristic threshold to decide on normalizing the
learned noise. Hence, we note the degradation in denoising
performance when using a residue network.

On the other hand, onemay first employ learning the image
representation, and then indirectly extract the residue (noise).
To this end, the use of dictionary learning (DL) is popular
for its representational ability from available data. However,
it is found that such indirectly noise learned denoised images
shows Gibbs (ringing) artifacts (Fig. 1(b) and 1 (d)), as well
as minimax problems due to sparsity threshold while con-
structing the dictionary. Consequently, it also leads to poor
denoising performance for medical imagery.

FIGURE 1. Illustrations on medical images: MRI brain scans [46]:
(a) signal leakage, and (b) Gibbs artifact; LDCT images [47]: (c) signal
leakage, and (d) Gibbs artifact.

Hence, we are motivated to enhance the medical image
denoising performance and address the limitations of both
the RL and DL approaches. To this end, we propose a
dictionary-based DRN approach. We develop an augmented
noise learning framework that augments the RL with the DL
and vice versa.
Problem Statement: Given a medical MRI/CT/LDCT

2D/3D image/stack, our objective is to enhance the denoising
process of 2D/3D image/stack such that critical contents
especially at edges in the estimated denoised images are
preserved while visual information (quality) of the resul-
tant (denoised) images is improved. At the same time, the sig-
nal leakage phenomena and Gibbs artifacts are reduced
in the estimated denoised images. In this work, we resort
to the well-accepted data model for denoising medical
images [2], [14], [35], [48],

Y = X+ R, (1)

where Y is available (given) image, X is the corresponding
denoised image (unknown), and R is the noise. We conve-
niently consider that MRI images are corrupted by the Rician
noise [15], [49], [50] while CT/LDCT images are corrupted
by the Poisson noise [18], [51], [52]. Hence, given the Y
image, our objective is to estimate the noise R̂ and in turn
evaluate the denoised image X̂ (referring to equation 1), such
that estimated denoised image X̂ is close to the X, both
qualitatively and analytically.

IV. METHODOLOGY
Block diagram of the proposed augmented noise learning
approach is shown in Fig. 2. It mainly comprises of two parts:
dictionary learning (DL) and deep residue network (DRN).
The MRI and CT data are available in the form of a 3D image
cube. We develop a model for both 3D and 2D processing
of the MRI/CT including LDCT data considering different
generations of the scanning machines. Note that while the
proposed framework is generalized for 3D and 2D processing,
nevertheless, user can choose to perform either 3D block or
2D image processing.
For 3D Processing: Here, we consider a block of image

cube comprising of voxels. These volume patches (3D
blocks) {Yi}

l
i=1 where i is the index of an image and l is the

total images in the 3D cube. For voxel processing, each 3D
block is of dimension N × N × Q voxels. These images are
first given to the decomposition stage. Here such 3D block is
divided into overlapping block (volume) patches {Pj}rj=1 each
of size n × n × q voxels, where n � N , and j is the index
of the block patch chosen from a total of r block patches.
These patches {Pj}rj=1 are fed to the DL and DRN parts for
processing, again one block patch Pj at a time.
For 2D Processing: In this case, we consider one image at

a time from the image cube, each image has a dimension of
N × N pixels and is decomposed into image patches of size
n × n pixels. Now, these obtained patches {Pj}rj=1 are given
to the DL and DRN parts for further processing, again one
image patch Pj at a time.
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FIGURE 2. Block diagram of the proposed augmented noise learning DL/DRN approach for MRI/CT/LDCT denoising. C =

Convolution, R = ReLU, and B = Batch normalization. All the functions are in 3D for voxel (block) processing and 2D for
pixel (image) processing.

Referring to Fig. 2, there are three steps in the DL part:
(a) sparse coding, (b) dictionary update, and (c) patch recon-
struction. The role of DL part is to provide efficient repre-
sentation of input MRI/CT/LDCT so that, in turn, we have
estimate of noise content via the sparse representation of
information. This is an indirect way of learning noise char-
acteristics of the data. To start the DL process, we use an
initial dictionary Dinit of size m× k × q for block processing
and of size m × k for image processing, obtained using
the discrete cosine transform. We consider an overcomplete
dictionary since it has basis vectors greater than the dimen-
sion of the input patch vector, which allows to better capture
underlying characteristics of the data. One may notice that
for medical images, capturing the underlying information is
vital for better processing and the final diagnosis. With the
initial dictionary Dinit and available patch Pj, we first obtain
the sparse coefficient αj of dimension k × 1 × q for block
processing and of k × 1 for image processing, i.e., the sparse
representation of a patch Pj is considered as:

Pj ≈ Dinit αj, (2)

where the sparse coefficients of a image/block patch is com-
puted using orthogonal matching pursuit [53] as,

α̂j = min
αj

(
1
2
||Pj − Dinitαj||

2
2 + µ||αj||0

)
. (3)

Here µ is the regularization parameter. We now estimate
sparse dictionaryD using the estimated sparse coefficients α̂j,

