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ABSTRACT In many optimization problems, the main goal is to improve a single performance index
in which a minimum or maximum value of this index fully reflects the quality of the response obtained
from a system. However, in some cases, it is impossible to rely solely on a single index, so a multi-
objective optimization problem with multiple performance indicators is considered where the values of
all of them should be optimized simultaneously. The mentioned process requires a multi-objective opti-
mization algorithm that can deal with the complexity of problems with simultaneous indexes. This paper
presents the multi-objective version of a recently proposed metaheuristic algorithm called Crystal Structure
Algorithm (CryStAl) which was inspired by the principles underlying the formation crystal structures. For
the performance evaluation of this algorithm which is called MOCryStAl, the benchmark problems of
the Completions on Evolutionary Computation (CEC) on multi-objective optimization, called CEC-09, are
utilized. Some real-world engineering design problems are used to evaluate the efficiency of the proposed
approach. The results demonstrate that the proposed methods can provide excellent results in dealing with
the considered multi-objective problems.

INDEX TERMS Multi-objective optimization, metaheuristic, crystal structure algorithm (CryStAl), com-

pletions on evolutionary computation (CEC), real-world engineering design problem.

I. INTRODUCTION

Optimization is the art of finding the best answer among a set
of possible solutions under some predefined conditions. It is
used for decision-making in various areas such as engineer-
ing, management, economics, and finance [1]-[4]. The com-
plexity and interdependency of advanced engineering sys-
tems require an analyst with, at least, a general understanding
of the system to assist in the optimization of production,
laboratory, store, or service system. Besides, the interaction of
the subsystems should be considered in the study of a system
to ensure its integrity and optimality. In addition, the tech-
nical specifications and limitations of system components
as well as existing uncertainties should be determined and
considered when defining the sought-after goals. These goals
often require multidisciplinary optimization and modeling
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approaches to obtain design solutions. Metaheuristic algo-
rithms are a type of searching techniques in which some
upper-level strategies are utilized for finding the best solution
to a problem. Genetic Algorithm (GA) [5], Particle Swarm
Optimizer (PSO) [6], Ant colony Optimization (ACO) [7],
Chaos Game Optimization (CGO) [8], Atomic Orbital Search
(AOS) [9], Dynamic Water Strider Algorithm (DWSA) [10],
Material Generation Algorithm (MGA) [11], Stochastic Paint
Optimizer (SPO) [12], Flow Direction Algorithm (FDA) [13],
Advanced Charged System Search (ACSS) [14], and Hybrid
Invasive Weed Optimization-Shuffled Frog-leaping Algo-
rithm (IWO-SFLA) [15] are some well-known metaheuristic
algorithms. Besides, some of the improved and hybridized
metaheuristics have also been proposed for different appli-
cations [16]-[28].

Multi-objective optimization is an area of multi-criteria
decision-making in which multiple objective functions need
to be optimized simultaneously. Multi-objective optimization
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FIGURE 1. Position updating processes of cubicles containing different crystals.

TABLE 1. Parameters setting of all algorithms.

Parameters MOPSO MSSA MOMVO MOCryStAl
Mutation Probability (P,, or pro) 0.5 - - -
Population Size (Npqp) 100 100 100 100
Archive Size (Npep or TM) 100 100 100 100
Number of Adaptive Grid (Ngriq) 30 30 30 30
Personal Learning Coefticient (C;) 1 - - -
Global Learning Coefficient (C5) 2 - - -
Inertia weight (w) 0.4 - - -
Beta 4 4 4 4
Gamma 2 2 2 2

is also known by other names such as multi-objective pro-
gramming, vector optimization, multi-criteria optimization,
multi-attribute optimization, and Pareto optimization. Multi-
objective optimization methods are used in many branches
of science and engineering. These methods are particularly
used to achieve optimal decisions in problems in which
striking a balance between two or more conflicting goals is
in perspective. In most engineering applications, processes,
and systems, designers make decisions based on different
conflicting goals. For example, in a typical vehicle design
process, in addition to aiming to achieve the highest attain-
able performance, engineers make effort to minimize fuel
consumption and environmental pollution at the same time.
In such cases, because more than one objective functions must
be considered, it is necessary to consider the application of
multi-objective optimization methods. The most important
feature of such methods is that they provide system engineers
and designers with more than one candidate solution (i.e.
a possible answer to the problem) each of which will show
the balance between the different objective functions.

In recent decades, researchers have proposed the multi-
objective versions of some well-known metaheuristic algo-
rithms where the searching techniques of corresponding
single-objective algorithms have been modified to deal with
multiple objective functions. The multi-objective version of
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the Genetic Algorithm (GA) [29] as Non-Dominated Sort-
ing Genetic Algorithm (NSGA), proposed by Srinivas and
Deb, alongside the improved version of this method called
NSGA-II [30], are amongst the primary multi-objective opti-
mization methods in the area of evolutionary computation.

Furthermore, researchers in the field of artificial intelli-
gence have proposed a range of multi-objective developments
such as the Multiple Objective Particle Swarm Optimiza-
tion (MOPSO) by Coello and Lechuga [31], Multi-Objective
Evolutionary Algorithm (MOEA) by Zhang and Li [32],
Multi-Objective Ant Colony Optimization (MOACO) by
Alaya et al. [33], and Multi-Objective Simulated Annealing
(MOSA) by Smith er al. [34]. Besides, the multi-objective
versions of some other recently proposed metaheuris-
tic algorithms have also been proposed, such as the
multi-objective seagull optimization algorithm [35], multi-
objective forest optimization algorithm [36], multi-objective
whale optimization algorithm with differential evolu-
tion [37], multi-objective crow search algorithm [38], and
Multi-objective Slap Swarm Algorithm (MSSA) [39].

Based on the Crystal Structure Algorithm (CryStAl)
developed recently by Talatahari et al. [40], here we pro-
pose the multi-objective version of CryStAl, abbreviated
as MOCryStAl, as a multi-objective metaheuristic algo-
rithm. In this algorithm, the geometric principles of crystal

VOLUME 9, 2021



N. Khodadadi et al.: MOCryStAl: Introduction and Performance Evaluation

IEEE Access

Algorithm 1 Pseudo-Code of CryStAl [19]

Algorithm 2 Pseudo-Code of MOCryStAl

procedure Crystal Structure Algorithm (CryStAl) '
Create random values for initial positions (xf)
of initial crystals(Cr;)
Evaluate fitness values for each crystal
while (t < maximum number of iterations)
Jor i = 1: number of initial crystals
Create Crygin
Create new crystals by Eq. 4
Create Cry
Create new crystals by Eq. 5
Create F.
Create new crystals by Eq. 6
Create new crystals by Eq. 7
if new crystals violate boundary conditions
Control the position constraints for new
crystals and amend them
end if
Evaluate the fitness values for new crystals
Update Global Best (GB) if a better solution
is found
end for
t=t+1
end while
Return GB
end procedure

structures, including the concepts of lattice and basis in the
configuration of crystals, are in perspective. For the perfor-
mance evaluation of this algorithm, the benchmark problems
of the Completions on Evolutionary Computation (CEC) on
multi-objective optimization, called CEC-09 [41], are uti-
lized. Some real-world engineering design problems are used
to evaluate the efficiency of the proposed approach. The
results demonstrate that MOCryStAl is capable of provid-
ing excellent results in dealing with the considered multi-
objective problems.

