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ABSTRACT Label embedding is an important family of multi-label classification algorithms which can
jointly extract the information of all labels for better performance. However, few works have been done to
develop the multi-label embedding methods that can effectively deal with the interference of noisy data
during training process. The noise often makes the labels of a few samples incorrect (i.e., missing or
mislabeled), which could lead to a poor learning performance. To address this issue, we propose a novel
cross-view based model. It performs a robust and discriminant embedding, namely Robust Cross-view
Embedding with Discriminant Structure for Multi-label Classification (RCEDS). In RCEDS, a novel
hypergraph fusion technique is designed to explore and utilize the complementary between the feature space
and the label space to make the proposed RCEDS robust. Meanwhile, we use double-side metric learning to
mine the consistency between the feature space and the label space to effectively improve the discriminative
ability of our proposed RCEDS. Furthermore, we conduct a deep extension of RCEDS and effectively apply
it to image annotation. Extensive experimental results on data sets with many labels demonstrate that our
proposed approach can attain better classification performance than the existing label embedding algorithms.

INDEX TERMS Multi-label classification, label embedding, cross view, hypergraph fusion, double-side
metric learning.

I. INTRODUCTION
Multi-label learning is an active research topic in the field of
machine learning and pattern recognition. In the multi-label
learning framework, each sample is represented by a feature
vector, while it may belong to multiple categories. The goal
is to induce a function that is able to assign multiple proper
labels (from a given label set) to unseen instances [1], [2].
With the introduction of the concept of multi-label learning,
many scholars have carried out research on this topic and put
forward a lot of efficient algorithms.

However, increasing number of labels will result in the
exponential increase of the number of label sets. As a conse-
quence, the standard multi-label classification methods that
work in original label space can easily become computa-
tionally impractical in training multi-label classifiers. For-
tunately, there is usually some redundant information in the
label space and the labels are universally correlated with each
other. For this reason, some researchers began to study the
method of dimensionality reduction in label space by using
the label relationship. The expectation was to improve the
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classification accuracywhile reducing the training and testing
time of the whole model.

As an important family of the multi-label classifica-
tion algorithms, a variety of label space reduction meth-
ods (LSDR) have been developed in the literature to address
multi-label classification with many labels. LSDR algorithms
[3]–[5] consider a low-dimensional embedded label space
for digesting the information between labels and conduct-
ing more effective learning. However, as observed, a certain
level of noise often exists in the real multi-label datasets
that may degrade the performance of label embedding. The
noise makes the labels of a few samples incorrect, which
can be divided into two cases: (1) several essential labels are
missing, and (2) several other labels aremislabeled. As shown
in Figure 1, it is obvious that there is no ’road’ in the picture
located at row 1, column 1, so ’road’ is the mis-assigned label
while ’beach’ is the missing label. These kinds of noisy data
will increase the training error of classifiers and adversely
affect the effectiveness of the multi-label classification.

To this end, we propose Robust Cross-view Embedding
with Discriminant Structure for Multi-label Classification
(RCEDS), which is illustrated in Figure 1. In DCERMC,
the basic cross-view embedding is adopted to explore the
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correlations between the feature space and the label space.
Meanwhile, in order to make our embedding method more
robust and discriminative, we effectively utilize both the
complementarity and consistency between the feature space
and the label space. Specifically, in terms of complementarity,
we construct corresponding hypergraphs in the feature space
and the label space, and then fuse the two hypergraphs from
the perspective of randomwalk. The high-order correlation of
the instances in the feature space can effectively correct the
inaccurate correlation in the label space caused by noisy data,
and such an anti-noise ability can make our method robust.
In terms of consensus, we use double-side metric learning
to reduce the distances among a group of samples which
are close in both feature space and label space consistently.
Similar samples in both original feature space and label space
will be closer in the latent space, which dramatically enhances
the discriminant ability of our proposed embedding method.

Therefore, the main contributions of this paper are high-
lighted as follows:

(1) In this paper, we propose a novel cross-view based
embedding method for multi-label classification, which is
robust and discriminative by utilizing the complementarity
and consistency between the feature space and the label
space;

(2) We develop a novel hypergraph fusion technique to
complete the complementarity between the feature space and
the label space. The high-order correlation of the instances in
the feature space can effectively deal with noise in the label
space;

(3) We adopt double-side metric learning to mine the con-
sistency between the feature space and the label space and
it can effectively improve the discriminative ability of our
embedding method;

(4)We conduct a deep extension for our proposed RCEDS,
which makes the method achieve outstanding performance in
the application of image annotation.

