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ABSTRACT As research in alternate energy sources is growing, solar radiation is catching the eyes
of the research community immensely. Since solar energy generation depends on uncontrollable natural
variables, without proper forecasting, this energy source cannot be trusted. For this forecasting, the use of
machine learning algorithms is one of the best choices. This paper proposed an optimized solar radiation
forecasting ensemble model consisting of pre-processing and training ensemble phases. The training
ensemble phase works on an advanced sine cosine algorithm (ASCA) using Newton’s laws of gravity and
motion for objects (agents). ASCA uses sine and cosine functions to update the agent’s position/velocity
components by considering its mass. The training ensemble model is then developed using the k-nearest
neighbors (KNN) regression. The performance of the proposed ensemble model is measured using a dataset
from Kaggle (Solar Radiation Prediction, Task from NASA Hackathon). The proposed ASCA algorithm is
evaluated in comparison with the Particle Swarm Optimizer (PSO), Whale Optimization Algorithm (WOA),
Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Squirrel Search Algorithm (SSA), Harris Hawks
Optimization (HHO), Hybrid Greedy Sine Cosine Algorithm with Differential Evolution (HGSCADE),
Hybrid Modified Sine Cosine Algorithm with Cuckoo Search Algorithm (HMSCACSA), Marine Predators
Algorithm (MPA), Chimp Optimization Algorithm (ChOA), and Slime Mould Algorithm (SMA). Obtained
results of the proposed ensemble model are compared with those of state-of-the-art models, and significant
superiority of the proposed ensemble model is confirmed using statistical analysis such as ANOVA and
Wilcoxon’s rank-sum tests.

INDEX TERMS Solar radiation, meta-heuristics, machine learning, K-nearest neighbor, sine cosine
algorithm, ANOVA test, Wilcoxon’s rank-sum test.

I. INTRODUCTION

During the last few decades, an increase in the demand for
energy resources results in finding new means of generating
energy. Solar energy produced through solar radiation is one
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of the natural methods that are currently in use at domes-
tic as well as at commercial levels [1]. Since solar energy
production depends on uncontrollable environmental vari-
ables, the production amount cannot be accurately planned.
Inconsistent and unpredictable solar energy generation will
cause catastrophic results and hence reduce the probability
of dependency on solar energy.
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The use of machine learning (ML) algorithms applied on
the historical dataset of solar radiations can forecast the solar
radiations from five to ten minutes [2], [3] and in some
cases up to twenty-four hours. Belmahdi ef al. used ARMA
and ARIMA models for global forecasting of solar radiation.
According to Belmahdi, this methodology can forecast solar
radiation for up to one, two, or three months [4]. Nearly
accurate forecasting is needed for the stable and consistent
supply of solar energy [5]. Daily meteorological data can
be collected through different radiometric stations at various
locations, and then this dataset can be employed in forecast-
ing the solar radiations [6]. To obtain reliable forecasting
results, researchers have developed various algorithms, and
their extensions [7]. Many authors recommend probabilis-
tic forecasting to have better risk management. By using
predictive models, visualization, and evaluation of forecast-
ing results to produce probabilistic forecasting, a framework
named ProbCast is introduced by Browell and Gilbert [8].
The ML algorithms use atmospheric variables such as wind,
temperature, latitude, atmospheric pressure, etc., for nearly
accurate solar radiation forecasting. Data related to all these
atmospheric variables should be regularly collected, stored,
and analyzed to have reliable forecasting.

Genetic Algorithm (GA) and Neural Network (NN) mod-
eling approaches are used by various researchers for solar
radiation’s forecasting [9]. In their research, average atmo-
spheric pressure and other previous day’s weather-related
data predicated by a NN is provided as an input parameter to
another NN. It is found from the literature that the NN model
is providing more accurate forecasting of solar radiations.
GA is more suitable in the survival of the fittest scenar-
ios [10]. The physical model definition describes the physical
state and dynamic motion of the atmosphere through mathe-
matical equation [11]. GA-based algorithms are not suitable
in these types of physical models [12] and NN methodology
requires tons of input data that also sometimes includes few
non-relevant parameters [13].

Comparative study of various solar radiation forecasting
models based on NN and other ML techniques has been
performed [14]. Narvaez et al. proposed a methodology
that works in two steps. In the first step, it selects the
best data source to have better Spatio-temporal resolution,
and in the second step deep earning is used for forecasting
solar-radiation [15]. Geographical and meteorological vari-
ables of a specific location are the key parameters consid-
ered for solar radiation’s forecasting [16]-[18]. Al-Hajj et al.
proposed a predictive model based on Dynamic Recurrent
Neural Networks (DRNN) with short-term delay units to
forecast the daily intensity of solar radiations [19]. The model
provided better results than Root Mean Square Error (RMSE)
and Mean Bias Error (MBE). Another challenge in collecting
global solar radiation data is to deal with typical weather
conditions, including rainfall, wind, fog, snow, thunder,
humidity, sunshine, etc. Proper installation of solar radia-
tion measuring sensors (Pyranometers) is required for such
a data collection, and these sensors can be costly, and many
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countries do not have sufficient network resources to obtain
this data [20]-[22]. In these situations, it is preferred to
develop empirical models that can utilize the meteorological
data measured by nearby stations [23], [24].