A. CRYSTAL STRUCTURE ALGORITHM (CryStAl)

Crystalline solids and their rich structural symmetries have
inspired the conception and design of many man-made struc-
tures, mechanisms, and artworks [42]-[54]. The crystal struc-
ture algorithm (CryStAl) is a recently proposed metaheuristic
algorithm in which the geometric principles of crystal struc-
tures are in perspective. As described in [40], the Bravais
model is one of the frequently referenced configurations of
crystals in which a periodic crystal structure is determined by
an infinite lattice shape in which any lattice point is defined
by the positions of related lattice points with a vector r =
> nja;, where n; is an integer, a; is the shortest vector along
the principal crystallographic directions, and 7 is the number
of crystal corners. At first, the initialization process of the
algorithm is formulated in which a random generation of the
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procedure Multi-Objective Crystal Structure
Algorithm (CryStAl) '
Create random values for initial positions (x{) of
initial crystals(Cr;)
Evaluate fitness values for each crystal
find The GB
obtain The non-dominated answers and create the archive
while (t < maximum number of iterations)
Jor i = 1: number of initial crystals
Create Crygin
Create new crystals by Eq. 4
Create Crp
Create new crystals by Eq. 5
Create F,
Create new crystals by Eq. 6
Create new crystals by Eq. 7
if new crystals violate boundary conditions
Control the position constraints for new
crystals and amend them

end if
Evaluate the fitness values for new crystals
end for
evaluate The objective function for all crystals
obtain The non-dominated solution answers
update The archive according to the found non-

dominated answers
If the archive is full
use the grid mechanism to delete the cur
rent archives
add the new answer to the archive
endif
If any of the new added solutions to the
archive is located outside the hypercubes
update the grids
endif
t=t+1
end while;
Return Archive
end procedure

initial candidate solutions are determined as follows:

[Cry] _xll xl2 x{ xfl_
Crp le x% sz x2d
: S i=12,...,n
Cr: . — . . . .' . . , el 9 b
Cr; xl.l )ci2 x{ xlf’l {j:l,Z,...,d
[ Cr Lx) x2 X cooxd ]
(D
. / : / i=],2,...,n
xz/(o) =X; min + é:(xz/‘,max - xi,min)’ :] =1.2.....d 2
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TABLE 2. Bi-objective CEC-09 benchmark functions.

Function Mathematical formulation D Range
fi= Z [x sin(6mx; + )]2, f=1- \/?+iZ[x- — sin(6mx, +j—ﬂ)]2 x1 € [0,1]
UF1 MA / Val & ! n 30 x; € [-1,1]
{]l]tsoddand2<j<n} ={jljisevenand 2 <j < n} i=1..,D
fi=x |]|Zy, \/_+m2yf
Jj€l JEJ2
Ji={ljisodd and 2 < j < n}, ]2 {jlj is even and 2 <] <n} x; € [0,1]
UF2 30 x; € [-1,1]
— [0.3x? cos( 24mx, + T) + 0.6x;] cos(6mx; + I)ifj (SYA i=1,..,D
%= , 4jm jm
x; — [0.3x{ cos( 24mx; + T) + 0.6x,] cos(6mx; + ;)lf] €]/,
20
fi=xti ¢ (48 en ¥ — 2Ty, cos(=) +2)
y}
UF3 ‘/—+ (4ny 21_][“’5( )+2) 30 x €[0,1]
J€J2
05(10+22)
J; and J; are the same as those of UF1; y; = x; — x; , J=23,...,n
2 2
f=x b ) hO), f= 1= x Y )
[l 4 /21 4
j€h Jj€J2 ] x1 € [0,1]
. . . ’
UF4 J1 and J, are the same as those of UF1; y; = x; — sin(6mx; + ]:), j=23,..,n 30 x; € [-2,2]
It i=1,..,D
h® =1 em
1 2
fu=x: + G + &)l sin(2Nmx)| + WZ h(y,)
fi=1—x+ ( + &)| sin(2Nmx)| + — Z h(y;) x1 € [0,1]
UFS Val & 30 x; € [-1,1]
J1 and J, are identical to those of UF1; & > 0, y; = x; — sin(6mx; +%T), j=23...,n i=%..,.D
h(t) = 2t? — cos(4mt) + 1
fi = x; + max{0, 2(— +¢)| sin(2Nmx,)} + ( Z yj 2 l_[ cos( \}}f )+ 1))
J€J1
Oy x; € [0,1]
J
A —
UF6 fo=1-— x1+max{02( +£)|sm(2Nnx1)} (42}1] ZHCOS( )+ 1)) 30 x; € [-1.1]
J, and J; are identical to those of UF1; € > 0, y; = x; — sin(6mx; + :), j=23,...,n
5 2 2 5 2 2
A=A ) R 1=t ) [, € [0.1]
UF7 2 jen 2 jeh _ 30 x € [L1]
J; and J; are identical to those of UF1; € > 0, y; = x; — sin(6mx; + %), j=23,...n i=1..,D

where n is the number of initial candidate solutions or crys-
tals, d is the dimension of the problem x’ (0) is the initial

position of the crystals; xl min and xl max are the minimum
and maximum bounds in the considered problem; and & is
arandomly generated number in the interval of [0,1].

Based on the concept of ‘basis’ in crystallography, all
the crystals at the corners are considered as the main
crystals, Crygin, determined randomly by considering the
initially-created crystals (candidate solutions). It should be
noted that the random selection process for each step
is determined by omitting the current Cr. The crystal
with the best configuration is determined as Cr, while
the mean values of randomly-selected crystals are denoted
by Fe.

117798

The position updating process for the crystals, in which the
basis and lattice principles are utilized, are presented in Fig.1,
where Cry,,, represents the new position, Cr, represents the
old position, and r, r1, r2, and r3 denote randomly-generated
coefficient.

A boundary control flag is determined for considering the
violating variables during the optimization process. In con-
trast, a maximum number of iterations or objective function
evaluation can be considered for termination purposes. The
pseudo-code of CryStAl is presented in Algorithm 1.

B. MULTI-OBJECTIVE CRYSTAL (MOCryStAl)
The Multi-Objective Crystal Structure Algorithm, abbrevi-
ated as MOCryStAl, is developed in this paper with the
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TABLE 3. Tri-objective CEC-09 benchmark functions.