The rest of this paper is organized as follows.
Section 2 gives a review of related work. Then we formulate
the problem and present the proposed approach in Section 3.
We discuss the experimental results in Section 4 and conclude
in Section 5.

II. RELATED WORK
The existing multi-label learning algorithms [1], [2] can be
divided into two broad categories: problem transformation
methods (PTMs) and algorithm adaptation methods (AAMs).
For both PTMs and AAMs, a common challenging issue
exists in the multi-label learning tasks, i.e., the dimension
of the output label space will increase exponentially as the
number of labels increases. It is not difficult to find that the
relevant information between labels may provide additional
useful information for multi-label learning, which is benefi-
cial to the performance of multi-label learning system.

Multi-label embedding learning aims to transform the orig-
inal label space into a latent space by a series of means,
which reduces the size of output space and the computational

complexity by a large margin. It also can effectively exploit
the hidden structure of the original space and make full
use of the correlation between labels. A label embedding
method based on compressed sensing was proposed by
Hse et al. [6]. Firstly, the label space is projected into a
low dimensional space by a compression sensing method.
Secondly, a regression model is trained for each dimension in
the low-dimensional label space. Principal label space trans-
formation (PLST) which is based on classical dimensionality
reduction algorithm PCA was proposed by Tai and Lin [7].
PLST preserved the reservation of label space information
by minimizing the square loss between original label space
and latent space. Conditional principal label space trans-
formation (CPLST) method based on canonical correlation
analysis theory was proposed by Chen and Lin [8], which
takes both label space embedding loss and regression loss in
the latent space into account, and achieves the effect of reduc-
ing the dimension of label space by using the feature space
information. An end-to-end label space embedding method
called Feature-aware implicit label space encoding (FAIE)
was proposed by Lin et al. [9]. FAIE can directly learn a
better hidden space by maximizing the recovery of the latent
space and the prediction performance of the latent space. The
end-to-end mode breaks the limitation of the latent space.
Sparse local embedding for extreme classification (SLEEC)
by using local correlations among instances was proposed
by Bhatia et al. [10]. The tail labels attached only to a small
number of instances which makes the label matrix sparse
but not low-rank. SLEEC can cover this kind of shortage
effectively when solving practical problems. A multi-label
embedding method call Canonical-correlated autoencoder
(C2AE) was proposed by Yeh et al. [3]. C2AE is based on
deep learning and canonical correlation analysis, and it can
deal with the multi-label classification problem of large-scale
data well by using the deep neural network for spatial trans-
formation. Cost-sensitive label embedding with multidimen-
sional scaling (CLEMS) was a cost-sensitive multi-label
embedding method proposed by Huang and Lin [4]. In the
field of multi-label learning, different evaluation criteria can
make totally different comments on the same result. It is the
CLEMS that takes the lead to consider evaluation criteria in
the process of learning. Co-Embedding (CoE) method was
proposed by Sheng et al. [5] from a cross-view perspective.
Co-Embedding (CoE) learns a common latent space where
input and output are jointly embedded and well aligned. It is
based on the linear mapping and with an extension named
Co-Hashing (CoH) to deal with large-scale data.

We can find that the existing multi-label embedding meth-
ods [3]–[5] fail to effectively deal with noisy data, while
some of them [3], [9], [10] don’t take discriminative ability
into consideration. In order to address those two limi-
tations mentioned above simultaneously, we propose our
Robust Cross-view Embedding with Discriminant Structure
for multi-label classification (RCEDS). This method exploits
and utilizes the complementarity and consistency between
the feature space and the label space to learn a robust and
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discriminative embedding model, which is detailed in the
following section.

III. PROPOSED APPROACH
For multi-label classification, let D = {(xi, yi)}Ni=1 = {X ,Y }
denote a set of d dimensional training instances X ∈ Rd×N

and the associated labels Y ∈ {0, 1}K×N , where N and K
are the number of instances and label attributes, respectively.
The goal of multi-label classification algorithms is to train a
predictor f : X → Y from D in the training stage, so that the
label ŷ of a test instance x̂ can be predicted accordingly.