Sine Cosine Algorithm (SCA) [25] has high exploitation
as compared to other meta-heuristics since it uses a single
best solution to guide other candidate solutions. This makes
SCA an efficient algorithm in terms of memory usage and
convergence speed and it leads the algorithm to be applied
in various recent applications [26], [27]. Based on Newton’s
law of gravity and Newton’s law of motion, the Gravitational
Search Algorithm (GSA) was proposed [28]. Position, iner-
tial, active, and passive gravitational masses are the properties
of each agent (object mass) [29]. The solution of a problem
is represented through these properties and is determined by
a fitness function. According to the No Free Lunch (NFL)
theorem [30], two algorithms can be considered equivalent
when their performance is averaged across all the possible
problems [31]-[33]. There is no single ML algorithm that can
perform forecasting in all possible situations and scenarios;
therefore, different ML algorithms are needed to cover all
forecasting scenarios [34]. Many ML algorithms are already
developed and employed [35]-[41].

Our contribution in this paper is to develop, analyze,
and compare an optimized ensemble model based on
pre-processing and training ensemble model. This Advanced
Sine Cosine Algorithm (ASCA) based model is inspired by
Newton’s law of gravity and motion. Sine cosine functions
are used for updating the agent’s position/velocity component
based on its mass. The training ensemble model depends
on the k-nearest neighbors (KNN) regression. A dataset
from Kaggle (Solar Radiation Prediction, Task from NASA
Hackathon) is used for the experiments. The proposed ASCA
algorithm is evaluated in compared with Particle Swarm
Optimizer (PSO) [42], [43], Whale Optimization Algorithm
(WOA) [44], [45], Genetic Algorithm (GA) [46], Grey Wolf
Optimizer (GWO) [47], Squirrel search algorithm (SSA)
[48], Harris Hawks Optimization (HHO) [32], [49], Hybrid
Greedy Sine Cosine Algorithm with Differential Evolution
(HGSCADE) [50], Hybrid Modified Sine Cosine Algo-
rithm with Cuckoo Search Algorithm (HMSCACSA) [51],
Marine Predators Algorithm (MPA) [52], Chimp Optimiza-
tion Algorithm (ChOA) [53], and Slime Mould Algorithm
(SMA) [54]. Major contributions of our work are as
follow:

o ASCA algorithm is developed to optimize the weights

and it is based on sine cosine optimization algorithms

o ASCA based model is inspired by Newton’s law of

gravity and motion.

« The ensemble model depends on the k-nearest neigh-

bors (KNN) regression.

o The model is optimized for nearly accurate forecasting

of solar radiations.

o The model is applied to an authentic dataset related to

solar radiations.

« Results are obtained by conducting experiments.
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o Results are compared with those of other available
models.

o The performance of the proposed ensemble model
is confirmed using a one-way analysis of vari-
ance (ANOVA) and Wilcoxon’s rank-sum tests.

The paper is organized into different sections, in which
section II explains the background and basic methods,
section III includes the details of the proposed model, exper-
iments, and results are mentioned in section IV. Section V
includes discussion and findings of the paper and finally,
the conclusion and future work is mentioned in section VI.

Il. BACKGROUND

Most of the ML algorithms work on the principles of predict-
ing upcoming results based on historical data. This section
will discuss the dataset that we used, the sine cosine algo-
rithm, regression methods, and ensemble learning techniques.

A. DATASET

This work uses meteorological data from the HI-SEAS
(Hawai’i Space Exploration Analog and Simulation),
a dataset from Kaggle (Solar Radiation Prediction, Task from
NASA Hackathon). It is a dataset of weather stations for the
four months (September through December 2016) between
Mission IV and Mission V [55], [56]. Statistical analysis
of different weather parameters of the dataset is shown
in Table 1. The dataset contains different meteorological
parameters such as radiations, temperature, pressure, etc.
It also includes static analysis of the dataset’s attributes.

B. SINE COSINE ALGORITHM

Mirjalili in 2016 proposed a Sine Cosine Algorithm (SCA)
for the optimization problem [25]. Sine and cosine oscil-
lations functions are used for updating the position of a
candidate solution. A set of random variables are used by
the SCA algorithm to indicate the direction of the movement,
distance, emphasize/deem-emphasize the destination’s effect,
and to switch between sine and cosine components [57].
SCA’s mechanism for updating the position of different solu-
tions is represented by Eq. 1.

41 _ )X A xsin(r) x 3P = X! 4 < 0.5
! X!+ 1 x cos(rp) x [P —X!| r4 =05

ey

where X! is the current solution position in the i/ dimension
while P! is the best solution position in the i’ dimension. The
parameters r», 13, and r4 are random values in [0, 1]. It can be
concluded from the Eq. 1 that the agent’s position is changed
based on the best solution position. In the SCA algorithm,
to balance between the exploration and the exploitation pro-
cesses, the parameter of ry is updated as follows.

axt

@)

r=a—
tmax

where t indicates current iteration number, a is a constant, and
the total number of iterations are represented by #,,4x.
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Algorithm 1 : Pseudo-Code of SCA [25]
1: Imitialization SCA population X;i = 1,2,...,n),
size of population n, total iterations f,,,y, and objective
function F),.

2: Initialization SCA parameters r», r3, 4
3: Setr=1
4: while r < t,,,,; do
5:  Calculate objective function F;, for agents X;
6:  Set P = best agent position
7: Update r; by r; = a — %
8: for(i=1:i<n+1)do
9: if (r4 < 0.5) then
10 Update agent position by
X = X! 4 1y xsin(rp) x |3 PL—X!|
11: else
12: Update agent position by

XM = X!+ 1 x cos(ry) x |r3 Pt — X!
13: end if
14:  end for
15: Sett=1+1
16: end while
17: Return best agent P

In the Algorithm (1), the position of the SCA popula-
tion, with n agents, is randomly initiated. Step (5) of the
Algorithm (1) calculates the objective function for every
agent to find out the best solution position. The best solu-
tion is represented as P in step (6) of the Algorithm (1).
In step (7) of the Algorithm (1) ry is updated by using the
Eq. 2. Steps (8-13) of the Algorithm (1) update the position
of different agents by using Eq. 1. The algorithm (1) will
continue working until the predefined criteria are met. The
best solution P will be updated by exploring and exploiting
the around space.