Function Mathematical formulation D Range
2 . jm
f1 = cos(0.5x;m) cos(0.5x,m) + mz (xj — 2x, sin(2mx, + 7)2)
tieh
. 2 . jr
f> = cos(0.5x,m) sin( 0.5x,m) + — Z (xj — 2x, sin( 2mx, + —)?)
|]2|je]2 n x; € [0,1]
. x, € [0,1]
UF8 2 i3 30 2
f5 = sin(0.5x,7) + —Z(xj — 2x, sin( 2mx, +J—)2) x; € [-2,2]
Vsl & n i=1,.,D
J1 ={j|3 £j < n,andj — lisamultiplicationof 3}
J2 = {j|3 £j £ n,andj — 2isamultiplicationof 3}
Jz = {J|3 £ j < n,andjisamultiplicationof 3}
2 2 ; L
fi =0.5[max{0,(1+&)(1 —4(2x, — 1)*)} + WZ(xj — 2x, sin( 2mx, + 7) )
tieh 2 .
T
£, = 0.5[max{0, (1 + £)(1 — 4(2x, — 1)2)} + 2x,]x, + mZ(xj — 2x, sin(2mx, +%)2)
) ] 2 jer x, €[0,1]
: T x, € [0,1]
UF9 =1—-x +—Z x; — 2x, sin( 2mwx; +—)? 30 2 >
5 z |13|].E]3( )~ 2 sin(2ma 45097 x; €[-2.2]
J1 = {13 <j < n,andj — lisamultiplicationof3} i=1,..,D
J» = {j|3 £ j < n,andj — 2isamultiplicationof 3}
Js = {jI3 <j < n,andjisamultiplicationof3}, € =0.1
2
f1 = cos(0.5x;m) cos(0.5x,m) + mZ[élyjz —cos(8my;) + 1]
21 JEJL
fo = cos(0.5x;m) sin( 0.5x,m) + —2[4)/]-2 — cos(8my;) + 1]
/2] 4 x; € [0,1]
2 h € [01]
UF10 f3 = sin(0.5x, ) + mzp}yjz — cos(8my;) +1] 30 x-ZE [_272]
L >
*tjers i=1,..,D
J1 = {j13 £j £ n,andj — lisamultiplicationof3}
J. = {jI3 < j £ n,andj — 2isamultiplicationof 3}
Jz = {j|3 £ j < n,andjisamultiplicationof 3}

goal of solving some problems more effectively. In order
to perform multi-objective optimization by MOCryStAl,
we integrate three components. The employed components
are very similar to those of (MOPSO) by Coello and
Lechuga [31]. This algorithm has three capabilities for per-
forming multi-objective optimizations as follows:

(i) Archive: The archive contains all of the non-dominated
Pareto optimum responses collected so far. When a
solution is meant to be archived or the archive is full,
an archive controller is a vital component of the archive.
In addition, the archive will only accept a limited amount
of participants. Non-dominated solutions obtained up to
this step are compared to the existing archive during the
training process of an iteration.

(ii) Leader selection: The leader selection feature facilitates
the selection of the current best place solutions from the
archive as the leaders of the search process.

(iii) Grid mechanism: The grid mechanism features omit
one of the current archive members and adds the new
solution to the archive.
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The employed external archive effectively saves the best non-
dominated solutions obtained so far. The grid mechanism
and selection leader component maintain the diversity of the
archive during optimization. The probability of removing a
solution rises in direct proportion to the hypercube’s total
number of solutions (segments). If the archive is full, the most
crowded segments are chosen from which a solution is ran-
domly deleted to make space for the new solution. In an
exceptional circumstance, a solution is added outside the
hypercubes. In this situation, all components are extended
to include the new solutions. As a result, the components of
several alternative solutions can be changed.

In the hope of finding a solution that is close to the
global optimum, the search leaders guide the other search
agents to the more promising areas of the search space.
The solutions in a multi-objective search space, however,
cannot easily be compared due to the Pareto optimality
theories discussed above. The procedure for selecting lead-
ers addresses this problem. As previously stated, there is a
database of the best non-dominated solutions found recently.
The leader selection component chooses the least congested
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TABLE 4. Multimodal benchmark functions with fixed dimensions.

Function Mathematical formulation D Range
d
F 9
ZDTl | F, = x,, F2=g<1— / 1/g>, g=1+m2xi 30 | x €[0,1]
i=2
9 &
_ - — iy 32 = _Z ,
w2 | F=x, F=g(1-0"p?), g—1+d_1._2xl 30 | x €0l
9 &
ZDT3 | F=x, F=g <1 — [F/g = F1/gsin (101TF1)) g=1 +mz X 30 | x €01
i=2
x; € [0,1]
ZDT4 F =x,, F,=g <1 - Fl/ >, g=1+10d—-1)+ Z(x — 10cos (4mx;)) 10 x; € [-5,5]
i=1,..,D
2
ZDT6 | F, =1 — exp(—4x,)sin ®(6mx,),F, = g (1 - (Fl/g) ), g=1+ 9( )025 10 | x €01
T T\ . T
F,=(1+4g)cos <x1 (2)> cos (xz ( )) F, =(1+g)cos (x1 (2)> sin <x2 (E))
DTLZ2 a 12 | xe€[01]
T[
F,=04+9) sin<x1 3 >,g = Z(xi —0.5)2
i=3
7r ) T
F,=(1+g)cos (xf 3) | cos (x§I - ) F, =(1+g)cos (xl (2)> sin (x;’ (E)>
DTLZ4 a 12 | x €0,1]
n
F;=(1+g)sin <x1 3 ),g Z(xl —0.5)?
i=3

TABLE 5. Statistical results of the CEC-09 benchmark functions for the
IGD performance metric.

TABLE 6. Statistical results of the CEC-09 benchmark functions for the GD
performance metric.

Functions cilzonithin Algorithm
MOPSO MSSA MOMVO | MOCryStAl Functions g
Ave| 5.3291E-03 | 4.3420E-03 | 3.6662E-03 1.6280E-02 MOPSO MSSA MOMVO MOCryStAl
UFL op | 2.9590E-03 | 3.2262E-04 | 5.1992E-04 5.3280E-03 Upl | Ave | 27430E-02 [ 34966E-02 | 3.717SE03 | 13323E-01
Ave| 4.1586E-03 | 3.6126E-03 | 2.8279E-03 2.8179E-03 SD | 2.5390E-02 | 3.1994E-02 | 2.7354E-03 | 7.4915E-02
UF2 S—D 4.8128E-04 9.4827E-04 | 3.2623E-04 1.6863E-04 UF2 Ave 2.0656E-02 1.1215E-02 | 5.7929E-03 4.1005E-03
Ups |Ave| 1L7231E02 | L403E-02 | 1492SE02 | 1.2304E-02 ED ;‘gziéggz i;égggg zigfzggg ;zz;gigi
— ve . ~ . - . = o =
SD | LOSOGE-03 | 2.5380E-03 | 1.3921E-03 4.7659E-04 UF3 SD | 2.3482E-02 | 1.0267E-02 | 1.6501E-02 | 2.9560E-03
Urs |[Ave| 28277E-03 | 4.1039E-03 | 3.2478E03 | 2.0779E-03 Ave | 9.2957E-03 | 1.0169E-02 | 1.0073E-02 | 1.0003E-02
SD | 25695E-04 | 5.3604E-04 | 1.9370E-04 | 1.8818E-04 UF4 1= oD | 9.2862E-04 | 3.4790E-03 | 9.4967E-04 | 7.7198E-04
urs  |AYe 3.4235E-01 | 2.3030E-01 | 2.0559E-01 |  6.7967E-01 Ups | Ave | 42733E-01 | 282701 | 2.1457E-01 | 1.5649E-01
SD | 1.5317E-01 | 5.3692E-02 | 6.4855E-02 8.2121E-02 SD 2.9837E-01 1.5805E-01 | 6.2058E-02 2.2386E-01
Ave| 2.9255E-02 | 1.3870E-02 | 1.6393E-02 7.0633E-02 Ave | 2.0278E-01 | 1.1532E-01 | 3.3546E-02 | 7.5767E-01
UF6 b | 9.1394E-03 | 1.31506-03 | 6.8380E-03 |  1.3778E-02 UFS oD | 1.6569E-01 | 5.0468E-02 | 1.5241E02 | 1.1255E-01
Ave | 4.3417E-03 3.8381E-03 | 8.1363E-03 1.5255E-02 UF7 Ave 1.7938E-02 9.1316E-03 | 3.3843E-03 1.1190E-01
UFT  17op | 2.4234E-03 | 3.4544E-04 | 6.4896E-03 4.7925E-03 SD | 1.3813E-02 | 1.2322E-02 | 2.3377E-03 |  4.0419E-02
urs LA 9.2776E-03 | 8.0705E-03 | 4.9482E-03 1.2713E-03 UF8 ‘;]V; ;g;zgg; i;i&:igi Zggégggi zzgzggg;
SD | 16147E-03 | 4.1968E-03 | 22834E-03 1.0998E-03 UF9 Ave | 4.0311E-01 | 5.1960E-02 | 9.3547E-02 2.3578E-01
Upe | Ave| 1.2300E:02 | 1.1846E-02 | 43669E-03 | 1.2111E-02 SD | 7.9920E-02 | 2.1763E-02 | 5.1567E-02 | 6.3155E-02
SD | 2.9460E-03 | 9.5640E-03 | 7.8011E-04 3.7146E-03 Ave | 1.3828E+00 | 6.9388E-01 | 1.9043E-01 1.3534E-01
Ave| 6.3301E-02 | 1.5437E-02 | 1.1965E-02 | 7.1624E-03 UFI0 = on 1 21017601 | 2.0777B-01 | 1.4655E-01 |  1.3789E-01
UFI0 o 13765602 | 4.8236E-03 | 5.8420E-03 1.4274E-04