A. HYPERGRAPH PRELIMINARIES
Let V denote a finite set of samples, and let E be a family of
subsets e of V such thatUe∈E = V .G = (V ,E) is then called
a hypergraph with the vertex set V and the hyperedge set E .
A hyperedge which contains two vertices is just a simple
graph edge. A weighted hypergraph is a hypergraph that has
a positive number ω(e) associated with each hyperedge e,
called the weight of hyperedge e. We denote a weighted
hypergraph by G = (V ,E, ω). A hyperedge e is said to be
incident with a vertex vwhen v ∈ e. The degree of each vertex
v ∈ V is defined as:

d(v) =
∑

{e∈E|v∈e}

ω(e) (1)

Let |S| denote the cardinality of a given arbitrary S. The
degree of a hyperedge e ∈ E is defined as: δ(e) =|e|.
A hypergraph G can be represented by a |V |×|E| matrix H
with entries h(v, e) = 1, if v ∈ e and 0 otherwise, called the
incidence matrix ofG. Based on matrixH , the degree of each
vertex and each hyperedge can be calculated as:

d(v) =
∑
e∈E

ω(e)h(v, e) (2)

δ(e) =
∑
v∈V

h(v, e) (3)

Let Dv and De denote the diagonal matrices contain-
ing the vertex and hyperedge degrees respectively, and let
W denote the diagonal matrix containing the weights of
hyperedges [11].

B. BASIC MODEL
Our proposed RCEDS learns a novel cross-view based model
which is robust and has a strong discriminative ability. The
main ideas are detailed in Figure 1. In Figure 1, we use
different colors to represent different samples.We use squares
to represent the characteristics of the samples, and circles to
represent the set of samples. From the feature space, we can
find that the four images with black, yellow, red, and green
are all about surfing, and the blue and orange samples are
about running. In the label space, we can find that the label
set of the yellow and black samples has missing labels and
incorrect labels. Our work is mainly focused on two aspects.
In the first aspect, we hope to use the high-order relation-
ship of the sample feature space to correct the noise labels

in the label space by using the hypergraph structure. The
higher-order relationships of the four samples in red and
green in the feature space can correct errors and redundant
labels. In the second aspect, we hope that the information in
the two space can form complementarity, thereby enhancing
the discriminativeness of the model. With the help of metric
learning, we make the samples that are dissimilar in the two
spaces separate more thoroughly.

Then the basic model of our proposed RCEDS is detailed
as follows. It is commonly known that in cross-view learning
data from the same objects described in different views share
a certain common subspace [12], [13] [5]. This is consistent
with the purpose of multi-label embedding which hopes to
learn a great latent space. The latent space should have a
strong correlation with both feature space and label space.
To explore and utilize the complementation and consensus
between feature space and label space, we develop two regu-
larization terms Rp(Z ,Lp) and Rs(Wp,We) corresponding to
them respectively, which will be detailed in the following two
sections.

The basic cross-view embedding can conduct dimension
reduction while correlating a feature space and a label space
at the same time. We denote the latent space as Z , then the
objective function of our proposed RCEDS can be written as
follows:

min
Wp,We,Z ,Lp

‖W T
p X−Z‖

2
F + ‖W

T
e Y−Z‖

2
F

+λ1Rp(Z ,Lp)+ λ2Rs(Wp,We)

s.t. ZZT = I (4)

where W T
p X and W T

e Y denote the transformed feature and
label data in the latent space respectively. An orthogonal
constraint is imposed on Z to make the latent features uncor-
related. Rp(Z ,Lp) is the regularization term for comple-
mentary principle (robust component), and Rs(Wp,We) is
the regularization term for consensus principle (discriminant
component).

C. COMPLEMENTARY PRINCIPLE (ROBUST COMPONENT)
We develop a novel hypergraph fusion technique to explore
and utilize the complementarity between feature space and
label space, which has also been effectively verified in our
published paper [14]. We construct corresponding hyper-
graphs in both feature space and label space, then fuse the
two hypergraphs from the perspective of random walks. The
high-order correlation of the instances in the feature space can
effectively correct inaccurate correlation in the label space
caused by noisy data (refer to the bottom in Figure 1). The
specific practices are detailed as follows:

Firstly, we construct hypergraphs in both feature space and
label space. In the label space, a hypergraph is built where
each vertex corresponds to one training instance and each
hyperedge for one label includes all the training instances rel-
evant to the same label. In the feature space, different from the
simple graph where each edge represents the vertex-to-vertex
relation, the incidence matrixH of a hypergraph describes the
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FIGURE 1. Illustration of the proposed RCEDS. The labels with wavy underline are the true labels but they are missing in the ground-truth, and the labels
with straight underline are mis-indexed labels in ground-truth annotation. Hypergraph construction can capture the high-order correlation of instances
in a feature space; as a result, several mislabled/missing labels can be well tackled and corrected (refer to the bottom in the figure); The double-side
metric learning directed by the consistency between a feature space and a label space can help improve the discriminative ability of the proposed RCEDS
(refer to the top in the figure).

vertex-to-hyperedge relation. To achieve this, we regard each
sample as one vertex and try to generate a hyperedge for each
vertex by following the method in [11]. More specifically,
we generate the hyperedge ei by the following formulation:

ei = {vj|θ (xi, xj) ≤ 0.1σi}, i, j = 1, . . . , n (5)

where θ (xi, xj) indicates a similarity measurement between xi
and xj while σi is the average similarity between xi and each
of the other samples.