D = argmin
D

n∑
j=1

||Pj − Dα̂j||
2
2 such that ||αj||0 ≤ s, (4)

where s is the sparsity. To this end, in order to update the dic-
tionary, we employ K-SVD algorithm [22]. Now this updated
dictionaryD and the estimated sparse coefficients α̂j are used
to reconstruct denoised image/block patch X̂j as:

X̂j = D α̂j. (5)

The residual patch R1j can now be extracted by taking
absolute difference of estimated denoised image/block patch
X̂j and available input image/block patch Pj as,

R1j := |Pj − X̂j|, ∀j. (6)

See that in equation (6) we have used absolute subtrac-
tion between the given patch and estimated denoised patch
referring to our data model equation (1). Note that the residue
patch R1j consists of part of the noise contents due to repre-
sentational limitations at the time of image acquisition. Thus,
the proposed DL part indirectly learned the noise character-
istics from the MRI/CT/LDCT data. However, DL suffers
fromminimax problem if proper thresholding value is not set.
Along with this ringing artifact also occurs at the high fre-
quency regions. To overcome these limitations we iteratively
use the DRN part as discussed below.

Now the residual learning (RL) using proposed DRN
(Fig. 2) is designed to directly learn the noise characteristics
present in the patches. As shown in Fig. 2, we pass the
image/block patch Pj through the proposed DRN having
depth t comprises of the following layers: (a) First layer
(C + R): C stands for the convolution process that is per-
formed between a patch and a filter. Note that it will be
2D convolution for image processing while 3D convolution
for block (volume) processing. Convolution helps to extract
the features of the image/block and generate feature maps.
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In particular, 84 filters of size 3 × 3 are employed that give
rise to 84 feature maps. Then rectified linear units (R) are
used to introduce the non-linearity by using the max(0, ·)
function. (b) Second layer to (t−1) layer (C+ B+ R): Here,
batch normalization (B) is introduced in between C and R.
The B acts as a regularizer term and helps the network to
use higher learning rates which in turn uplifts the denoising
performance. Note that there are skip connections added in
between alternate layers in DRN (Fig. 2). The layers having
same dimension receive identity connection from the previ-
ous layer. While convolution layer is added in between the
identity connection if dimension of recent input and previous
input data is different. (c) Last layer (C): Finally convolution
is performed to give the residual R2j (noise) part learned
from the input image/block patch. In this way, the proposed
augmented noise learning framework directly learns the noise
from image/block MRI and CT including LDCT data.

Hence we now have learned the noise in the form of R1j
residue using the DL, while R2j residue using the DRN.
We construct residue Ravgj by averaging R1j and R2j, pixel-
by-pixel, to preserve the noise characteristics learned by
representation content (DL) and residue (DRN). One may
note that it essentially improves the denoising performance
unlike other residual learning based approaches who heuris-
tically decide a threshold to normalize the residue [35]. The
averaged residue Ravgj is then fed back to the DL stage in
order to again update the estimated dictionary D, as shown
in Fig. 2:

D = argmin
D
λ

r∑
j=1

||Pj − Dαj||
2
2 + µ||αj||0

+
1
r
||Ravgj − R1j||2, (7)

where λ is regularization parameter. Now the updated dictio-
nary D is used to generate the optimum residue Ropt and give
the final estimated denoised patch X̂optj as:

X̂optj := |Pj − Roptj |, ∀j. (8)

The entire process from equations (2) to (8) is repeated
for all the r image/block patches of an input image/block
Yi. Finally estimated denoised patches are assembled to form
an entire estimated denoised image/block X̂i (Fig. 2). Note
that the patches are overlapping, therefore, the voxels and
pixels in the overlapping regions in the X̂i are considered
by local patch-level averaging. Finally, as shown in Fig. 2,
the process is repeated for each image/block in the stack of
MRI/CT/LDCT images and estimate corresponding denoised
stack of MRI/CT/LDCT images.

A. ANALYSIS OF PROPOSED AUGMENTED NOISE
LEARNING METHOD
In this subsection, we analyse the proposed approach for its
effectiveness and conduct analytical comparison with respect
to state-of-the-art approaches. It is observed that noise is
most often mixed in MRI, CT and LDCT images during the

image acquisition process. Therefore we begin with imaging
processes of MRI, CT, and LDCT. In MRI, a patient’s body
is exposed to a very strong magnetic field, radio waves, and
magnetic field gradients [54]. During the acquisition, both
the frequency and phase of the MRI signals, called raw MRI
data, are accumulated in a temporary image space and then
inverse Fourier transform is computed to form a grayscale
MRI image. It is found that in MRI, the probability density
function (PDF) of noise follows the Rician distribution [15].
Hence, referring to the data model in equation (1), one may
write the conditional PDF of MRI data as,

pY(Y|X) =
Y
σ 2 e

−(X2+Y2)
2σ2 I0

(
X Y
σ 2

)
, (9)

where Y is the acquired image, σ is the noise variance, X
is the noiseless image intensity level (unknown), and I0(·)
is the zeroth order modified Bessel function used to induce
smoothness in the curve. In CT scans, a thin beam of X-rays
is passed through a patient’s body from the source that is
captured by the X-ray detectors, located opposite to the X-ray
source [55]. These signals are processed by the computer
and cross-sectional images of the patient’s body are gener-
ated. In CT images, the most common noise is the Poisson
noise [18]. This is mainly due to the usage of X-rays and
scanning methods in the generation of the CT scans. The
probability mass function (PMF) of CT data can thus be
written in reference to the data model equation (1) as,