regions of the search space and offers the best particles as
non-dominated solutions. Each hypercube is chosen using
a roulette-wheel methodology expressed by the following
equation

P = 3

C
N;

117800

where C is a constant number higher than one and N is the
variety of acquired Pareto optimal answers in the ith section.

As can be concluded from Eq. (3), less congested hyper-
cubes have a higher probability of suggesting new leaders.
The chance of selecting a hypercube to select leaders from
improves as the number of obtained solutions in the hyper-
cube decreases. Importantly, the MOCryStAl approach is
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FIGURE 2. True and obtained Pareto fronts for the CEC-09 problems (UF1-5).

based on the CryStAl method for convergence. If one chooses
a solution from the archive, the CryStAl approach will
most likely be able to increase its already good consistency.
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However, finding the Pareto optimal solutions among a
large variety of responses is generally challenging. By using
archive maintenance with the leader function collection,
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FIGURE 3. True and obtained Pareto fronts for the CEC-09 problems (UF6-10).

the problems can be solved. The pseudo-code of MOCryStAl
is presented in Algorithm 2.

Il. RESULTS AND DISCUSSION

In this section, the efficiency of the suggested technique
is evaluated using performance measures and case studies,
including unconstrained and constrained bi- and tri-objective
mathematics (CEC-09) and real-world engineering design

117802

problems. The ability of multi-objective optimizers to han-
dle problems with non-convexity and non-linearity is tested
using these problems and mathematical functions. MATLAB
2021a was used to code the algorithm. On the computer,
the following features are used to carry out the current work:
the CPU is 2.3 GHz (an Intel Core i9 computer platform),
and the RAM is 16 GB 2400 MHz DDR4 with Macintosh
(macOS BigSur).
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TABLE 7. Statistical results of the CEC-09 benchmark functions for the
MS performance metric.

TABLE 10. Statistical results of the ZDT and DTLZ benchmark functions
for the IGD performance metric.