Secondly, we develop amethod to combine the information
of the two hypergraphs. Specifically, we associate each hyper-
graph with a natural random walk [11]. Then the transition
probabilities and stationary distribution of the hypergraphs
can be fused. We can conduct the laplacian matrix of the
fused hypergraph with the fused transition probabilities and
stationary distribution.

Let T and 5 denote the transition probability and sta-
tionary distribution matrix of this hypergraph random walk,
respectively. t(u, v) andπ (v) are each entry of T and5, which
can be denoted as:

t(u, v) =
∑
e∈E

w(e)
h(u, e)
d(u)

h(v, e)
δ(e)

(6)

π (v) =
d(v)
vol(V )

(7)

where vol(S) of S is the sum of the degrees of the vertices
in V , that is, vol(S) =

∑
v∈V d(v). Then we can explain the

multiple hypergraph cut in terms of a randomwalk as follows:

β1(u) =
απ1(u)

απ1(u)+ (1− α)π2(u)
(8)

β2(u) =
(1− α)π2(u)

απ1(u)+ (1− α)π2(u)
(9)

Here βi(u) is the weight coefficient of the i−th hypergraph.
The parameter α is used to specify the relative importance
of each hypergraph during fusion. Then we can define fused
transition probabilities and stationary distribution as:

t(u, v) = β1(u)t1(u, v)+ β2(u)t2(u, v)

π(v) = απ1(v)+ (1− α)π2(v) (10)

Nowwe can clearly find that the above formulation of tran-
sition probability and stationary distribution are not simply
a linear combination on each hypergraph. Then we can get
the laplacian matrix of the fused hypergraph by the following
equation:

Lp = 5−
5P+ PT5

2
= α51(I − T1)+ (1− α)52(I − T2) (11)

The information of the feature space and the label space
can be integrated by the fusion of corresponding hypergraphs.
We apply the fused information of feature space and label
space which is encoded in the laplacian matrix to directly
design the embedding model. Formally, this smoothness
assumption can be expressed using the fused hypergraph
Laplacian regularizer:

Rp(Z ,Lp) = tr(ZLpZT ) (12)

D. CONSENSUS PRINCIPLE
(DISCRIMINANT COMPONENT)
To capture the consensus between feature space and
label space, we design the consensus regularization term
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Rs(Wp,We) from the two following parts. The first part is to
apply the classical metric learning method NCA [15], [16]
to both feature space and label space. In the second part,
we project the samples of the feature space and label space to
their corresponding low-dimensional space with the transfor-
mationmatrixWp andWe, respectively. Thenwe constrain the
correlation between instances in the feature space and label
space to be consistent.

Through the above operations, the similar samples in both
original feature space and label space will be closer in the
latent space while dissimilar ones are far apart, which effec-
tively enhances the discriminant ability of our embedding
method.

Formally, the consensus regularization can be expressed as
follows:

Rs(Wp,We) =
K∑
k=1

N∑
i=1

∑
j∈ki

(pij + eij)+ ‖P− βE‖2F (13)

where the each entry of P and E are defined as follows:

pij =
exp(−‖W T

p xi −W
T
p xj‖

2
2)∑

l 6=i exp(−‖W T
p xi −W T

p xl‖
2
2)

(14)

eij =
exp(−‖W T

e yi −W
T
e yj‖

2
2)∑

l 6=i exp(−‖W T
e yi −W T

e yl‖
2
2)

(15)

Following the above consideration, the overall objective
function for our multi-label classification model is obtained
as follows:

min
Wp,We,Z ,Lp

‖W T
p X − Z‖

2
F + ‖W

T
e Y − Z‖

2
F

+λ1tr(ZLpZ )

+λ2(
n∑

k=1

N∑
i=1

∑
j∈ki

(pij + eij)

+‖P− βE‖2F )

s.t. ZTZ = I (16)

where Lp is the normalized Laplacian matrix of the fused
hypergraph.

E. OPTIMIZATION
Note that directly minimizing the objective function in
Eq.(16) is intractable. The orthogonal constraint is noncon-
vex, which makes the problemmore challenging to be solved.
Accordingly, we provide an iterative algorithm with Cayley
transformation [17] to update these variables to reach a local
minimum.