p(Y|X) =
e−Xt (Xt)Y

Y!
, (10)

where Y is the amount of photons (image intensities) mea-
sured over time interval t by the sensor element, and X is the
expected amount of photon (corresponding denoised image
content) per unit time. Similarly, LDCT images are created
using very low radiation dose compared to a conventional
CT scan. The LDCT is preferred for patients having high risk
of getting infected by cancer or other disease. However, use
of low-dose of radiation affects the quality of CT image and
hence providemore challenges for denoising [38]. This image
acquisition process alsomany times is corrupted with Poisson
noise. It can be seen from equations (9) and (10) that both
Rician and Poisson noises mainly affect the magnitudes of the
MRI and CT including LDCT images, respectively. Practi-
cally, the MRI and CT as well as LDCT images are perturbed
primarily due to following causes [56], [57]: (a) Ambient
temperature is not maintained inside the scanner room. Typi-
cal range of temperature required to maintain is 23◦ to 24◦

Celsius. Any variation beyond the said temperature range
can generate artifacts in the acquired images. (b) Number
of detectors used to capture the images. More number of
detectors can reduce the scanning time, however, probability
of noise is also increased with more detectors. (c) Any move-
ment of patient during scanning leads to artifacts and loss of
finer details in the images.

Now let us first consider the signal leakage phenom-
ena when we apply denoising algorithm in post-processing
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of acquired imagery. It occurs when a part of information
contents of image is leaked as the noise part in the esti-
mated denoised imagery. Therefore, the recorded pixel val-
ues (magnitude) get affected. Due to this, correlation exists
between the learned noise and the corresponding estimated
denoised image. We observe in the ablation studies that when
onlyDRNpart is used, some of the image information content
is also learned as the noise due to overfitting. Also one has
to use skip connections to match the dimension between the
skip connection layer and previous layer to perform extra
convolution or zero-padding. This leads to formation of blur
patches in the resultant denoised image. In order to address
these problems we augment the DRN with an efficient sparse
representation method to learn the noise indirectly from the
images, i.e., proposed DL part in our framework. As we are
using patch-based dictionaries, during the dictionary update
stage values are adjusted so that they do not overfit the
data. On the other hand, when only DL part is used then
problem like artifact formation called Gibbs (ringing) arti-
fact in the high frequency regions is observed and mini-
max problem can occur if proper sparse thresholding is not
applied. These problems are augmented by DRN part as
residual learning (DRN) handles the high frequency regions
efficiently through the convolution, batch normalisation and
ReLU layers. In this way, proposed DL and DRN parts
work in augmented manner, hence, possible loss of infor-
mation in one part is augmented by another part. Thus our
proposed approach enhances the medical image denoising
process.

Next, type of scanning machines impacts the image acqui-
sition process. Third generation or below machines typically
generate the 2D scans that can later be converted into 3D data
while fourth and fifth generation machines directly provide
3D data as the output. Hence, in proposed approach we have
considered options of denoising process on both 2D and 3D
medical data.

We observe that many researchers have explored the vol-
umetric data procedure for denoising of the medical images.
In block-matching and 3D filtering (BM3D) [58], the similar
image patches are stacked to form 3D blocks and filtering
is done on all the blocks. The inverse transform is then
performed to get them back into 2D form. On the other hand,
non-local means (NLM) [59] processes the voxels by 2D
filtering with a search and a neighborhood window. This
is used to find out the similarity between the pixels and a
parameter to control the degree of smoothness in an image.
Underlying assumption is noisy patches will find the simi-
larity with other patches containing the noise. Therefore, as a
side effect, the information present in the edges is lost and the
edges become blur. In anisotropic diffusion filter (ADF) [60],
voxels of the images are considered by combining domain
and range Gaussian filters in order to find the geometric and
photometric distances. The final estimated intensity value of a
pixel is calculated by taking the average of the geometric and
photometric distances among the pixels inside the selected
spatial window. Hence, it enlarges the edge widths and makes

them more blurry. Notably several recent approaches use 2D
images for medical image denoising. Recently, RED-CNN
[34] takes the 2D images as input and combines autoencoders
and deconvolutional networks to preserve the image struc-
tures. More recently CNN-RL [35] accepts the images in
2D form and instead of learning the mapping function of an
image, it predicts the latent clean image. In total variation
(TV) [61], regularization is controlled in a way that more
denoising process is applied in smooth regions and lesser at
edge (discontinuity) regions of each image. Volumetric (3D)
data is used in residual encoder-decoder Wasserstein gen-
erative adversarial network (RED-WGAN) [37] to denoise
the images. They have used four convolutional and decon-
volutional layers in generator and discriminator parts each
along with visual geometry group (VGG) network to learn
the features from images. However, boundaries in image are
pixelated as entire 3D image cube is considered at once
and processed. In our proposed approach, we consider one
block of 3D data at a time and construct dictionaries of
overlapping block patches as well as learn noise from residual
learning using the 3D blocks for a better denoising process.
Considering different generations of scanning machines, 2D
image processing is also included. We have generalized the
proposed approach to consider each slice (image) of theMRI,
CT, and LDCT data independently for denoising process
(Fig. 2). These images/blocks are given to the augmented
framework in the form of patches where we directly and indi-
rectly learn the noise characteristics and obtain the respective
denoised images/blocks.