Since SCA uses a single best solution to guide other can-
didate solutions, therefore, it has high exploitation as com-
pared to other meta-heuristics. It makes SCA an efficient
algorithm in terms of memory usage and convergence speed.
Performance of the SCA degrades in scenarios where a large
number of locally optimal solutions exist. These scenarios
motivated us to work on this algorithm to alleviate this
drawback.

C. GRAVITATIONAL SEARCH ALGORITHM
Based on Newton’s law of gravity and Newton’s law of
motion, the Gravitational Search Algorithm (GSA) was pro-
posed [28]. Position, inertial, active, and passive gravitational
masses are the properties of each agent (object mass). The
solution of a problem is represented through these properties
and is determined by a fitness function.

Mathematically, the i agent position can be defined as
follows.

Xi=(x},...,x¢,...,xf“), i=1,2,....N (3
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TABLE 1. The units of solar radiation dataset.

Temperature  Pressure ~ Humidity ~ WindDir ~ WindSpeed  SunHours  Radiation
Count 32686.0  32686.0 32686.0  32686.0 32686.0 32686.0 32686.0
Mean 0.46225  0.62940 0.70544  0.39849 0.15417 0.36369 0.12875
STD 0.16760  0.14777 0.27358  0.23111 0.08619 0.31507 0.19743
Min 0.00000  0.00000 0.00000  0.00000 0.00000 0.00000 0.00000
25% 032432 0.56757 0.50526  0.22825 0.08321 0.06316 0.00008
50% 0.43243  0.64865 0.81053  0.41019 0.13877 0.29474 0.00097
75% 0.56757  0.72973 0.93684  0.49803 0.19432 0.62105 0.22068
Max 1.00000  1.00000 1.00000  1.00000 1.00000 1.00000 1.00000

where X indicates the i’ agent position in the d” dimension. Fully Fully

N is the number of agents (masses).
The agent position xlfi is updated by the following equation

@+ 1) =x{@) +via+1, )
where the agent velocity vf.’ is updated by
Vi@t +1) = rand; v (1) +ad (1) 5)

where rand; indicates a random number in [0, 1]. The agent
i acceleration, af , at time ¢ and in d" direction is calculated
by

Fi(t)

d
ad) =12 ©)

M;i(t)
where M;;(t) represents the i agent inertial mass. F’ id (t)is the
total gravitational force that acts on agent i in a dimension d
and can be represents by the following equation

N
Fl1) = Z randeg(t) @)
j=lj#i
where rand; indicates a random number in [0, 1]. The force

F g (#) acting on mass i from mass j is calculated as following
equation.

Mpi(t) X M;(t)
[1Xi(2), Xj(0)[|2 + &

where M,; indicates the agent j active gravitational mass,
M,,; indicates the agent i passive gravitational mass, G(t)
is the gravitational constant at time ¢, ¢ is a constant, and
[1X;(2), Xj(t)||> represents the Euclidean distance between
two agents i and j.

Since all candidate solutions are used to update the position
of each solution hence GSA algorithm has the advantage of
very high exploratory behavior. In every rotation, all solutions
can influence each other based on their distances and quality.
However, the accuracy rate of this algorithm is often not very
high.

Fi(t) =GQ) @) —x{@) ®

D. REGRESSION METHODS

1) MULTILAYER PERCEPTRON (MLP)

Artificial Neural Networks (ANN) follow the principles of
the biological nervous system for information processing and
communication among the distributed nodes. The Synapse
(the connection between neurons) is used to transmit signals
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FIGURE 1. Multilayer perceptron (MLP) neural network.

from one neuron to other neurons. Speech recognition, regres-
sion, and machine learning algorithms are the most common
areas of application of ANN [44], [58]. The learning process
and optimization of parameters have a major impact on the
performance of ANN. One of the commonly applied ANN is
MLP. The MLP structure is shown in Figure 1.

n
S;= Z wiil; + B; 9
i=1
where input variable i is represented as [;. The connection
weight between the /; variable and a hidden layer neuron j is
indicated as wy;. B; represents a layer bias value. By apply-
ing the mostly recommended function, sigmoid activation,
the output of node j can be calculated as follows.

1
L(S:) = _
5 1 +exp™S
The following equation defines the output of the network

based on the f;(S;) value, in Eq. 10, for all neurons in the
hidden layer.

(10)

Ve =Y wikhi(S) + B

j=1

(11)

where the weights between a hidden layer neuron j and the
output node £ is indicated as wj. The B parameter represents
the output layer bias value.
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(a)
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(c)
FIGURE 2. LSTM neural network architecture.

2) LONG SHORT TERM MEMORY (LSTM)
LSTM is an improvement over the standard version of ANN
and it is a kind of Recurrent Neural Network (RNN) that can
be applied to many problems [59]. The main feature of LSTM
is to remember the information for a long period and it is more
suitable for kind of problems where avoidance of long-term
dependency is required. The basic architecture of LSTM is
shown in Figure 2.

The first step in LSTM is to decide what information
should be discarded from the cell state. A sigmoid layer,
named forget gate layer, is used for this as shown in Eq. 12.

fi = o (Wrlhi—1, x] + by) (12)

The next step is about deciding the new information that
should be stored in the cell state. The values that need an
update are decided by a sigmoid layer named as input gate
layer and a new candidate values vector that can be added to
the state generated by tanh layer as shown in Eq. 13 and 14.

iy = o(Wilhi—1, x:]1 + b;) 13)
C; = tanh(Wilh—1, x¢] + by) (14)

Using equations 12, 13, and 14, the old cell state C;_; can
be updated into a new cell state C; by the following equation.