1) UPDATE Lp

The hyperedges generated from the original training data
may result in an inaccurate hypergraph. To deal with this,
we design to learn the hyperedges from low-dimensional
training data, whose redundant and irrelevant label space
information have been removed as much as possible [18].
Next we will describe in detail how to update Lp:

More specifically, we generate the hyperedge ei by the
following formulation [11]:

ei = {vj|θ (W T
e yi,W

T
e yj) ≤ 0.1σ̃i}, i, j = 1, . . . , n (17)

where σi is the average similarity betweenW T
e yi and each of

the other low-dimensional samples.
For Lp, we use the low-dimension training data to conduct

the hypergraph on label space. Then the hypergraph based on
labels H l will be updated correspondingly. We conduct the
transition probability and stationary distribution on hyper-
graph H l , then the confused laplacian matrix Lp will be
updated correspondingly.

2) UPDATE Wp,We

WithWe,Z and Lp fixed, the problem in Eq.(16) reduces to:

min
Wp
‖W T

p X − Z‖
2
F + λ2(

K∑
k=1

N∑
i=1

∑
j∈ki

pij

+

N∑
i=1

N∑
j=1

(pij − βeij)2) (18)

We define GWp as the gradient with respect to Wp. It can
be computed as follows (denote xij = xi − xj):

GWp = 2W T
p XX

T
− 2ZXT

−2λ2W T
p (

K∑
k=1

N∑
i=1

∑
j∈ki

mij

−

N∑
i=1

N∑
j=1

mij(pij − βeij)) (19)

where:

mij = pij(xijxTij −
∑
l 6=i

xilxTil pil) (20)

The gradient corresponding to We can be similarly
obtained as follows:

GWe = 2W T
e YY

T
− 2ZY T

−2λ2W T
e (

K∑
k=1

N∑
i=1

∑
j∈ki

nij

−

N∑
i=1

N∑
j=1

nij(pij − βeij)) (21)

where:

nij = eij(yijyTij −
∑
l 6=i

yilyTil eil) (22)

We use a stochastic batch update per element and a
non-linear conjugate gradient update.

117600 VOLUME 9, 2021



K. Wang: Robust Cross-View Embedding With Discriminant Structure for Multi-Label Classification

3) UPDATE Z
WithWp,We and Lp fixed, the problem in Eq.(16) reduces to:

min
Z
‖W T

p X − Z‖
2
F + ‖W

T
e Y − Z‖

2
F

+λ1(ZLpZT )

s.t. ZZT = I (23)

Motivated by COE [5], we adopt the Optimization with
Orthogonality Constraints [19] to get a local optimal solution
of Z . Specifically, the details of this step can be adapted
from [5], [19].

With the above derivations, we can learn RCEDS by gradi-
ent optimization, and the pseudo code of training is summa-
rized in Algorithm 1.

Once the learning of RCEDS is complete, label prediction
of a test input can be easily achieved by the nearest neighbor
algorithm and the pseudo code of prediction is summarized
in Algorithm 2.

Algorithm 1 Training Process of RCEDS
Input: Feature matrix X , label matrix Y , parameter λ1, λ2
and dimensionM of the latent space
Output:Wp, We
Randomly initializeWp, We, Z
repeat
repeat
Construct hypergraphs based on X and Y , obtain Lp

Update Z by Curvilinear Search Algorithm based on
Cayley Transformation
Perform gradient descent onWp by Eq.(19)
Perform gradient descent onWe by Eq.(21)
Update Lp with the new label hypergraph H l gener-
ated by Eq.(17)

until Converge
until Converge

F. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational cost of the proposed RCEDS is analyzed
in this section. We apply mini-batch gradient descent to each
loss term for updating the parameters. We denote r and k as
the number of samples in each random block and the number
of iterations. For simplicity, we assume that N � d > r and
K > M holds in the real-world applications.
The computation of training RCEDS includes three main

parts, updating Z , updatingWp and We, updating Lp.
(1) In the process of updating Z , calculating Lp requires

O(kr2K ), then the computational cost ofGZ requiresO(kr3).
(2) In the process of updating Wp and We, calculating

GWp and GWp requires O(krMK ) and O(Mdkr). Then the
computational cost of G requires O(krMd).
(3) In the process of updating Lp, the most time-consuming

part is calculating transition probability T corresponding to
the hypergraph of the feature space and it requires O(krd2).
Thus, the overall training cost of RCEDS is O(krd2). The

computational complexity is acceptable and our proposed

Algorithm 2 Predicting Process of RCEDS
Input: Label matrix Y , Wp, We, testing example x̂
Output: Prediction ŷ
Computing the embedding of Y as Z = W T

e (Y )
Obtain the predicted vector ẑ = W T

p (x̂)
Find zq ∈ Z such that d(zq, ẑ) is the smallest
Attach the yq to x̂ as its label vector

RCEDS is able to handle multi-label applications with many
labels.