It is found that patch-based methods effectively smoothen
the homogeneous regions as well as preserves the finer details
in an image. Our proposed model also learns patch-based dic-
tionaries for each image/block from the set of input images.
In TV [61], the patches of an image are used in the edge
detection scheme. When the TV norm of an image is too low
it leads to over-smoothing and only edges are preserved if the
norm is high. Therefore the approach [61] is sensitive to TV
norm for denoising patches. The patch-based approach is also
adopted in BM3D [58]. In K-SVD [22] a similar approach to
the K-means method is adopted, however, a single dictionary
is learned for entire image. The CPCE [38] network also uses
patch-based method with transfer learning concept inside
GAN framework to perform the denoising process on LDCT
data. Firstly a 2D CPCE model is trained in GAN framework
and then it is directly extended to 3D model so as to employ
3D spatial details using transfer learning concept and enhance
the denoising process. However, noise is still present in the
homogeneous regions. MAP-NN [39] is also used to denoise
LDCT data in progressive manner using patch-based method.
Here each module helps to denoise the image gradually
though the quality of edges is compromised. In the proposed
approach, we are learning patch-based dictionaries for over-
lapping image/block patches of a dataset. These dictionaries
have knowledge of images as well as the residues learnt from
the DRN part. Hence the critical information remains intact
and edges are also preserved.
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In our approach, we learned the noise characteristics
from the image using the proposed dictionary-based DRN.
In CNN-RL [35], the residue is learned from the deep CNN
layers and it is multiplied by a constant factor to normal-
ize the elements. This normalized residue is then subtracted
from the given image to form a denoised image. It may be
noted this way the denoised image may observe the loss of
information at the edges due to a single scaling factor to
normalize the residue. Unlike it, our proposed unsupervised
method considers the average of residue learned from dictio-
nary learning and DRN. It essentially avoids the heuristic of
hard coding the normalization factor. In RED-CNN [34] the
autoencoders and deconvolutional networks are used to pre-
serve the structures in order to reduce noise from the images.
This approach may over smoothed the edges as the data is
compressed by the encoders and decoders. The PURE [42]
method uses skip connections between the layers to form
the residue and denoise the LDCT images. It uses modified
U-Net network and full-dose CT data as ground truth images
although noise is present in the images. AdaIN-based tunable
CycleGAN [41] selects random patches to denoise LDCT
images using a single switchable generator. The generator
follows U-Net architecture and discriminator uses PatchGAN
to estimate the noise pattern and obtain the denoised images.
Note that the signal leakage is present in such network. Our
proposed augmented approach uses the constraints to update
the patch-based dictionaries and learn the residues that better
handles the ill-posed nature of the problem.

V. EXPERIMENTS AND EVALUATION
In this section, we evaluate our proposed unsupervised learn-
ing approach by conducting experiments on different MRI,
CT, and LDCT images. We begin by providing details of
the datasets, machine specifications, parameter settings, and
training.We then compare and analyze the results obtained by
our approach with state-of-the-art approaches including sig-
nal leakage phenomena. We also discuss the results obtained
by carrying out ablation studies in our proposed framework.

A. DATASETS
We use the synthetic MRI dataset available at https://
syntheticmr.com by adding different levels of Rician noise
in the ground truth MRI image. For synthetic CT dataset,
we have used the Shepp-logan image available in MATLAB
R2020a and then added different levels of Poisson noise to
it. The real MRI and CT images are considered as avail-
able from the cancer imaging archive (TCIA) [46]. It is
an open-access database of medical images available for
the research. We have also conducted additional experiment
on benchmark LDCT dataset from Mayo clinic [47]. It is
an open access library consisting of full-dose and corre-
sponding low-dose CT dataset. The library consists total
of 10,112,591 scans that includes low-dose non-contrast CT
scans of head, chest, and abdomen. The collection comprises
of both full and corresponding simulated lower dose levels
including 99 head scans, 100 chest scans, and 100 abdomen

scans. In our experiment, data is in digital imaging and com-
munications in medicine (DICOM) format.

B. MACHINE SPECIFICATION
All the algorithms are implemented in PARAM Shavak
GPU-based supercomputer powered with two multicore
CPUs, each with fourteen cores. It has NVIDIAGP100 accel-
erator card and 96 GB RAM. We have also used Intel Core
i7-9750H CPU@ 2.60GHz with 20 GB RAM to add noise in
the synthetic datasets for MRI and CT images. The program-
ming is done using Python 3.7 and major libraries include
matplotlib, skimage, numpy, scipy, pytorch, and pydicom.