Functions Algorithm ! . Algorithm
MOPSO MSSA MOMVO | MOCryStAl Functions NGESH) IS MOMVO  MOCryStAl
up  fAvel 9.7019E-01 9-6206E-01 | 7.7791E-01 | 1.9321E+00 Ave | 8.0879E-04 | 4.5908E-03 | 1.5496E-03 | 2.3138E-04
SD | 3.8257E-01 1.1721E-01 | 1.7104E-01 | 1.6783E-01 DTl o o0 11201503 | 10733604 | 1.3159E05
ury [Ave| 1.2037E+00 | 1.2007E+00 | 9.7535E-01 | 1.3190E+00 Ave | 52023602 | 5.2059E-03 | 19238E-03 | 1.6173E-03
SD| 1.5132E-01 5.7151E-02 | 1.1893E-01 | 1.6796E-01 DT = 05007605 | 1.62205.03 | 51549504 | 1.0133E-04
ups  fAvel 13035E+00 | 1.0923E+00 | 1.9468E+00 | 1.0000E+00 Ave | 2.6241E-04 | 5.1290E-03 | 16411E-03 | 1.3612E-03
SD| 7.1625E-01 9.2630E-02 | 8.1063E-01 | 0.0000E+00 ZDT3 = T 3 0884E-05 | 8.9560E.04 | 2 15126-04 | 1.7230E.03
Urs  [Ave| 1.029SE+00 | 1.0049E+00 | 1.0315E+00 | 1.0515E+00 Ave | 70747E-01 | 1.8230E-01 | 24965E-01 | 8.8854E-01
SD| 2.9802E-02 | 8.6663E-03 | 1.3932E-02 | 2.3119E-02 ZDT4 175D | 3.1784E-01 | 9.5457E-01 | 1.3922E-01 | 1.0955E-01
UF5 Ave| 6.3155E-01 1.2035E+00 8.2445E-01 2.9287E+00 Ave 8.2281E-03 2.0670E-03 | 5.0062E-04 3.5820E-04
SD| 7.67SE-01 | 8.6410E-01 | 1.1108E+00 | 8.5137E-01 ZDT6  "Sh | 2.4862E-02 | 8.0527E-04 | 19857E-04 | 1.6232E-04
UFe |Avel 8.7827E-01 | 1.02985+00 | 4.5000E-01 | 3.9580E+00 DTLz2 |Ave | 4.6940E-04 | 3.0425E-03 | 8.6496E-04 | 6.8243E-03
SD | 1.2085E+00 3.7343E-02 4.3436E-01 1.8757E+00 SD 2.6098E-05 3.7517E-04 | 1.4210E-04 1.5835E-03
Up7  [Avel 1.0892E+00 | 1.0202E+00 | 6.3955E-01 | 1.4254E+00 DTLz4 | Ave | 1.6840E-03 | 8.3377E-03 | 4.0415E-03 | 1.8634E-02
SD | 2.5804E-01 4.9259E-02 | 3.9756E-01 | 5.0745E-01 SD 9.4057E-05 | 1.1001E-03 | 8.4951E-04 | 4.8505E-03
Urs  [Ave| SS04IE+00 | 9.3689E-01 | 14782E+00 | 3.6836E+00
SD| 1.4655E+00 | 2.1879E-01 | 9.9244E-01 | 9.6799E-01
UF9 Ave| 7.6184E+00 1.4259E+00 | 1.7140E+00 | 7.6701E+00 TABLE 11. Statistical results of the ZDT and DTLZ benchmark functions
SD | 1.6088E+00 | 4.8994E-01 | 6.9704E-01 | 1.5627E+00 for the MS performance metric.
UFlo  |Ave| 6.5767E+00 | 6.3441E+00 | 2.4780E+00 | 1.0993E+01
SD| 2.3597E+00 | 1.4704E+00 | 1.7208E+00 | 3.2403E+00
Functions Alzorithny
. . MOPSO MSSA MOMVO  MOCryStAl
TABLE 8. Statlstlc.al results of the CEC-09 benchmark functions for the S Ave | 9.9370E-01 | 9.0233E-01 | 9.2574E-01 | 9.9964E-01
performance metric. zbt1 SD | 2.3779E-02 | 1.0585E-01 | 8.6425E-01 | 1.4642E-02
: ZbT2  |Ave | 7431IE-02 | 7.7491E-01 | 9.4126E-01 | 2.8457E-01
Functions Algorithm SD | 2.3499E-01 | 1.0567E-01 | 1.9721E-02 | 4.2613E-01
MOPSO MSSA MOMVO | MOCryStAl ZbT3  |Ave | 9.986SE-01 | 8.7507E-01 | 1.2699E+00 | 1.3872E+00
UF1  JAve| 1.5649E-02 | 1.5649E-02 | 3.9366E-03 | 5.3134E-02 SD | 1.7888E-03 | 6.5264E-02 | 5.8528E-01 | 1.1748E-0l
SD | 9.9871E-03 | 9.9871E-03 | 1.6573E-03 | 2.1338E-02 ZbT4 | Ave | 4.6863E-01 | 1.4795E+00 | 1.6088E-01 | 9.4680E+00
UFz  |Ave| 1.856SE-02 | 1.856SE-02 | 8.2146E-03 | 3.3431E-03 SD | 1.4819E+00 | 1.7705E+00 | 7.1679E-02 | 9.5831E+00
SD | 3.1440E-03 | 3.1440E-03 | 3.5129E-03 | 1.0653E-03 7bT6 | Ave | LII70E+00 | 1.3361E+00 | 1.5084E+00 | 3.6306E+00
UFy  |Ave| 2.6957E-02 | 2.6957E-02 | 5.6488E-02 | 1.3653E-02 SD | 5.3983E-01 | 1.8535E-01 | 2.6233E-01 | 1.5512E+00
SD | 1.5713E-02 | 1.5713E-02 | 8.4649E-02 | 3.7988E-03 DTLZ2 |Ave | 1.0976E+00 | I.8014E-01 | 9.9553E-01 | 4.7022E+00
UF4  |Ave| LOIS2E-02 | 1.0I82E-02 | 8.2315E-03 | 1.0008E-02 SD | 9.0869E-02 | 1.6986E-01 | 8.1926E-02 | 5.2823E-01
SD | 1.7583E-03 | 1.7583E-03 | 4.7707E-03 | 1.2861E-03 Ave | 1.2437E+00 | 2.5352E-01 | 8.2379E-01 | 4.1525E+00
UFs  |Ave| 2.57S6E-02 | 2.5756E-02 | 6.0884E-03 | 2.3523E-01 DTLZA 17551 14187601 | 2.5166E-01 | 5.5562E-02 | 8.6314E-01
SD | 3.3090E-02 | 3.3090E-02 | 6.0779E-03 | 9.0539E-02
UFe  |Ave| 4.3768E-02 | 4.3768E-02 | 5.5990E-03 | 2.6542E-01
SD | 7.4660E-02 | 7.4660E-02 | 4.1791E-03 | 1.7950E-01 TABLE 12. Statistical results of the ZDT and DTLZ benchmark functions
Up7  |Ave| L.6883E-02 | 1.6883E-02 | 6.1381E-03 | 5.3850E-02 for the S performance metric.
SD | 8.2967E-03 | 8.2967E-03 | 8.7410E-03 | 1.7464E-02
UFs  |Ave| 2.77STE-01 | 2.7757E-01 | 2.4682E-01 | 2.1572E-01
SD | 7.9069E-02 | 7.9069E-02 | 4.9334E-02 | 7.5459E-02 Functions Algorithm
Uro  |Ave| 3.7998E-01 | 3.7998E-01 | 3.3556E-01 | 3.0649E-01 MOPSO MSSA MOMVO _ MOCryStAl
SD | 8.9375E-02 8.9375E-02 | 3.2153E-02 | 2.2372E-01 ZDT1 Ave | 1.1319E-02 | 1.2165E-02 | 5.1442E-02 | 1.1004E-02
UF10 Ave| 1.0998E+00 1.0998E+00 1.1918E-01 1.0315E-01 SD 1.0762E-03 | 3.3123E-03 1.2884E-01 3.1249E-03
SD | 1.9502E-01 | 1.9502E-01 | 6.6767E-02 | 6.1896E-01 ZDT2 Ave | 7.3295E-04 | 1.2250E-02 | 1.4373E-02 | 7.1414E-04
SD | 2.3178E-03 | 6.3466E-03 | 6.5898E-03 | 1.2421E-03
. . Ave | 1.3270E-02 | 1.4228E-02 | 9.1613E-02 | 1.1944E-02
I;\:éf)%;ft::::::i r:;l::::of the ZDT and DTLZ benchmark functions for ZDT3 SD | 23561603 | 65709503 | 16310601 | 85127603
ZDT4 Ave | 4.3804E-03 | 2.2121E-03 | 4.5664E-03 | 5.8396E-01
SD | 1.3852E-02 | 1.8168E-03 | 2.2788E-03 | 7.6084E-0l
Functions Algorithm ZDT6 Ave | 1.8109E-02 | 1.7684E-02 | 6.1993E-02 | 1.8063E-02
uncti SD | 3.0071E-02 | 1.2219E-02 | 3.7249E-02 | 9.5264E-02
RIORED R RIONMOBIMOCy Ave | 5.7741E-02 | 9.1604E-03 | 6.1739E-02 | 4.0846E-01
71 PAvE] L7932E-03 | 12035602 | 7.9682E-03 | 2.5915E-04 DTLZ2 SD | 4.9507E-03 | 5.5147E-03 | 1.0072E-02 | 9.1371E-02
SD | 5.0496E-03 1.9168E-03 | 1.2073E-02 | 4.0091E-04 DTLZA Ave | 6.1316E-02 | 1.5061E-02 | 4.5515E-02 | 2.5969E-01
7bT2  |Ave| 14749E-01 1.1652E-02 | 5.3988E-03 | 1.6997E-04 SD | 5.3260E-03 | 7.5177E-03 | 5.4484E-03 | 5.2568E-03
SD| 6.5211E-02 | 2.1916E-03 | 2.9609E-04 | 4.7636E-04
zpr3 |Avel 2.0489E-04 | L6OISE-02 | 1.0954E-02 | 2.0043E-04 (i) Generational distance (GD): GD is an index for deter-
SD | 2.7322E-05 | 2.0859E-03 | 1.5715E-02 | 1.6713E-04 o . : . ;
ZDT4 Ave| 4.1299E+00 6.0099E-01 1.2363E+00 1.8557E+01 mining the sum of adJacent distances of candidate solutions
SD | 3.9519E+00 | 3.1030E-01 | 7.0133E-01 | 1.1926E+01 in different sets achieved by different optimization algorithms
Ave| 2.5805E-02 | 2.1047E-02 | 1.0183E-02 | 1.0071E-02 e e .
ZDT6 [ oo 5 2008502 | 96106503 | 84995E.03 | 3.0359E-03 as a credible indicator to measure the convergence behavior
DTLz2 JAve| 68600E-03 | 9.2866E-03 | 3.1626E-03 | 2.1556E-01 of many-objective metaheuristic optimization algorithms.
SD | 9.0878E-04 | 2.4582E-03 | 5.5846E-04 | 7.8364E-03
pTLz4 |Ave] 10097E-02 | 13120E-02 | 4.6253E-03 | 1.9957E-01 - ')
SD | 2.4570E-03 | 3.8723E-03 | 6.4434E-04 | 2.5649E-02 1 .o
GD = |— ) dis; 4
n
A. PERFORMANCE METRICS 7 izl