G. DEEP EXTENSION FOR RCEDS
With the development of deep learning, the deep features
of the image are significantly better than other features.
We hope to effectively use the deep features of the image to
better improve the performance of themodel. Benefiting from
the strong representation ability of deep neural networks,
we can extend the learning process of RCEDS to a nonlinear
scenario [20].

Assume there is a neural network g : Rd → Rdm , embedd-
ing a d-dimensional object to a dm-dimensional middle space.
Based on the transformed representation, linear weightsWp ∈

Rdm×M is constructed to project the embedding to the latent
space. Specifically, for a pair of instances (xi, xj), we com-
pute their distance in the latent space as Dis2(xi, xj) =
‖Wpg(xi)−Wpg(xj)‖2F . The deep feature describes the images
more accurately and can more effectively characterize the
distance between instances. In the implementation, we use
VGG network [21] pretrained on ImageNet 2012 classifica-
tion challenge dataset [22] to instantiate the function g(·).

IV. EXPERIMENTS
A. DATASETS AND SETTINGS
To validate the proposed Robust Cross-view Embedding
with Discriminant Structure for multi-label classification
(RCEDS), we download eight benchmark datasets in different
domains with a relatively large number of labels for exper-
iments, i.e., cal500, delicious, EUR-Lex (subject matters),
mediamill, Corel5k, iaprtc12, ESPGame and NUSWIDE
from Mulan [23]. The statistics of the eight real world
datasets are summarized in Table 1. For the datasets of text
and video (cal500, delicious, EUR-Lex (subject matters),
mediamill), we use traditional features from Mulan [23].
For the datasets of image (Corel5k, iaprtc12, ESPGame,
NUSWIDE), we extract 4096-dimensional deep features
by using the 16 layers VGG network [21] pretrained on
ImageNet 2012 classification challenge dataset [22] with
MatConvNet. We didn’t perform any fine-tuning for the sake
of fairness and computational efficiency.

In the multi-label learning problem, since each sam-
ple may have multiple category labels at the same time,
the single-label evaluation metrics cannot be directly used
for the performance evaluation of the multi-label learning
system. Therefore, researchers have successively proposed
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a series of multi-label evaluation metrics. Here we consider
four evaluation metrics, i.e., Macro-F1, Micro-F1, One-error
and Ranking loss, which are widely used in multi-label learn-
ing to evaluate the prediction performance. Based on the
symbolic representation in the problem definition, we denote
yi as the set of related labels belonging to the sample xi, then
in order to characterize the binary classification performance
of the predictors on each label, four basic quantities related
to the test sample are usually used: TPj (true positive), FPj
(false positive), TNj (true negative) and FNj (false negative).

macro-F1 =
1
n

n∑
j=1

2TPj
2TPj + FNj + FPj

(24)

micro-F1 =

2
n∑
j=1

TPj

2
n∑
j=1

TPj +
n∑
j=1

FNj +
n∑
j=1

FPj

(25)

one-error =
1
m

m∑
i=1

{[argmaxy∈Y f (xi, y)] /∈ yi} (26)

ranking loss =
1
m

m∑
i=1

1
|yi||ȳi|

|(y′, y′′)|

×f (xi, y′) 6 f (xi, y′′), (y′, y′′) ∈ yi × ȳi|

(27)

Here, ȳi is the complementary set of yi in Y . For Macro-F1
and Micro-F1, larger the values, better the performance. For
One-error and Ranking loss, smaller values indicate better
performance. The definitions of the four metrics can be found
in [1].

TABLE 1. Datasets properties.

In our experiments, we compare our proposed approach to
the following state-of-art multi-label classification methods:
Feature-aware Implicit label space Encoding (FaIE) [9],
Sparse Local Embeddings for Extreme Classification
(SLEEC) [10], Canonical-Correlated Autoencoder (C2AE)
[3], Cost-sensitive Label Embedding with Multidimensional
Scaling (CLEMS) [4] and Co-Embedding (CoE) [5]. We also
report the results of some baseline algorithms, such as Binary
Relevance (BR) [24], Classifier Chain (CC) [25] and Deep
Canonical Correlation Analysis (DCCA) [26].