C. SETUP AND PARAMETERS
In our experiment, (a) for 3D denoising: we have used
400 slices of 3D MRI and 350 slices of CT images
having 256 × 256 voxels, each voxel is of resolution
1 mm×1 mm×1 mm. We have added different levels of noise
in MRI and CT images. Then we test our model using 50
and 45 slices of 3D MRI and CT real datasets, respectively.
As shown in Fig. 2 we select one block of 3D data at a time
and decompose it into overlapping block patches. We have
a total of 64 block patches each of dimension 32 × 32 × 8
voxels within a block of 256× 256× 192 voxels. Then each
block patch is provided to the DL and DRN parts in order to
generate the sparse vector and the 3D dictionary, respectively,
to reconstruct the denoised patches. The DRN in RL consists
of 10 layers where the first layer is a combination of 3D
convolution and 3DReLU. The 3D convolution consists of 84
filters of dimension 3× 3× 8 followed by max3D operation
to introduce the non-linearity. Then 3D batch normalization
is added in the next 10 layers to uplift the denoising perfor-
mance by using higher learning rates. The final layer is the
3D convolution layer that gives the learned residue. This is
used with the residue obtained from the DL part to make an
average residue Ravg. The averaged residue Ravg is again fed
back to update the dictionary in DL part. Note that now the
learned sparse dictionary can efficiently reduce Rician noise
and Poisson noise from theMRI and CT images, respectively.
(b) for 2D denoising: we have used 1500 slices of MRI
and 1000 slices of CT images. Each image has a dimension
of 512 × 512 pixels. Then we test our model using 442
and 250 image slices for real 2D datasets of MRI and CT
images, respectively. We have a total of 84 patches each of
dimension 64×64 pixels within an image of 512×512 pixels.
Note that now the learned sparse dictionary can efficiently
reduce Rician noise and Poisson noise from the MRI and
CT images, respectively. (c) for LDCT denoising: we have
used 1720 slices of LDCT images each having dimension of
512× 512 pixels. We used 500 slices to test the model using
the dictionary obtained. We divide each image into patches
with dimension 64× 64 pixels. These patches are given to the
proposed framework and we obtain the respective denoised
images.

The regularization parameters λ and µ are chosen
after performing many trials on different noise levels on

VOLUME 9, 2021 117159



S. Rai et al.: Augmented Noise Learning Framework for Enhancing Medical Image Denoising

FIGURE 3. Sensitivity analysis of regularization parameters λ and µ

(equation (7)).

3D and 2D images for MRI and CT including LDCT
images. Fig. 3 shows the values of peak signal-to-noise
ratio (PSNR) obtained at different range of λ and µ.
As shown in the figure, they are fixed to λ = 0.5 and
µ = 1 as they show highest PSNR values and help
avoiding minimax and overfitting problems. For imple-
menting other comparative approaches, we use the opti-
mal values of parameters as available in respective
papers [22], [34], [35], [37]–[39], [41], [42], [58]–[61].

D. TRAINING
We have trained our augmented DL-DRN framework with
synthetic 3D/2D MRI and CT images separately. First,
we train our framework with volumetric (3D) slices of syn-
thetic MRI data with different Rician noise levels to obtain
the residue that in turn helps to get the learned dictionary.
This dictionary is used on the test MRI dataset to estimate
the denoised image. Similarly, we then use 2D MRI dataset
to obtain the corresponding denoised image. We have then
similarly trained and tested the noise learning framework for
3D/2D CT images with different levels of Poisson noise.
We have also separately trained our framework with bench-
mark LDCT Mayo dataset. This dataset consists of chest
scans at 10% of regular dose along with head and abdomen
scans at 25% of normal dose. The slice thickness is 1.5 mm
with image size 512× 512 pixels.

E. RESULT ANALYSIS
We first display/discuss the visual results and then present
the quantitative analysis with different performance metrics.
Ablation studies have been carried out on the proposed frame-
work to analyze the contribution of parts. Fig. 4 (a) is the
given MRI image and Fig. 4 (b) shows the denoised image
obtained by applying only the DRN part. One can observe in
the zoomed portion that the edges are preserved but still noise
is present in the image. When we apply only the DL part of
the framework on the given MRI image, edges are not well
preserved as shown in Fig. 4 (c). Also, it is observed that DL
is able to reduce Gaussian and Poisson noise effectively as
compared to Rician noise. Now by augmenting both DL and

DRN parts (proposed framework), we obtain clear edges and
a well-denoised image that can be witnessed in Fig. 4 (d).
The major constraints of medical imaging are matched by
the proposed augmented noise learning framework. Similar
results are obtained during ablation studies on CT images as
shown in Fig. 5. Fig. 5 (d) shows the denoised image obtained
by the proposed augmented noise learning framework that has
clear boundaries and reduced noise unlike Fig. 5 (b) and 5 (c).