The following four measures are used to assess the results of
the algorithms:

VOLUME 9, 2021

(ii) Spacing (S): S is the overall distance between can-
didate solutions in different sets achieved by different
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FIGURE 4. True and obtained Pareto fronts for ZDT problems.

optimization algorithms.

1
1 n -2\2
_Ziifl (di —d)

npf

- 1
S = where d = — wa d;

Npf i=1
(5)

(iii) Maximum Spread (MS): MS denotes the spread of
candidate solutions in the different solution sets concerning

117804

obj,

both numbers of distinct optimum choices.

BI—

. . 2
m .
1 min (fimax’ Fimax) _max(f;mtn’ Fimm)

max min
F i F i

(6)

iv. Inverted Generational Distance (IGD): IGD is a metric
for the quality evaluation of the approximations to the Pareto
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FIGURE 5. True and obtained Pareto fronts for DTLZ problems.
TABLE 13. Statistical results of the engineering problems for the GD performance metric.
Algorithm
Functions

MOPSO MSSA MOMVO MOCryStAl

BNH Ave 3.3894E-02 6.4575E-02 8.5875E-02 2.9356E-02

SD 2.1392E-03 1.5035E-02 4.0751E-02 1.6599E-03

CONSTR Ave 8.3098E-04 1.6878E-03 9.2588E-04 1.5219E-03
SD 3.3369E-05 5.8950E-04 2.4850E-04 5.9590E-04

DISK Ave 2.3045E-03 6.2545E-03 1.5855E-01 1.5745E-03
BREAKE SD 5.6273E-03 3.3423E-03 2.4372E-01 1.6833E-03
Ave 1.4095E+01 7.7966E+00 1.1017E+01 6.8970E+00

4-BARTRUSS SD 5.1580E-01 3.5486E+00 4.6552E+00 1.2099E+00
WELDED Ave 1.1946E-02 6.3467E-03 1.5031E-02 6.6659E-02
BEAM SD 1.9956E-03 3.0983E-03 4.7477E-03 1.1624E-01
oSy Ave 3.5765E+00 9.4637E-01 8.4098E-01 6.7807E-01

SD 2.5250E+00 1.9612E-01 1.4591E-01 3.4919E-01

SPEED Ave 8.2516E+01 7.8657E+00 9.2613E+00 6.7694E+00
REDUCER SD 9.8695E+01 3.6189E+00 1.6724E+00 1.6132E+00
SRN Ave 3.1617E-02 4.1566E-02 3.3373E-01 1.1112E-02

SD 1.0695E-02 2.4971E-02 1.4098E-01 4.7566E-03

front achieved by different many-objective algorithms.

VX 4}
n

IGD = @)
B. EXPERIMENTAL SETUP

This section compares MOPSO, MSSA, and MOMVO to
MOCryStAl, and the best figure of a collection of Pareto opti-
mal is shown. Table 1 lists the initial settings for each algo-
rithm. Each experiment had a maximum of 1000 iterations
and 100 populations. As illustrated in Tables 2-4 and appen-
dices A and B, this section puts the proposed algorithm to the
test in 25 different case studies, including seventeen uncon-
strained and constrained bi- and tri-objective mathematical
problems, as well as eight real-world engineering design
problems.
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1) DISCUSSION OF THE CEC-09 TEST FUNCTION

In Table 5, the comparative and statistical results of differ-
ent multi-objective approaches alongside the proposed algo-
rithm, namely MOCryStAl, are presented. The mentioned
comparison metrics such as the GD, S, MS, and IGD are
utilized in dealing with the CEC-09 problems. It turned out
that MOCryStAl can outrank the other approaches, with
regard to the IGD index, in five of the problems while the
other methods, such as MSSA, also produce very competitive
results.

Concerning GD, which are calculated in Table 6, MOCryS-
tAl can provide acceptable results in most cases, including
the five complex CEC-09 problems. The average results of
UF8 in MOCryStAl have total differences of 90%, 80%,
and 28% from MOPSO, MSSA, and MOMVO, respec-
tively, which demonstrates the capability of the proposed
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TABLE 14. Statistical results of the engineering problems for the IGD performance metric.