C[ :_f[ X C[_l + it X Ct/ (15)

Output decision based on the cell state is the final step.
A sigmoid layer will help to decide about cell state parts that
will be moved to output. After that cell state will use tanh
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hi—1

h,t A
Canh>
Oy 9
hi1 m hy

Ty [ (d)

will force values between [-1,1] and will multiply it with the
output of the sigmoid gate as mentioned in Eq. 16.

hy = oy x tanh(Cy), o = o (Wolhi—1, X1+ bo) (16)
3) SUPPORT VECTOR MACHINE

Support vector machines are actually learning models that uti-
lize supervised data and algorithms. Support vector machines
are used for classification and regression analysis of data.
Hyperplane, in the context of two-dimensional space, repre-
sents a line that divides the plane into two subsets [44].

E. ENSEMBLE LEARNING
Ensemble techniques are getting popular in solving the fore-
casting problem, especially in climate forecasting.

1) AVERAGE ENSEMBLE

In general, the Average Ensemble is one of the simplest
ensemble techniques that combines the outputs of base
regressors and calculates the mean. This technique aggregates
the output of LSTM, SVM, and NN and calculates the mean
value as shown in Fig. 3. In this work, the average ensemble
is used as a reference ensemble model to evaluate the perfor-
mance of the proposed ensemble model.

2) KNN ENSEMBLE

KNN is one of the simplest and oldest regressors which is
commonly used to decide the regression of unknown instance
[60]. KNN utilizes administrative algorithms to test data
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FIGURE 3. Proposed optimized solar radiation forecasting ensemble model.

regression based on the majority class. This algorithm classi-
fies new objects by considering attributes and training data.
The target of the KNN algorithm is to discover k objects
from the training data that are closer to the testing data then
these objects are used for forecasting. KNN strategy is more
effective in scenarios where the size of the training data is
small. Estimation of a proper value of k is one of the major
shortcomings of KNN.

Regression approaches are usually employed to predict
the output variables. The regression approach divides the
data set into two groups, namely training data and testing
data. The testing data is in contrast to training data by using
the Euclidean distance. Distance between training data and
testing data is calculated and by using heuristics optimal k
nearest neighbors are selected. Voting is performed for labels
then, with the k nearest multivariate neighbors, an inverse
distance weighted average is calculated.

Ill. PROPOSED MODEL
One of the biggest issues in regression problems is the use of

imprecise data that includes many non-relevant features that
ultimately increase the error rate of the algorithm. To over-
come this problem, we propose a machine learning ensemble
model that consists of two phases: data pre-processing phase
and training ensemble model as shown in Figure 3.

A. DATA PREPROCESSING
To only count most relevant features, feature analysis is often
recommended before regression analysis. So from the dataset,
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we removed the rows those contains null values or the rows
those have some missing information in order not to have
misleading results. Ranges and units of different attributes
vary in numbers and since we are using Euclidean distance
between two data point so it can affect our algorithm largely.
Therefore, we use Min-Max Scalar to bring all the values
between 0 and 1 as shown in Eq. 17.

, I; — min(I;)

i

=— a7
max(l;) — min(l;)
where I/ is the scaled value.

To measure the correlation between solar radiation and
other attributes, Pearson’s correlation is applied in Eq. 18.
It helped us to identify strongly correlated and weakly corre-
lated attributes. The correlation coefficient, i, can be defined
as:

_ Elijl = E[i] » E1/]

18
SD,’ * SD]' ( )

where SD; is a variable i standard deviation and SDj is a
variable j standard deviation. E[i] is equal to ) _ i.

B. ADVANCED SINE COSINE ALGORITHM

The proposed Advanced Sine Cosine Algorithm (ASCA) is
inspired by Newton’s law of gravity and Newton’s law of
motion for objects. ASCA is based on sine and cosine func-
tions to update the agent’s position for the number of masses
as shown in Figures 4 and 5. Based on the agent’s mass,
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FIGURE 4. Proposed Algorithm: 2D representation of sine-cosine functions with different
agents (masses).

L Sin@nf .

FIGURE 5. Proposed Algorithm: 3D representation of sine-cosine functions with different agents
(masses).

the ASCA switches between sine/cosine components and
position/velocity component. As we discussed earlier SCA
is not very accurate and GSA suffers from low exploration
drawback therefore we proposed a hybrid solution by com-
bining the strengths of both these algorithms.

Steps of ASCA are described in Algorithm (2). Mathemat-
ically Eq. 19 is used by ASCA to update agent’s position for a
random parameter that has values in [0, 1] and randsc > 0.5.

xid(t) + r; x sin(rp)

x [r3P(t) — x| 4 <0.5
xld(t) + r; x cos(rp)

x |r3sP{(6) —=x{ ()] r4=0.5

xa+1) = (19)
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where xl.d () is the current solution position in the d™ dimen-
sion while Plfl(t) is the best solution position in the dh
dimension. The parameters r, r3, and r4 are random values
in [0, 1]. As shown in Eq. 19, agent’s position is updated
based on the best agent position, if randsc > 0.5. In the
proposed ASCA algorithm, to balance between the processes
of exploitation and exploration, the r| parameter is updated as

follows.
t
rr=a <1 — ) (20)
tmax

where t is current iteration number, a indicates a constant, and
tmax 18 the total number of iterations.
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The agent position xlfi is updated in the ASCA algorithm
by the following equation for randsc < 0.5

e+ 1) =xd@) +v4@+1), 1)

where the agent velocity vf is updated, as shown in Figure 5,
as follows.

vt +1) = rand; v (1) +ad (1) (22)

where rand; represents a random number in [0, 1]. The
parameter a;i(t) represents the agent i acceleration at time ¢
and it is calculated as follows.
i _ Fo

a; (t) M) (23)
where M;;(t) represents the i agent inertial mass. The total
gravitational force, in a dimension d, that acts on agent i is
represented as F' l‘l (1).