We now compare the proposed approach with state-of-
the-art methods. Fig. 6 shows the denoising results of syn-
thetic 2DMRI data. We add 5% of Rician noise in the ground
truth image (Fig. 6 (a)) and apply different algorithms to
denoise it. Fig. 6 (b) shows that CNN-RL [35] maintains
the outer details but inner details are pixelated. In Fig. 6 (c)
RED-CNN algorithm [34] used to denoise the image also
maintains the outer part of the edges whereas the inner
details are still pixelated however it has improved results
than CNN-RL image. In Fig. 6 (d) we see that K-SVD [22]
successfully preserves the edges to some extent but inner
details are not clear. In Fig. 6 (e) from the zoom portion, one
can observe that BM3D [58] can maintain the outer edges
but inner details of the image are appearing blur. Even the
proposed approach result, Fig. 4 (f) obtained for 2D image is
also preserving the edges. The quantitative evaluation is pre-
sented in Table 1 where one can observe calculated values of
PSNR [62], structural similarity index measure (SSIM) [62],
and root mean square error (RMSE) [63] of an estimated
denoised image by implementing different algorithms at var-
ious noise levels in the imaging. It can be seen that the PSNR
and SSIM of the denoised image estimated by 2D proposed
approach is higher than other methods while the RMSE value
is at a low when compared to other methods.

Further, the results obtained on synthetic 3D MRI data
by adding 5% of Rician noise in the ground truth image
(Fig. 7 (a)) are shown in Fig. 7. Fig. 7 (b) shows TV approach
[61] is not able to preserve the edges of the images. From
Fig. 7 (c) one can observe that NLM [59] is not able to main-
tain the sharpness in edges as they get distorted. Fig. 7 (d)
shows that ADF [60] blurs the image and edge width is also
increased. Fig. 7 (e) shows the denoised image obtained by
RED-WGAN [37], zoom portion reveal the pixelated high
frequency regions. In Fig. 7 (f) one can see that the image
generated by the proposed unsupervised approach for 3D is
nearly close to the ground truth image as well as it preserves
both the inner and outer details of the image. Table 2 verifies
the visual results by showing the quantitative results obtained
by applying these methods on given images and shows that
the proposed approach performs better than other methods.

Fig. 8 shows the visual results of the denoised image recon-
structed from different denoising methods applied on syn-
thetic 2D CT images obtained by adding 5% Poisson noise to
the Shepp-logan dataset. Shepp-logan dataset is the synthetic
dataset that is widely used for research purposes. In Fig. 8 (b)
CNN-RL [35] maintains the structure of the image, however,
due to the formation of grainy structures in the image edges
are not distinct. Fig. 8 (c) shows that RED-CNN [34] reduces
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FIGURE 4. Ablation studies performed on 2D MRI brain scans [46]: (a) given image, (b) only DRN part in
proposed approach, (c) only DL part in proposed approach, and (d) proposed augmented noise learning
framework. It is evident that proposed augmented learning enhances the denoising performance.

FIGURE 5. Ablation studies performed on 2D CT brain scans [46]: (a) given image, (b) only DRN part in proposed approach,
(c) only DL part in proposed approach, and (d) proposed augmented noise learning framework. It is evident that proposed
augmented learning enhances the denoising performance.

FIGURE 6. Denoising by different algorithms by adding 5% Rician noise in synthetic 2D MRI
image: (a) Ground truth, (b) CNN-RL [35], (c) RED-CNN [34], (d) K-SVD [22], (e) BM3D [58],
and (f) Proposed 2D.

TABLE 1. Average error scores by different approaches at different levels of Rician noises on synthetic 2D MRI images.

the noise to some level, however, the structure is shifted a bit
from its original position. Fig. 8 (d) shows that K-SVD [22] is

not able to smooth the homogeneous regions that are making
the image pixelated. Fig. 8 (e) indicates that overall the noise
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FIGURE 7. Denoising by different algorithms by adding 5% Rician noise in synthetic 3D MRI
image: (a) Ground truth, (b) TV [61], (c) NLM [59], (d) ADF [60], (e) RED-WGAN [37], and
(f) Proposed 3D.

TABLE 2. Average error scores by different approaches at different levels of Rician noises on synthetic 3D MRI images.

FIGURE 8. Denoising by different algorithms by adding 5% Poisson noise to the
Shepp-logan 2D CT image: (a) Ground truth, (b) CNN-RL [35], (c) RED-CNN [34],
(d) K-SVD [22], (e) BM3D [58], and (f) Proposed 2D.

is reduced using BM3D method [58] however finer details
can be improved. The result obtained in Fig. 8 (f) from
proposed approach for denoising image in 2D method also
decreases the noise level to some extent. Table 3 shows the
respective quantitative results of all the methods for different
noise levels and it is visible that PSNR [62] and SSIM [62] of

the proposed approach are higher than other approaches and
RMSE [63] value of the proposed approach is at a low.

Fig. 9 shows the denoised images obtained on synthetic
3D CT images. In Fig. 9 (a) we observe that TV output [61]
is blur and one cannot differentiate the boundaries. Fig. 9 (b)
is the NLM [59] denoised output in which noise is visible.
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FIGURE 9. Denoising by different algorithms by adding 5% Poisson noise to the
Shepp-logan 3D CT image: (a) Ground truth, (b) TV [61], (c) NLM [59], (d) ADF [60],
(e) RED-WGAN [37], and (f) Proposed 3D.

TABLE 3. Average error scores by different approaches at different levels of Rician noises on synthetic 3D MRI images.