Our experiment consists of two main parts. The first part
is Prediction Performance on Datasets of Music, Text and

Video with Traditional Feature, which mainly proposed to
verify that our method has great classification performance
and anti-noise property. The second part is Prediction Perfor-
mance on Datasets of Image with Deep Extension. which pro-
posed to verify the deep expansion of the proposed RCEDS
and verify that our method can also achieve good results in
image multi-label classification. In addition, we also give
Prediction Performance under Varying Degrees of Noise and
Efficiency Analysis.

To select the parameters for these methods, we randomly
hold one-fifth of training data in every dataset for vali-
dation. We choose linear classification/regression package
LIBLINEAR with l2-regularized logistic regression as the
classifier for BR. Specifically, α in FaIE is selected from
[10−1, 100, · · · , 104], and we use linear ridge regression to
learn predictive models from instance to code vectors. Fol-
lowing the experimental setting, we set the number of clusters
as bn/6000c and the number of learners as 15 for SLEEC. For
the method CLEMS, we set the critical as F1-score because
our two metrics are both connected with F1-score. For the
architecture of DCCA, DCVE, we follow the [3] to set Fp
composed of 2 layers of fully connected layer structures while
the embedding function Fe is a single fully connected func-
tion. For each fully connected layer, a total of 512 neurons are
deployed. A leaky ReLU activation function is considered,
while the batch size is fixed at 200. We select λ1 and λ2
from {10−10, 10−9, · · · , 1010}. We combine the analysis of
specific data sets and local grid search to select these two
parameters. All the experiments are performed on a 64-Bit
Linux workstation with an Intel E5-2650 CPU, an NVIDIA
Titan X Pascal card and 256GB memory.

B. PREDICTION PERFORMANCE ON DATASETS OF MUSIC,
TEXT AND VIDEO WITH TRADITIONAL FEATURE
We perform RCEDS, CLEMS, SLEEC, FAIE, BR and CC
on the datasets of text and video with different values of
M/K (from 20% to 100%) where M and K are respectively
the dimensions of the latent space and the original label
space. Figure 2(a) illustrates and compares the performances
of the above methods on noisy datasets. To generate the
noisy datasets, we randomly choose 10% elements from
each sample and replace them with random values [27].
Figure 2(b) illustrates and compares the performances of the
above methods on clean datasets. From Figure 2, we can
see that our RCEDS method performed favorably against
most label embedding methods in most cases on both noisy
and clean datasets, which well demonstrates its effectiveness.
From the experimental results, we can draw the following
interesting observations:

(1) The proposed RCEDS significantly outperforms
most of the baselines on the four datasets. For example,
on cal500 in Figure 2(a), our method improves the best results
of the baselines by 6.2% (Macro-F1), 7.8% (Micro-F1),
which validates our theoretical results.

(2) From Figure 2(b), we can see that the proposed
method is significantly better than the current multi-label
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FIGURE 2. Performance comparisons in terms of Macro-F1, Micro-F1, One-error and Ranking loss with different latent space
dimension ratios (M/K) on datasets of music, text and video with traditional feature.
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FIGURE 3. Performance comparisons in terms of Macro-F1, Micro-F1, One-error and Ranking loss with different latent space
dimension ratios (M/K) on datasets of image with deep extension.

embedding methods when dealing with noisy data, which
shows that our proposed RCEDS has strong anti-noise
ability.

(3) When the ratio of M/K is above 40%, the result is
basically stable. We can use a lower-dimensional space to
preserve the information of the original space effectively
by extracting the information of all labels. It reflects that
our method can effectively mine the hidden structure of the
original label space.

(4) The CLEMS method does not take the feature space
into consideration when conducting label embedding, which
makes the latent space learned by it fail to have enough
predictability. The COE method has relatively weak discrim-
inability and limited ability to be against noise. Compared
with them, with a capability of learning a more robust and
discriminative latent space which has stronger predictability,
our RCEDS can solve the problems mentioned above very
well.
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FIGURE 4. Convergence curce of the proposed RCEDS on Corel5k.

We can clearly see that our method performs well on the
datasets in different fields because our decoding function is
robust and matches well with the encoding function.