The position of the ASCA population, with N agents,
is randomly initialized as mentioned in Algorithm (2). Then,
the objective function is calculated for each agent to find the
position of the best solution. The parameter P indicates the
best solution as in Step (5) of the Algorithm (2). | is updated
according to Eq. 20 in Step (6). Steps (8-14) update the
position of different agents by using Eq. 19 where randsc >
0.5 while steps (17-19) update the position of different agents
by using Eq. 21 for randsc < 0.5. Steps (3-21) are repeated
in the Algorithm (2) until a predefined criterion is met. The
best solution P in Step 5 will be updated by exploring and
exploiting the around space.

The proposed ASCA algorithm computational complexity
is as follow. Time complexity for population of size N with
tnax iterations can be defined as:

« Initialize ASCA population: O (1).

o Initialize ASCA parameters rp, r3, r4, rand;, rand;,

randsc,t = 1: O (1).

« Get objective function for agents: O (fyqx X N).

« Finding best agent position: O (¢,,,4x X N).

o Updating r| parameter: O (¢;,4x).

« Updating agent position: O (tjqx X N).

« Updating agent acceleration: O (fjyzx X N).

« Updating agent velocity: O (t;qx X N).

« Updating agent position: O (fjqx X N).

« Increasing the iteration number: O (f4x)-

« Producing the best agent: O (1)

This analysis shows that the complexity of computations of
the proposed ASCA algorithm is O (fjqx X N) and O (¢4 X
N x d) for the problem with d dimension.

C. TRAINING ENSEMBLE MODEL

Ensemble model instead of picking one best model from the
applicants, combines all the models by assigning weight to
each model. Ensemble technique is proved as one of the sig-
nificant methods in improving the prescient capacity of stan-
dard models [61]. Ensemble model normally has two phases
where in first phase, output variable of the best ensemble
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Algorithm 2 : Pseudo-Code of the Proposed ASCA

1: Initialization ASCA population X; = (xl.l, coxd

xl.”), size of population #, total iterations fqy, and objec-
tive function F,.

2: Initialization ry, r3, rs, rand;, rand;, randsc, t = 1
3: while 7 < 1,4, do
4:  Calculate objective function F}, for each agents xlfi
5:  Set P = best agent position
6: Updaterbyr; =a (1 — tm[ax
7. if (randsc > 0.5) then
8: fori=1:i<N+1)do
9: if (r4 < 0.5) then
10: Update agent position by
xl-d(t +1)= xl-d(t) + 1 x sin(rp) X |3 P?(t) -
x{ (@)
11: else
12: Update agent position by
xd(t+1) = x3(t) +r; x cos(r) x |r3 PA(t) —
@)l
13: end if
14: end for
15:  else
16: fori=1:i<N+1)do
17: Update agent acceleration by
i _ F®
a;(t) = ——
M;;(t) )
18: Update agent velocity by
vi(t + 1) = rand; v (t) +ad (1)
19: Update agent position by
@+ 1) =x4) +v4@+1)
20: end for
21:  end if

22: Setr=1t+1
23: end while
24: Return best agent P

member is selected in order to obtain the final prediction.
Second phase mixes the output variables of ensemble mem-
bers using a combination algorithm [62].

IV. EXPERIMENTAL RESULTS

Three different scenarios are considered for conducting
experiments in order to prove the authenticity of proposed
solution. In the first scenario correlation among the input
attributes and the solar radiation is analyzed. In the second
scenario, base models, LSTM, SVM and NN, are analyzed.
Third scenario is based on analysis of ensemble model by
using the average ensemble, KNN ensemble and the proposed
optimizing ensemble weights model. Meteorological data
from the HI-SEAS dataset (Solar Radiation Prediction) [55],
[56] is randomly divided into two parts where 80% data is
used for training and 20% is used for testing. The dataset has
Radiation, Temperature, Pressure and statistical analysis as
parameters.
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A. PERFORMANCE METRICS

The performance metrics that are used for the experiments
include RMSE, Mean Absolute Error (MAE), and MBE [63].
The RMSE metric can be calculated as follow in order to
assess the performance:

n N2
RMSE = \/Zi:l(HPJ Hl) (24)
n

where H,, ; represents a predicted value and H; indicates the
actual measured value. The n parameter represents the total
number of values.

The MAE is used to calculate, in a set of predictions,
the average amount of errors. It can be calculated as

Z?:l |Hp,i — Hil
n

MAE = (25)

The MBE can show under-predicting or over-predicting
state of the tested model. It measures the mean bias of pre-
diction based on the average differences in directions between
the predicted and measured values as follows

n

MBE = (26)
B. FIRST SCENARIO: CORRELATION ANALYSIS

The correlation between input attributes and the solar radia-
tion is presented in Table 2. Prediction of regression is shown
in Fig. 6 and the correlation is shown in Fig. 7. It can be
observed from Table 2 that wind direction is weakly corre-
lated to solar radiation, therefore, this parameter is decided
to be ignored in the experiments. On the other side, the tem-
perature has a higher correlation with solar radiation as com-
pared to that of humidity, wind speed, and sun hours. So in
short weakly correlated attributes should not be considered as
these can adversely affect the accuracy of ensemble models
including our proposed ensemble model.

C. SECOND SCENARIO: BASE MODELS

The second scenario is designed for testing the perfor-
mance of base models including LSTM, SVM, and NN
without involving ensemble techniques. The results of base
models using the RMSE, MAE and MBE performance met-
rics are shown in Table 3. From the results mentioned
in Table 3, it can be concluded that the LSTM model,
with RMSE of 0.04041579, MAE of 0.03240178, and MBE
of -0.00840223, has promising values among the tested base
models. However, these results can be improved using the
ensemble models.