TABLE 4. Average error scores by different approaches at different levels of Poisson noise on synthetic 3D CT images.

FIGURE 10. Denoising by different algorithms on real 2D MRI brain scans [46]: (a) CNN-RL [35], (b) RED-CNN [34],
(c) K-SVD [22], (d) BM3D [58], and (e) Proposed 2D.

In Fig. 9 (c) we see that ADF [60] blurs the image that
degrades the visual quality of the image. Fig. 9 (d) is the
RED-WGAN [37] denoised image in which the edges are

a bit blur. Fig. 9 (e) shows the result obtained from the
proposed unsupervised learning approach in 3D way and
one can observe that the reconstructed image is close to the
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FIGURE 11. Denoising by different algorithms on real 3D MRI brain scans [46]: (a) TV [61], (b) NLM [59], (c) ADF [60],
(d) RED-WGAN [37], and (e) Proposed 3D.

FIGURE 12. Denoising by different algorithms on real 2D CT brain scans [46]: (a) CNN-RL [35], (b) RED-CNN [34],
(c) K-SVD [22], (d) BM3D [58], and (e) Proposed 2D.

FIGURE 13. Denoising by different algorithms on real 3D CT brain scans [46]: (a) TV [61], (b) NLM [59], (c) ADF [60],
(d) RED-WGAN [37], and (e) Proposed 3D.

FIGURE 14. Denoising by different algorithms on the benchmark low-dose CT (Mayo clinic) scans of
abdomen on 32-year male with id L033 [47]: (a) Normal dose image, (b) Corresponding LDCT image,
(c) PURE [42], (d) MAP-NN [39], (e) CPCE [38], (f) AdaIN CycleGAN [41], and (g) Proposed.

ground truth image (Fig. 9 (a)) and also the Poisson noise is
reduced to a great extent. Respective average error scores are
shown in Table 4.

Fig. 10 shows the qualitative results on the real 2D MRI
dataset [46]. In Fig. 10 (a) one can observe that the result
of CNN-RL [35] is pixelated. Fig. 10 (b) is the result of
RED-CNN method [34] and here too the edges are not clear
and pixelated. Fig. 10 (c) shows the K-SVD output [22] and
again the finer details are missing. Fig. 10 (d) is the result
obtained by BM3D [58] method and one can notice that outer

edges are sharp, however, inner details are blur. In Fig. 10 (e)
one can see that the proposed approach has reduced noise to
a greater extent.

Qualitative results can be seen in Fig. 11 on the real 3D
MRI dataset [46]. In Fig. 11 (a), TV [61] is used to denoise
the image, and one may see that the edges are not as clear
that degrades the visual quality of image. Fig. 11 (b) shows
the result obtained by NLMmethod [59] and one can see that
edges are not clear and noise is still present in the image that
decreases the visual quality of image. In Fig. 11 (c) one can
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FIGURE 15. Signal leakage phenomena after denoising MRI and CT datasets: local cross-correlation indices computed
between estimated noise and corresponding denoised data cube over randomly selected 1000 images using different
approaches including ablation result on proposed approach. The brackets on the top indicate (mean, standard deviation)
values of each map. (a) only DRN part in proposed approach, (b) only DL part in proposed approach, (c) Proposed
augmented noise learning framework, (d) CNN-RL [35], (e) RED-CNN [34], (f) K-SVD [22], (g) TV [61], (h) BM3D [58],
(i) NLM [59], (j) ADF [60], and (k) RED-WGAN [37]. It is evident that proposed augmented noise learning process (c) shows
minimal signal leakage by the least correlation values and shortest range of local cross-correlation indices, i.e., enhances
the medical image denoising process in MRI and CT datasets.

FIGURE 16. Signal leakage phenomena after denoising the benchmark Mayo low-dose CT datasets: local cross-correlation indices
computed between estimated noise and corresponding denoised data cube over randomly selected 1000 images after implementing
different algorithms. The brackets on the top indicate (mean, standard deviation) values of each map. (a) Proposed augmented noise
learning framework, (b) PURE [42], (c) MAP-NN [39], (d) CPCE [38], and (e) AdaIN CycleGAN [41]. It is evident that proposed augmented
noise learning process (a) shows minimal signal leakage by the least correlation values and shortest range of local cross-correlation
indices, i.e., enhances the medical image denoising process on low-dose CT datasets.

observe that the entire image generated by ADF method [60]
is blur and visual quality is also poor. In Fig. 11 (d) one can
see that the denoised image has unclear boundary regions
using RED-WGAN [37] approach. Fig. 11 (e) shows the
result obtained from the proposed unsupervised 3D learning
approach and it is visible that our model can reduce noise to
a much lower level as compared to other approaches.

Fig. 12 shows the results obtained by applying the denois-
ing methods on real 2D CT datasets [46]. In Fig. 12 (a) we
observe that CNN-RL [35] is not able to preserve the edges
due towhich one cannot differentiate between the boundaries.
Fig. 12 (b) shows that RED-CNN [34] maintains the edges
however noise content is still present in the image. The output
in Fig. 12 (c) shows that the structure ismaintained byK-SVD
[22] however details in the image are lost. In Fig. 12 (d) it is
clear that BM3D [58] is able to preserve the edges however
noise is still present in homogeneous regions of the image.

