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ABSTRACT Automatic lane detection is a classical task in autonomous vehicles that traditional computer
vision techniques can perform. However, such techniques lack reliability for achieving high accuracy while
maintaining adequate time complexity in the context of real-time detection in complex and dynamic road
scenes. Deep neural networks have proved their ability to achieve competing accuracy and time complexity
while training them on manually labeled data. Yet, the unavailability of segmentation masks for host
lanes in harsh road environments hinders fully supervised methods’ operability on such a problem. This
work proposes integrating traditional computer vision techniques and deep learning methods to develop
a reliable benchmarking framework for lane detection tasks in complex and dynamic road scenes. Firstly,
an automatic segmentation algorithm based on a sequence of traditional computer vision techniques has been
experimented. This algorithm precisely segments the semantic region of the host lane in the complex urban
images of nuScenes dataset used in this framework; hence corresponding weak labels are generated. After
that, the developed data is qualitatively evaluated to be used in training and benchmarking five state-of-the-art
FCN-based architectures: SegNet, Modified SegNet, U-Net, ResUNet, and ResUNet++. The performance
evaluation of the trained models is done visually and quantitatively by considering lane detection a binary
semantic segmentation task. The output results show robust performance, especially ResUNet++, which
outperforms all the other models while testing them in different complex road scenes with dynamic scenarios
and various lighting conditions.

INDEX TERMS Advanced driving assistance systems (ADAS), lane detection, lane segmentation, computer
vision, dynamic scenes, fully convolutional networks (FCN), semantic segmentation.

I. INTRODUCTION
There has been an increasing interest in autonomous driving
research because of its great impact on traffic management
and the economy. Autonomous vehicles mimic human driv-
ing by making decisions and performing intelligent opera-
tions like a lane change, collision avoidance, object detection,
and lane departure warning [1], [2]. The accuracy of these
intelligent decisions and operations has the potential to allevi-
ate human driver’s burden and reduce traffic accidents that are
almost entirely caused by human’s improper decisions and
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actions [1]. Different artificial intelligence (AI) techniques
enable autonomous vehicles to manage actions and take deci-
sions based on various input data. Such data can be acquired
by vehicle’s camera, radio detection and ranging (RADAR),
light detection and ranging (LIDAR), global positioning sys-
tem (GPS), or communication system [1], [3], [4]. Different
actuators can then perform physical output actions based on
the taken intelligent decisions.

Automatic lane detection is considered one of the most
challenging perception tasks found in autonomous vehicles
nowadays. Many factors may result in poor road perception
and make robust lane detection hard to achieve, especially
in dynamic and harsh road environments. Some of these
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factors can be the vague nature of the lane patterns, the lim-
ited visibility of these lines at night, the variance in lane
shapes and colors, the deterioration of the lane patterns over
time, or the illusionary road shadows. These challenges make
many current novelties focus on improving the accuracy
and reliability of lane detection systems. This is because
lane detection is considered only a sub-task from bigger
ones like lane changing, lane departure warning, and lane
keeping [2], [5].

Recently, cameras have become more reliable and capable
of capturing any situation of the road environment in any
direction. Different computer vision algorithms can be used
to perform intelligent perception tasks based on the captured
frames of road scenes. Lane lines have some unique fea-
tures, like being parallel and distinguishable by their colors
or edges. Fortunately, with the rapid growth of computer
vision-based techniques, there have been various methods
that can utilize these features for lane detection and segmen-
tation. Some of these methods can be traditional and based on
geometrical analysis, while others can be based on trainable
deep neural networks (DNNs) [6]. Both methods have advan-
tages and disadvantages which give a push towards such a
topic in the research field.

The advantages of traditional computer vision techniques
are various and can considerably be used for accurate lane
detection. Yet, their computational time is high in complex
scenes and cannot cope with the limitations of real-time
applications. On the other hand, deep learning approaches
have shown robustness in the prediction timing and can be
reliably used for real-time lane detection. However, if the
deep learning models are not well-trained, false predictions
are likely to occur. The inefficient training can occur due to
limited data availability, imprecise training labels, or poor
information among the training data.

The contributions of this work can be listed as follows:
• Proposing a sequence of traditional computer vision
techniques for automatic and precise lane segmentation
in complex and dynamic road scenes.

• Developing a weak supervision framework that utilizes
the proposed sequence to build up labels for a subset of
nuScenes dataset [7] which is being used for the first
time in the lane detection context.

• Extending nuScenecs dataset by generating lane labels
for selected challenging road frames that contain differ-
ent illumination conditions, lane shapes, and dynamic
scenarios.

• Benchmarking the performance of five state-of-the-art
deep learning segmentation models trained supervisely
on our developed dataset to detect road lanes.

• Employing ResUNet++ to be trained for the first time
on the lane detection task where it predominately out-
performs the other tested models.

• Introducing a robust lane detection using an ensemble-
based approachwhile testing themodels by investigating
the ensemble prediction of our top three trained models
in shadowy scenes and obscuring road scenarios.

The remaining sections of this paper are organized as fol-
lows: Section II conducts the related work in using traditional
computer vision techniques and deep learning methods for
lane segmentation and detection. Section III introduces the
proposed framework, including the segmentation for labels
generation and the deep learning approaches. Section IV
presents the data setup, experiments, results, analysis, com-
parisons, and limitations. Finally, the conclusion is given in
section V.