D. THIRD SCENARIO: ENSEMBLE MODELS

This scenario is based on different ensemble models includ-
ing average ensemble, KNN ensemble, and the proposed
optimizing ensemble weights model. The ensemble models in
this experiment utilize the training instances instead of build-
ing models to combine/average the results of the three base
models (LSTM, SVM, and NN). This can classify unknown
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FIGURE 7. KNN ensemble correlation.

observations to the regression of the majority and gives the
results to predict solar radiation.

Figure 8 shows the optimized weights of the proposed
model. Results of different ensemble models are shown
in Table 4. From Table 4 it can be seen that the three
ensemble models show promising results as compared to
those of the base models tested in the second scenario.
The proposed ensemble optimizing weights model with
RMSE of 0.00175482, MAE of 0.00161235, and MBE
of -0.00036521, based on the advanced sine cosine algo-
rithm, gives competitive results compared to the average
ensemble and KNN ensemble models. Figure 9 shows the
Receiver Operating Characteristics (ROC) curves of the pro-
posed ensemble optimizing weights model versus the average
ensemble and KNN ensemble models. The figures show that
the proposed model based on the proposed ASCA algo-
rithm is able to distinguish data with a high Area Under the
Curve (AUC) with a value of 0.9875.

VOLUME 9, 2021



E.-S. M. El-Kenawy et al.: Advanced Ensemble Model for Solar Radiation Forecasting

IEEE Access

TABLE 2. Correlation (remove all columns except radiation).

Temperature Pressure Humidity WindDir  WindSpeed  SunHours  Radiation
Temperature 1.000000 0311173 -0.285055  -0.259421  -0.031458 0.355509  0.734955
Pressure 0.311173 1.000000  -0.223973  -0.229010  -0.083639 0.278614  0.119016
Humidity -0.285055 -0.223973  1.000000  -0.001833  -0.211624 0.087356  -0.226171
WindDir -0.259421 -0.229010  -0.001833  1.000000 0.073092 -0.129434  -0.230324
WindSpeed -0.031458 -0.083639  -0.211624  0.073092 1.000000 -0.174944  0.073627
SunHours 0.355509 0.278614  0.087356  -0.129434  -0.174944 1.000000  0.073456
Radiation 0.734955 0.119016  -0.226171  -0.230324 0.073627 0.073456 1.000000
—e~ original ROC (Optimizing Ensemble)
15 4 —e— estimated : ROC (Average Ensemble)

14 1

13 1

12 1

11

10 4

0.0 2.5 5.0 1.5 100 125 150 175

FIGURE 8. Optimized weights predicted values by the proposed model.

ANOVA test is applied to measure the statistical differ-
ences between the proposed model and other models that are
used for comparison. The hypothesis testing can be formu-
lated using two hypotheses; the null hypothesis (Ho: a1 =
MBl = MCl = Up1 = KE1L = MF1), Where Al: Proposed
ensemble weights model, Bl: KNN ensemble model, C1:
Average ensemble model, D1: SVM model, E1: NN model,
and F1: LSTM model, and the alternate hypothesis (Hj:
Means are not all equal). The ANOVA test results are shown
in Table 5. Figure 10 shows the ANOVA test results for the
proposed and other models based on the objective function.
Detailed results obtained through ANOVA test are shown
in Table 5. The alternate hypothesis H; is preferred based on
the results of the test. But to decide the best algorithm another
test is needed.

Wilcoxon’s rank-sum statistical analysis of the proposed
ensemble model in comparison to other models is shown
in Table 6. Wilcoxon’s rank-sum test will determine if
the proposed models and other models’ results have a sig-
nificant difference; p-value < 0.05 will show significant
superiority. Hypothesis testing is formulated by two hypothe-
ses; the null hypothesis (Ho: (proposed model = ILKNN Ensembl s
M Proposed model = [AAverage Ensembles M Proposed model = [ASVM »

MProposed model = NN » and M Proposed model = WLSTM ) and the
alternate hypothesis (H1: Means are not all equal). The results

in Table 6 explain that p-values are less than 0.05 which are
achieved between the proposed model and other models. This
shows the superiority of the ASCA based proposed model
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FIGURE 9. ROC curves of the proposed optimizing ensemble model
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TABLE 3. Experimental results of the base models.

RMSE MAE MBE
LSTM model ~ 0.04041579  0.03240178  -0.00840223
NN model 0.05904678  0.04003057  -0.01351504
SVM model 0.05673949  0.04269841  0.00942546

and also indicates the statistical significance of the algorithm.
Thus, the alternate hypothesis H; is accepted.

E. FOURTH SCENARIO: ASCA
ALGORITHM PERFORMANCE
In this section, the proposed ASCA algorithm is evaluated
in compared with PSO [42], [43], WOA [44], [45], GA
[46],GWO [47], SSA [48], HHO [32], [49], HGSCADE [50],
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TABLE 4. Experimental results of the of the proposed ensemble model compared to other models.

RMSE MAE MBE

Average Ensemble 0.03722151  0.03101721  -0.00386392

KNN Ensemble 0.02368600  0.02835076  -0.00144518

Proposed Optimizing Ensemble Weights ~ 0.00175482  0.00161235  -0.00036521

TABLE 5. ANOVA test results of the proposed ensemble model compared to other models.
SS DF MS F(DFn, DFd) P value

Treatment (between columns) 0.04858 5 0.009715 F(5,120)=2414 P <0.0001
Residual (within columns) 0.000483 120  4.03E-06 - -
Total 0.04906 125 - - -

TABLE 6. Wilcoxon's rank-sum statistical results of the proposed ensemble model in comparison to other models.