Fig. 12 (e) shows the denoised image obtained from proposed
approach and one can observe from the zoom portion that
boundaries are preserved along with the reduction in noise.

Qualitative results obtained by applying different denois-
ing algorithms on real 3D CT data are shown in Fig. 13.
Fig. 13 (a) shows that the image generated by applying
TV [61] method on the input image is not able to preserve
the structure in the image. In Fig. 13 (b) one can see that the
image obtained by NLM [59] still is very noisy. Fig. 13 (c)
shows that ADF [60]makes the image blur thus any part of the
image is not clearly visible. The denoised image obtained by
using RED-WGAN [37] approach is shown in Fig. 13 (d) and
one can see the pixelated regions in the zoom portion along
side the edges. In Fig. 13 (e) one can observe that proposed
unsupervised learning approach performs better than other
existing seven state-of-the-art approaches by preserving the
edges and maintaining the visual quality.
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We have also obtained the qualitative results by apply-
ing different denoising algorithms on the benchmark Mayo
LDCT datasets as shown in Fig. 14. Fig. 14 (a) shows the
normal dose CT image and Fig. 14 (b) shows the correspond-
ing low-dose CT image of abdomen. In Fig. 14 (c) one can
observe that the image obtained by PURE [42] still has a
bit of noise present. Fig. 14 (d) shows the image generated
by MAP-NN [39] also has some grainy patches present.
In Fig. 14 (e) we can see that noise is not reduced properly
using CPCE [38] network. In the zoom portion of Fig. 14 (f)
one can see that a tinch of noise is still present in the image
generated by AdaIN CycleGAN [41]. Fig. 14 (g) shows that
the denoised image obtained by our proposed approach has
minimal noise and maintains the visual quality by preserving
the edges.

Finally, we provide the signal (image) leakage analysis
results in Fig. 15 and 16. Many times the model learns some
of the image information content as noise (overfitting) and
consequently correlation exists between the estimated noise
and corresponding denoised image. We calculate such corre-
lations for different denoising algorithms and compare with
proposed approach including ablation study on our frame-
work. In ideal scenarios, the local cross-correlation between
noise and denoised image should be zero (0). Referring to
Fig. 15, the blue portions indicate low correlation values and
the red portions indicate high correlation values (more signal
leakage). Note that these maps are obtained after running the
codes on 1000 images. Fig. 15 (a) shows the correlation map
when only DRN part is applied to the given images. The cor-
relation values are in between 0 and 0.61 with mean and stan-
dard deviation as 0.18 and 0.042, respectively. When only the
DL part is applied, the range of correlation values is higher,
i.e., 0 to 0.92 with (0.24, 0.037) as shown in Fig. 15 (b).
The result obtained by applying the proposed augmented
DL/DRN approach is shown in Fig. 15 (c). See that the range
of correlation values are now drastically reduced to 0 to 0.53
(0.11, 0.047) with most of the values close to zero. We also
tested the performance of other approaches for signal leakage
as shown in Fig. 15 (d) to 15 (k). Note that the approaches
that do not directly estimate noise, we calculate it by sub-
tracting the estimated denoised image from the available data.
From all the correlation values shown in Fig. 15, one can
observe that very little correlation exists when applying the
proposed augmented unsupervised noise learning framework
(Fig. 15 (c)) on the images. We also provide the signal leak-
age results for LDCT dataset in Fig. 16. One can observe from
Fig. 16 (a) that correlation map using the proposed approach
exhibits minimal correlation with mean 0.22 and standard
deviation 0.045. We have also shown the signal leakage map
of other approaches in Fig. 16 (b) to 16 (e) and they show high
signal leakage that is evident from higher correlation values
in the maps when compared to the proposed approach. Hence
from the correlation maps one can see that proposed approach
effectively enhances the denoising process with a minimal
signal leakage.

VI. CONCLUSION AND FUTURE WORK
We have presented a novel augmented unsupervised noise
learning approach for enhancing medical image denoising
considering input as 2D and 3D for image/voxel processing.
The proposed dictionary based DRN handles both the Rician
noise and Poisson noise present in the MRI and CT/LDCT
images, respectively. Our model learns the patch-based
dictionaries in order to learn noise indirectly and aug-
ment with the residue (noise) contents learn directly from
the available MRI/CT/LDCT images using proposed DRN.
Note that the proposed approach does not require the
clean (denoised) images for training the model, unlike many
deep learning-based recent approaches. We have better han-
dled the ill-posed nature of the problem by choosing the opti-
mum regularization parameters that have been estimated from
the data. Dictionary-based DRN reduces the noise from the
images by preserving the edges of the images andmaintaining
their visual quality (without losing details) which is evident
from the results. Ablation study conducted on DL and DRN
parts further evaluate the efficacy of the proposed augmented
noise learning process. We further showed that the proposed
method has minimal signal leakage with least Gibbs (ringing)
artifacts in the estimated denoised image, and enhances the
medical image denoising. In future, one would like to design
unsupervised framework for restoration of medical images
that would address any degradation in the multimodal images
along with the noise.
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