Functions Algorithm
MOPSO MSSA MOMVO MOCryStAl
BNH Ave 9.6868E-04 7.5631E-03 3.2191E-03 1.5496E-03
SD 1.7147E-04 4.5344E-03 3.3695E-04 1.3504E-04
CONSTR Ave 5.1838E-04 2.1706E-03 1.8516E-03 1.1648E-03
SD 5.5618E-05 7.3799E-04 3.6526E-04 2.6604E-04
DISK Ave 5.8831E-04 2.5113E-03 1.3515E-03 3.6085E-04
BREAKE SD 5.5995E-05 1.1615E-03 2.1737E-04 2.1021E-05
4-BAR Ave 2.0010E-02 2.1434E-02 2.1020E-02 2.0005E-02
TRUSS SD 3.9632E-05 3.8292E-04 4.6879E-04 3.5863E-05
WELDED Ave 5.9705E-04 4.8242E-03 2.1075E-03 1.3180E-03
BEAM SD 4.6341E-05 3.5852E-03 4.2017E-04 3.4394E-04
oSy Ave 1.4663E-02 7.7532E-03 5.8358E-03 4.2891E-03
SD 8.6917E-03 1.2021E-03 7.8106E-04 2.4468E-03
SPEED Ave 6.0305E-02 1.4933E-02 8.7559E-03 3.1325E-03
REDUCER SD 7.2130E-02 5.7981E-03 2.1149E-03 1.1989E-02
SRN Ave 4.5146E-04 2.2308E-03 1.1274E-03 3.3603E-04
SD 1.1656E-04 1.5266E-03 2.5526E-04 6.6580E-05
TABLE 15. Statistical results of the engineering problems for the MS performance metric.
q Algorithm
Functions MOPSO MSSA MOMVO MOCryStAl
BNH Ave 1.0000E+00 7.6222E-01 9.6908E-01 1.0000E+00
SD 0.0000E+00 1.3378E-01 2.7128E-02 0.0000E+00
CONSTR Ave 9.9384E-01 9.0536E-01 9.7543E-01 9.9474E-01
SD 6.8603E-03 4.8380E-02 1.7403E-02 2.8125E-02
DISK Ave 9.9928E-01 7.9510E-01 1.3230E+00 1.0001E+00
BREAKE SD 1.1417E-03 1.3013E-01 4.6277E-01 1.0642E-03
4-BAR Ave 1.4876E+00 1.2019E+00 1.4014E+00 1.5436E+00
TRUSS SD 5.4502E-04 1.8532E-01 9.2764E-02 8.7530E-02
WELDED Ave 1.0072E+00 7.9085E-01 1.0552E+00 1.0709E+00
BEAM SD 6.1053E-02 1.4645E-01 9.0721E-02 1.2073E-01
oSy Ave 3.2390E-01 6.2048E-01 7.1746E-01 8.1700E-01
SD 3.4284E-01 8.0930E-02 3.8964E-02 2.7281E-01
SPEED Ave 2.3456E-01 7.2004E-01 8.0454E-01 8.8453E-01
REDUCER SD 2.9012E-02 6.9034E-02 3.9588E-02 1.6080E-01
SRN Ave 9.0900E-01 7.0583E-01 9.2751E-01 9.7667E-01
SD 4.5463E-02 1.5109E-01 4.4769E-02 1.9187E-02
TABLE 16. Statistical results of the engineering problems for the S performance metric.
Algorithm
Functions
MOPSO MSSA MOMVO MOCryStAl
BNH Ave 1.0901E+00 1.2546E+00 1.0487E+00 1.0362E+00
SD 1.3631E-01 3.9410E-01 7.7663E-01 1.3606E-01
CONSTR Ave 5.8740E-02 5.5908E-02 5.0134E-02 1.1085E-01
SD 7.8936E-03 1.4886E-02 2.7727E-02 2.6254E-02
DISK Ave 1.1452E-01 1.2768E-01 2.7320E-01 1.3453E-01
BREAKE SD 1.3022E-02 7.0776E-02 3.9542E-01 1.3002E-02
4-BAR Ave 5.3605E+00 6.1160E+00 4.8245E+00 1.1012E+00
TRUSS SD 2.6169E-01 1.6605E+00 3.3581E+00 4.6044E+00
WELDED Ave 2.3432E-01 1.8912E-01 2.0967E-01 3.6825E-01
BEAM SD 2.5702E-02 8.7588E-02 1.1261E-01 1.6472E-01
oSY Ave 1.1278E+00 1.3502E+00 1.7991E+00 9.7125E-01
SD 1.4675E+00 6.2967E-01 3.4639E-01 2.1108E+00
SPEED Ave 3.4532E+01 1.3952E+01 2.2500E+01 8.9121E+00
REDUCER SD 4.4378E+00 9.8199E+00 4.7232E+00 7.6068E+00
SRN Ave 2.2396E+00 2.2721E+00 2.7418E+00 2.0058E+00
SD 4.7324E-01 9.3573E-01 1.0405E+00 3.6260E-01

multi-objective algorithm in dealing with these sorts of com-
plex problems.

Based on the results in Tables 7 and 8 in which the MS and
S are presented, the ability of the MOCryStAl in outranking
the other approaches are demonstrated. In Figs. 2 and 3,
the true and obtained Pareto fronts for CEC-09 problems are
represented by means of the proposed MOCryStAl method in
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which this algorithm can create better solutions with closer
distance to the Pareto front.

2) DISCUSSION OF THE ZDT AND DTLZ TEST FUNCTIONS

This section presents the statistical results of different
methods alongside the proposed MOCryStAl algorithm in
dealing with the multimodal benchmark functions with
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FIGURE 6.

fixed-dimension. In Table 9, the comparative results of the
GD performance metric are demonstrated. The capability of
the proposed methods in outranking the other multi-objective
algorithms in four of these problems is demonstrated.

Regarding the IGD metric in dealing with the multimodal
benchmark functions with fixed-dimension, the MOPSO,
MSSA, and MOMVO are capable of providing best results
for only one or two of the considered test problems. At the
same time, the proposed MOCryStAl is capable of outranking
the other methods in four of these complex test problems
which demonstrate its capability in dealing with these sorts
of complex problems.

In other metrics such as the MS and S indices, MOCryStAl
is able to provide even more acceptable results than the IGD

VOLUME 9, 2021
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True and obtained Pareto fronts for engineering design problems (BNH, CONSTR, DISK BRAKE, and 4-BAR TRUSS).

index, while this algorithm is capable of outranking the other
methods in most of the considered test problems.

The true and obtained Pareto fronts for the ZDT and DTLZ
problems by means of the proposed MOCryStAl method are
illustrated in Fig. 4 and Fig. 5, respectively. It can be seen
that this algorithm can create better solutions with a closer
distance to the Pareto front.

3) DISCUSSION OF THE ENGINEERING PROBLEMS

Based on the fact that the novel multi-objective algo-
rithms should be evaluated by means of some difficult real-
world optimization problems, the capability of the proposed
MOCryStAl is assessed through some other optimization
problems. I these cases, the GD (Table 13), IGD (Table 14),
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FIGURE 7. True and obtained Pareto fronts for engineering design problems (WELDED BEAM, OSY, SPEED REDUCER, and SRN).

MS (Table 15), and S (Table 16) metrics are also utilized
for performance evaluation while the results demonstrate the
superiority of the proposed algorithm in most of the cases.
In Fig. 6 and Fig. 7, the true and obtained Pareto fronts
for these problems are represented through the proposed
MOCryStAl method. This algorithm can create better solu-
tions with a closer distance to the Pareto front.

Ill. CONCLUSION AND FUTURE WORK

This paper presented the multi-objective version of the Crys-
tal Structure Algorithm (CryStAl) as a recently proposed
metaheuristic algorithm inspired by some geometric princi-
ples of crystal structures including the lattice and basis in the

117808

configuration of crystals. For the performance evaluation of
this algorithm, the benchmark problems of the Completions
on Evolutionary Computation (CEC) on multi-objective opti-
mization called CEC-09 were utilized. Some real-world engi-
neering design problems were used to evaluate the efficiency
of the proposed MOCryStAl approach. This paper demon-
strates that MOCryStAl is capable of outranking the other
approaches considering the IGD index in five of the CEC-
09 problems while the other methods such as MSSA also
produce very competitive results. Concerning GD, the aver-
age results of UF8 in MOCryStAl had total differences of
90%, 80%, and 28 % from the results of MOPSO, MSSA, and
MOMVO, respectively, which demonstrate the capability of
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the proposed multi-objective algorithm in dealing with such
challenging problems. By considering the true and obtained
Pareto fronts for the CEC-09, ZDT, and DTLZ problems, it is
concluded that the proposed MOCryStAl method can create
better solutions with a closer distance from the Pareto front.

APPENDIX A: ONSTRAINED MULTI-OBJECTIVE TEST
PROBLEMS (USED IN THIS PAPER)

CONSTR

There are two constraints and two design variables in this
problem, which have a convex Pareto front.