LSTM NN SVM Average Ensemble ~ KNN Ensemble ~ Optimizing Ensemble

Theoretical median 0 0 0 0 0 0
Actual median 0.04085 0.05964  0.05733 0.03768 0.02418 0.001755
Number of values 21 21 21 21 21 21
Wilcoxon Signed Rank Test

Signed ranks sum (W) 231 231 231 231 231 231

Positive ranks sum 231 231 231 231 231 231

Negative ranks sum 0 0 0 0 0 0

P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Estimate or Exact? Exact Exact Exact Exact Exact Exact

PValue Summary seskoskosk seskskosk SRk seskesksk SRk seskoskosk

Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes
How big is the discrepancy?

Discrepancy 0.04085  0.05964  0.05733 0.03768 0.02418 0.001755

ANOVA Test for ( RMSE)
0.08-

0.06-
0.04-

0.02-

Objective Function

0-00 1 1 1 I 1

Algorithms

FIGURE 10. ANOVA test for different models.

HMSCACSA [51], MPA [52], ChOA [53], and SMA [54]
algorithms. For a fair comparison, the proposed ASCA algo-
rithm and the compared algorithms begin in the experiment
with the same number of agents (population) with same size
and are applied to the same objective function using same
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number of iteration, dimensions, and boundaries. Table 7
shows the classification accuracy and the descriptive statistics
of the proposed ASCA algorithm compared to other algo-
rithms. The table indicates that the ASCA algorithm achieved
better results than compared algorithms.

ANOVA and Wilcoxon’s rank-sum tests are performed
using 20 runs for a fair comparison between the ASCA
algorithm and the compared algorithms. ANOVA test is
applied to measure the statistical differences between the
proposed algorithm and compared algorithms that are used
for comparison as shown in Table 8. The hypothesis testing
is formulated here using two hypotheses; the null hypothesis
(Ho: o = MUBp = UC = UD = UE = UF = UG =
U = Uy = g = g = [Kr), where A: ASCA algorithm,
B: PSO algorithm, C: WOA algorithm, D: GA algorithm, E:
GWO algorithm, F: SSA algorithm, G: HHO algorithm,
H: HGSCADE algorithm, 7: HMSCACSA algorithm, J:
MPA algorithm, K: ChOA algorithm, and L: SMA algo-
rithm. The alternate hypothesis (H1: Means are not all equal).
In addition, Wilcoxon’s rank-sum statistical analysis of the
proposed algorithm in comparison to other algorithms is
shown in Table 9. Hypothesis testing is formulated by two
hypotheses; the null hypothesis (Hy: (iasca = 1pso, LASCA =
HWOAs MASCA = MGA> MASCA = MGWO, MASCA = MSSA,
MASCA = MHHO> MASCA = MHGSCADE > MASCA = LHMSCACSA»

HASCA = ILMPA> LASCA = HChOA> MASCA = WsmA- The alter-
nate hypothesis (Hj: Means are not all equal). This shows

the superiority and indicates the statistical significance of
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TABLE 7. The classification accuracy and descriptive statistics of the proposed ASCA algorithm compared to other algorithms.

FIGURE 11. Algorithms’ performance versus the objective function based
on the RMSE parameter.

the ASCA algorithm. Thus, the alternate hypothesis Hj is
accepted.

In Figure 11, algorithms’ performance versus the objective
function is shown based on the RMSE parameter. It can
be noted that the minimum, maximum, and average values
based on the proposed algorithm are almost the same.
This curve indicated the stability of the proposed ASCA
algorithm. The histogram of RMSE shown in Figure 12
for different algorithms based on the number of values
confirms the stability of the ASCA algorithm. The Residual,
Homoscedasticity, quantile-quantile (QQ) plots and heat map
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ASCA PSO WOA GA GWO SSA HHO  HGSCADE HMSCACSA MPA ChOA SMA
Number of values 20 20 20 20 20 20 20 20 20 20 20 20
Minimum 0.001755  0.008712  0.009914  0.006157  0.004875  0.005742  0.005542 0.002813 0.002459 0.004414  0.006845  0.003237
25% Percentile 0.001755  0.009812  0.01001 0.007157  0.006875  0.007742  0.006542 0.003127 0.003459 0.005414  0.007845  0.004237
Median 0.001755  0.009812  0.01001 0.007157  0.006875  0.007742  0.006542 0.003127 0.003459 0.005414  0.007845  0.004237
75% Percentile 0.001755  0.009812  0.01001 ~ 0.007157  0.006875  0.007742  0.006542  0.003127 0.003459 0.005414  0.007845  0.004237
Maximum 0.001755 0.01098 0.0198 0.009216  0.008787  0.008742  0.007542 0.004627 0.004746 0.006414  0.008885  0.006237
Range 0 0.002269  0.009888  0.003059  0.003913 0.003 0.002 0.001814 0.002287 0.002 0.002039 0.003
Mean 0.001755  0.009766  0.0105  0.00721  0.00682  0.007642  0.006535  0.003186 0.003532 0.005445  0.007897  0.004337
Std. Deviation 0 0.000431 0.00219 0.000522  0.000673  0.000553  0.000326  0.0003463 0.0004564 0.000354  0.000399  0.000553
Std. Error of Mean 0 9.64E-05 0.00049 0.000117 0.00015 0.000124  7.29E-05  0.00007743 0.000102 791E-05 8.92E-05 0.000124
Coefficient of variation 0.000% 4.416% 20.86% 7.244% 9.865% 7.230% 4.987% 10.87% 12.92% 6.492% 5.054% 12.74%
Geometric mean 0.001755  0.009757 0.01036  0.007193  0.006787 0.00762  0.006527 0.003172 0.003506 0.005434  0.007888  0.004307
Geometric SD factor 1 1.046 1.165 1.07 1.108 1.082 1.052 1.096 1.134 1.068 1.051 1.124
Harmonic mean 0.001755  0.009747 0.01026  0.007179  0.006752  0.007596  0.006519 0.00316 0.00348 0.005423  0.007878 0.00428
Skewness 0.174 4.471 2.833 -0.1142 2,164 0.06551 4.133 1.183 0.03066 05963 2.164
Kurtosis 5.32 20 13.37 7.077 8.208 9.278 18.21 4.844 6.352 4.955 8.208
Sum 0.0351 0.1953 0.21 0.1442 0.1364 0.1528 0.1307 0.06372 0.07065 0.1089 0.1579 0.08674
TABLE 8. ANOVA test results of the proposed ASCA algorithm in comparison to other algorithms.
SS DF MS F (DFn, DFd) P value
Treatment (between columns) 0.001553 11 0.0001412 F(11,228)=240.8 P <0.0001
Residual (within columns) 0.0001337 228 5.863E-07 - -
Total 0.001687 239 - - -
Histogram of RMSE
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FIGURE 12. Histogram of RMSE of the presented algorithm compared to
A|gor|th ms other algorithms based on number of values with Bin Center range