C. PREDICTION PERFORMANCE ON DATASETS OF IMAGE
WITH DEEP EXTENSION
We perform RCEDS-deep, C2AE, DCVE and DCCA on the
datasets of image with different values ofM/K (from 20% to
100%) and the results are illustrated in Figure 3(a). Besides,
we present a case study in which the proposed method
is applied to a multi-label image annotation application.
RCEDS is applied on the famous IAPRTC-12 dataset and the
annotation results of several randomly selected images are
illustrated in Figure 3(b). From the Figure 3, we can draw
the following interesting observations:

(1) The proposed RCEDS with deep extension, which can
effectively explore and utilize consistency and complemen-
tarity between a feature space and a label space, is obviously
superior to other methods based on deep learning from many
aspects, one of which, for example, is the outperformance in
preprocessing image datasets.

(2) The proposed RCEDS correctly predicts most labels for
these images and our method can even find the labels missing
in the ground truth annotations. For example, our method tags
the image in Row 2, Column 4 with the label ’grass’ missed
in the ground truth. The performance on multi-label image
annotation applications suggests that our methods can work
well in the image annotation applications.

To further verify the effectiveness of our derived deep
latent space, we consider several example labels from
ESPGame and list their corresponding neighboring ones
in Table 2. From this table, we see that the neighboring labels
observed in the latent space exhibit highly correlated seman-
tic information. This confirms our RCEDS is sufficiently
exploiting label dependency during the learning process.

D. CONVERGENCE ANALYSIS
In this section, we empirically study the convergence of the
proposed RCEDS. The convergence curves of RCEDS on
Corel5k dataset with M/K = 0.8 are plotted in Figure 4.

TABLE 2. Visualization of embedded labels for ESPGame.

FIGURE 5. Prediction Performance under varying degrees of noise.

As can be seen in the figure, the objective converges
quickly in a few iterations. We omit the results generated
on other datasets since they are similar with the observation
in Figure 4.

E. PREDICTION PERFORMANCE UNDER VARYING
DEGREES OF NOISE
In order to better reflect the efficient performance of our
method being against noise, we conduct experiments with
varying degrees of noise interference. To generate the
noisy datasets, we randomly choose different proportion
(from 0% to 50%) elements from each sample and replace
them with random values [27]. Here we have chosen the
cal500 and Corel5k datasets to conduct experiments with
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FIGURE 6. Effects of λ1, λ2 in RCEDS on the performance of multi-label
classification on cal500.

FIGURE 7. Effects of λ1 on varying degrees of noise in RCEDS with a fixed
λ2 on the performance of multi-label classification on cal500.

different levels of noise interference and show the result
in Figure 5.

F. PARAMETER ANALYSIS
Furthermore, we conduct experiments to see the effects of
two parameters λ1, λ2 in the proposed RCEDS. Figure 6
gives an illustration of the variances of multi-label
classification performance (Micro-F1) as λ1, λ2 vary in
{10−10, 10−8, · · · , 1010} in a run on cal500withM/K = 0.2.
We conduct experiments to see the effects of complemen-

tary principle regularizer in dealing with noise. Figure 7 gives
an illustration of the variances of multi-label classification
performance (Micro-F1) with a fixed λ2. These two regu-
larizers enhance the learned latent space from two different
perspectives: discriminability and robustness. Thus, with the
absence of any one of them, the performance will drop.
When analyzing the individual effect of these two regular-
izers, specially, from the experimental results in Figure 6 and
Figure 7, we can draw the following interesting observa-
tions: when the noise is relatively weak, the complementarity

regularizer has a weak influence, and the consensus regu-
larizer has a better performance in alleviating the negative
effect brought by it; when the noise is relatively strong,
the complementarity regularizer will play a dominant role
in dealing with noise through the high-order relationship.
Nevertheless, whatever the scene is, the consensus regularizer
can dramatically improve the discriminability of themodel by
the metric learning embedded in it.

V. CONCLUSION
In this paper, we propose Robust Cross-view Embed-
ding with Discriminant Structure for multi-label classi-
fication (RCEDS) to solve the problem of multi-label
classification. RCEDS deals with noisy datasets by using the
hypergraph fusion technique which explores and utilizes the
complementary between a feature space and a label space.
The accurate information in the feature space can correct the
label space noise to improve the robustness of our model
effectively. Meanwhile, the double-side metric learning is
conducted to explore the consistency between the feature
space and the label space, utilizing consensus effectively to
improve the discriminative ability of our embedding method.
Furthermore, we conduct a deep extension for our proposed
RCEDS, which proves that in the method have an outstanding
performance in the application of image annotation. The
experiment results demonstrate that RCEDS is superior to
state-of-the-art label embedding algorithms in many cases.

There are many interesting future works. For example, our
proposed RCEDS may be extended to deal with multi-modal
datasets. Dealing with multi-modal multi-label data in the
process of learning semantic latent space is an interesting
issue to be studied in the future.
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