Minimize f (x) = x1 (A.1)

Minimize f> (x) = (1 + x2)/x; (A.2)

where g1 (x) = 6 — (x2 + 9x1) (A3)
g2 (x) = 14x2 —9x1)
01<x1<1,0<x <5 (A4)

SRN
Srinivasan and Deb [55] suggested a continuous Pareto opti-
mal front for the following problem:

Minimize fi(x) = 2 + (x12)* + (x21)? (A.5)
Minimize f> (x) = 9x;(x21)? (A.6)
where g1(x) = x% + x% — 255 (A7)
g x)=x1 —3x+ 10
—20<x <20,-20<x <20 (A.8)

BNH
Binh and Korn [56] were the first to propose this problem as
follows:

Minimize fi (x) = 4x? + 4x3 (A.9)

Minimize f>(x) = (x] — 5)° + (x2 — 5)>  (A.10)

where g1(x) = (x; — 5)* + x5 — 25 (A1)
g2(x) = 7.7 — (x1 — 8)* — (32 + 3)?
0<x1<50<x<3 (A.12)

osY

Osyczka and Kundu [57] proposed five distinct regions for
the OSY test issue. There are also six constraints and six
design variables to consider as follows:

Minimize fi (x) = x7 4+ x3 4+ x3 + x7 +x +x¢ (A.13)
Minimize f>(x) = [25(x] — 2)* + (x2 — 1)> + (x3 — 1)

+ (g — 4 + (x5 — 1)) (A.14)

where g1 (x) =2 —x1 —x2 (A.15)
&x)=—-6+x +x2 (A.16)
gx)=-2—-x+x (A.17)
84(x) = =2+4x1 —3x2 (A.18)

g5(x) = —4 + x4 + (x3 — 3)? (A.19)

g6(x) =4 —x — (x5 — 3)° (A.20)
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0<x<10,0<x <10,1<x3<5
0<x4<6,1<x5<50<x5=<10 (A.21)
APPENDIX B: CONSTRAINED MULTI-OBJECTIVE
ENGINEERING PROBLEMS (USED IN THIS PAPER)

THE FOUR-BAR TRUSS DESIGN PROBLEM

The 4-bar truss design problem [58], in which the structural
volume (f1) and displacement (f>) of a 4-bar truss should
be minimized, is a well-known problem in the structural
optimization field. There are four design variables (x; — x4)
connected to the cross-sectional area of members 1, 2, 3,
and 4, as shown in the equations below:

Minimize f; (x) = 200 x (2 x x (1) + sgrt (2 x x (2))
+sqrt (x (3)) +x (4)) (B.1)
Minimize f>(x) = 0.01 x <i) + <M>
x(1) x(2)
— (2 x 5qr1(2))/x(3)) + (2/x(1)))
1<x1<3,14142<xp <3

14142 <x3<3,1 <x4 <3 (B.2)

THE WELDED BEAM DESIGN PROBLEM

Ray and Liew [59] suggested four constraints for the welded
beam design issue. In this issue, the fabrication cost (f1) and
beam deflection (f>) of a welded beam should be minimized.
The thickness of the weld (x1), the length of the clamped bar
(x2), the height of the bar (x3), and the thickness of the bar
(x4) are the four design variables.

Minimize fj (x) = 1.10471 x x(1)> x x (2)
+0.04811 x x(3) x x(4) x (14 + x (2))

(B.3)
Minimize f> (x) = 65856000/(30 x 10° x x(4) x x (3)%)
(B.4)
where g1 (x) = t — 13600 (B.5)
g2(x) = o — 30000 (B.6)
g3 (x) =x (1) —x(4) (B.7)
g4 (x) = 6000 — P
0.125<x1 <5,01 <x <10
0.1 <x3<10,0.125 <x4 <5 (B.8)
(155
where ¢ = 6000 x | 14 + - i D
2 2
ot (x(Z) REOEEE) ) B9
4 4
x(2)?
J=2x (x(l) X x(2) x sqrt(2) x ( B
2
4 (x(1) Zx(3)) )) (B.10)
6000
o= (B.11)
sqrt(2) x x(1) x x(2)
D
B =0 x n (B.12)
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DISK BRAKE DESIGN PROBLEM

Ray and Liew [59] proposed the disc brake design issue,
which has multiple constraints. Stopping time (f1) and brake
mass (f>) for a disc brake are the two objectives to be min-
imized. The inner radius of the disc (x;), the outer radius
of the disc (x»), the engaging force (x3), and the number of
friction surfaces (x4) as well as five constraints, are shown in
the following equations:

Minimize fi (x) = 4.9 x (10)7 x (x(2)®

—x(DD)x@x@) -1 (B.13)
Minimize f> (x) = (9.82 x (10)©®)) x (x(2))®
—x (D@)/(x@)?
—x (D) x x (@) x x(3)) (B.14)
g1 (x) =204 x (1) —x(2) (B.15)
@) =25+@x@+1)—-30 (B.16)

2
g3 () = (x(3)/G.14 x (@2 —x ()?)) - 0.4
(B.17)
g4 (x) = (222 x (107 x x (3)
2
x(x @ = O/((x @2 —x 1) )-1
(B.18)
g5 (x) = 900 — (2.66 x (10)? x x (3) x x (4)
2
x (x @7 —x P((x @ —x (12))
55 <x1<80,75<x <110

1000 < x3 <3000,2 < x4 <20 (B.19)

SPEED REDUCER DESIGN PROBLEM

The weight (f1) and stress (f2) of a speed reducer should be
minimized in the speed reducer design issue, which is well-
known in the field of mechanical engineering [58] and [60].
There are seven design variables: gear face width (xp), teeth
module (x7), number of teeth of a pinion (x3 integer variable),
distance between bearings 1 (x4), distance between bearings
2 (xs), the diameter of shaft 1 (xg), and the diameter of shaft 2
(x7), as well as eleven constraints.

Minimize f (x) = 0.7854 x x (1) x x(2)* x (3.3333
X x (3)2 4149334 x x (3)) .
— 43.0934)—1.508 x x(1) x (x(6)> 4+x(7)?
(B.20)
Minimize f,(x) = ((sqrt(((745 x x(4))/x(2) x x(3)))2
+ 19.9¢6)/(0.1 x x(6)*))
where g1 (x) = 27/(x (1) x x (2)2 X x (3)) —1

(B.21)
(B.22)

@ () = 397.5/(x (1) x x(2)> x x (3)2) —1 (B23)

23 (0 =(1.93 x (x (4)3) J(x(2) x x(3) X x (6)4) —1
(B.24)
21 () =(1.93 x (x (5)3) J(x(2) x x(3) X x (7)4) —1
(B.25)
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g5 (x) = ((sqrt((745 x x (4))/x(2)
X x (3)))2 n 16.966))/(110 X x (6)3)) 1
(B.26)
86 (x) = ((sqrt((745 x x (4))/x(2)
X X (3)))2 + 157.5e6>)/(85 X x (7)3)) —1

B.27)
87 (x) = ((x(2) x x(3))/40)1 (B.28)
T = sqrt @’ +2xa X B x *@) —1—/32
2xD
(B.29)
504000
c0=— (B.30)
x(4) x x(3)?
t =4.013 M (B.31)
mpf = 4. X 196 .
6
P = tmpf x sqrt (x(?a)2 X ﬂ)
36
sqrt (%)
x| 1—x@3)x o (B.32)
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