(0.0015 - 0.0165).

shown in Figure 13, is known as a chance plot. It is mostly
used by plotting the quantiles and comparing them to contrast
two probability distributions. As the figure shows, the points’
distributions in the QQ approximately fit the line. Therefore,
the actual and the forecasted residuals were linearly related,
thus validating the recommended ASCA efficiency.

V. DISCUSSION

From the results of different experiments that are conducted
for evaluating the performance of the proposed solution, it can
be seen that the proposed ASCA ensemble weight model
outperforms other models in terms of providing accurate
forecasting. The algorithms are based on atmospheric vari-
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TABLE 9. Wilcoxon’s rank-sum statistical results of the proposed ASCA algorithm in comparison to other algorithms.

ASCA PSO WOA GA GWO SSA HHO HGSCADE HMSCACSA MPA ChOA SMA
Theoretical median 0 0 0 0 0 0 0 0 0 0 0 0
Actual median 0.001755  0.009812  0.01001  0.007157  0.006875  0.007742  0.006542 0.003127 0.003459 0.005414  0.007845  0.004237
Number of values 20 20 20 20 20 20 20 20 20 20 20 20
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 210 210 210 210 210 210 210 210 210 210 210 210
Sum of positive ranks 210 210 210 210 210 210 210 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0 0 0 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact
P Value Summal’y sk sk ok EEE TS skskokok skekoksk EEEE S EEE EEE EEE TS sekkok EEEES EEE
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.001755  0.009812  0.01001  0.007157  0.006875  0.007742  0.006542 0.003127 0.003459 0.005414  0.007845  0.004237
Residual plot Homoscedasticity plot
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. .
®
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©
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FIGURE 13. Residual, Homoscedasticity, quantile-quantile (QQ) plots and heat map for the proposed and compared

algorithms.

ables including temperature, pressure, humidity, etc. These
variables should be collected, stored, and analyzed to have
more accurate and reliable forecasting. The placement of
radiation measuring sensors (pyranometers) is required to
collect this kind of data. As constructing such a network is
resource-consuming and costly so it is not feasible to have
these sensors in every place. Therefore empirical models
need to be developed using meteorological data from nearby
available stations.

The proposed ensemble optimizing weights model with
RMSE of 0.00175482, MAE of 0.00161235, and MBE
of -0.00036521, based on the ASCA algorithm, gives com-
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petitive results compared to the average ensemble and KNN
ensemble models. The proposed model based on the proposed
ASCA algorithm is able to distinguish data with a high AUC
with a value of 0.9875. The analysis based on ANOVA and
Wilcoxon’s rank-sum tests using more than 20 runs shows the
superiority of the ASCA based proposed model and indicates
the statistical significance of the algorithm. The classifica-
tion accuracy and the descriptive statistics of the proposed
ASCA algorithm and other algorithms indicate that the pro-
posed algorithm can achieve better results than compared
algorithms. ANOVA and Wilcoxon’s rank-sum tests show
the superiority and indicate the statistical significance of the
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ASCA algorithm which validating the recommended ASCA
efficiency.

The proposed ASCA algorithm is also tested for the prob-
lem of binary classification, but the algorithm shows slow
convergence in the experiments. This can be considered as
a disadvantage of the ASCA algorithm for such kinds of
problems. The proposed algorithm needs some improvements
to cover this.

V1. CONCLUSION AND FUTURE DIRECTION

This paper forecasts solar radiation based on a proposed
advanced sine cosine algorithm-based ensemble model. The
proposed ensemble model shows superiority over the refer-
ence base model including LSTM, NN, and SVM. The ASCA
based ensemble weights model provided better results over
the average ensemble and the KNN ensemble models. Several
experiments are conducted and different performance met-
rics are considered to conclude that the proposed ensemble
weights model is best suitable for forecasting solar radiation.
The proposed ASCA algorithm is evaluated in comparison
with the PSO, WOA, GA, GWO, SSA, HHO, HGSCADE,
HMSCACSA, MPA, ChOA, and SMA algorithms. Signif-
icant superiority of the proposed ensemble model is also
confirmed using statistical analysis such as ANOVA and
Wilcoxon’s rank-sum tests. In future work, the proposed
ASCA algorithm will be applied for other continuous prob-
lems, binary problems with a high number of attributes for
feature selection and classification problems, and also con-
strained engineering problems. Different novel optimization
techniques to select the best machine learning algorithms and
to calculate weights for each can be considered in the future.
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