II. RELATED WORK
As lane detection is an essential task in the advanced driving
assistance systems (ADAS), several previous works have
been developed to detect road lanes efficiently. In this section,
a brief overview of the most efficient developed methods
will be conducted. Firstly, in traditional methods, prepro-
cessing is crucial to correct image distortion, remove pixel
noise, and enhance overall information among the image.
Gaussian filter [8]–[10] and Median filter [11] can be used
for the smoothening operation that is usually done before
edge detection. Image distortion removal was done in [12] to
drive a corrected image with uniform dimensions. Moreover,
the region of interest (ROI) is determined using several tech-
niques to segment a part of the road containing the needed
lane detection information. Selecting ROI can be done by
conventionally choosing the lower two-thirds of the image
area as done in [12] or the bottom side as in [13], or a subset
from the frame as in [14] and [15]. However, these methods
are inefficient with urban road scenes. Thus, some devel-
oped works selected ROI based on the vanishing point (VP)
estimation [16]–[18].

After defining the region containing lanes, some tech-
niques can be done to enhance lane features information.
As lane lines are usually parallel, this information can be
enhanced using the bird’s-eye view that can be obtained from
different perspective mapping [9], [19]–[21]. For lane color
variations, [22]–[25] considered the usage of color spaces
to segment different bright lane colors from the roads using
specific channels like the lightness channel in HLS (Hue
Lightness Saturation) color space. The next step is to fit lane
lines where different line fitting models have been devel-
oped. For straight lanes, Hough transform (HT) is widely
used as in [9], [26]–[28]. There have been other paramet-
ric fitting models such as hyperbola [29] and parabola [30]
that can efficiently cover straight lines. For more flexibility
and complex shapes (e.g. curved) coverage, semi-parametric
models such as Catmull–Rom [31], [32], B-Snake [33], and
Cubic Spline curves [34], [35] were developed. Random
sample consensus (RANSAC) is considered a widely used
lane line fitting algorithm that was adopted in many previous
novels [9], [12], [24], [36]–[39].

For the deep learning-based methods, Huval et al. [40]
trained convolutional neural network (CNN) architecture to
detect lane lines for real-time usage. A unique approach
was introduced in [41] where a dual-view convolutional
neutral network (DVCNN) framework was proposed for
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FIGURE 1. Overall framework.

robust lane detection. This novel was based on utilizing
front-view and top-view images from which the false detec-
tions and non-club-shaped structures were removed, respec-
tively. A weighted hat-like filter was then applied to find
lane candidates, which were then processed by a CNN [41].
An efficient CNN framework based on point clouds was
designed by [42] where the cloud points were preprocessed
to produce reflectivity information that can be then fed into
CNN. In [43] a hybrid framework was developed based on
CNN and recurrent neural network (RNN) to detect lanes.
In that study, CNN was adopted to detect the geometric lane
attributes with respect to the region of interest, while RNN
was utilized to visually infer the presence of lane structure
relying on its internal memory [43]. An architecture based
on SegNet was developed in [44] called LaneNet where
the lane detection problem was introduced as an instance
segmentation problem. Convolutional long short-term mem-
ory (ConvLSTM) has been widely used in computer vision
and video analysis because of its feedback mechanism on
temporal dynamics and the abstraction power on image repre-
sentation. By relying on ConvLSTM in a hybrid architecture,
Zou et al. [45] used multiple frames of a continuous driving
scene to detect lane lines from the information of many
frames rather than a single one. In [46], a robust multiple lane
detection algorithmwas proposedwhere a fully convolutional
network (FCN)was used for lane boundary feature extraction,
then Hough transform, and the least square method combined
with the perspective transform (PT) was used to determine the
lane lines accurately.

By surveying many novelties related to the lane detection
task based on traditional computer vision and deep learn-
ing approaches, we realized that both have advantages and
limitations as discussed earlier. Thus, this paper aims to

efficiently utilize the advantages of each approach without
intervening in its limitations to detect lanes accurately. The
major usage of the traditional computer vision techniques
in this work is to develop an algorithm to automatically
generate uncertain annotation knowledge for lane segmenta-
tion in challenging complex scenes without considering the
time complexity. On the other hand, this work also provides
benchmarking state-of-the-art architectures on the developed
data, giving intuition that achieving accurate and robust
lane detection is possible. Visual and quantitative experi-
ments will be done to demonstrate the effectiveness of this
framework.

III. PROPOSED METHOD
The whole framework for achieving high-performance lane
detection in complex scenes is illustrated in Fig. 1. The
framework consists of two main approaches: the tradi-
tional computer vision approach and the deep learning
approach. The traditional computer vision approach includes
a proposed sequence of advanced, optimized, and adaptive
techniques to perform automatic lane segmentation in images
of challenging scenes. Consequently, weak labels are gen-
erated to be then evaluated using a qualitative assessment,
which will be presented in Section IV before being used in the
deep learning approach. The deep learning approach utilizes
the developed data to supervise train different state-of-the-art
deep learning architectures on the lane detection task.

A. LANE SEGMENTATION
In order to supervise train deep neural networks, images
with their corresponding labels are essential for making the
networks capable of distinguishing the different classes of
the recognition task. In this work, images of challenging
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FIGURE 2. The proposed sequence for segmenting the lanes in images
with complex and dynamic road scenes.

FIGURE 3. Brief representation for the lane segmentation steps based on
enhanced lane features. The original image and the generated label are
inputs for training the deep learning architecture.

road scenes and dynamic scenarios are going to be pre-
cisely labeled. The labels contain only two classes: lane and
non-lane. A sequence based on traditional computer vision
techniques is experimented with to determine the pixels
that lane lines occupy and bound accurately. Fig. 2 illus-
trates our proposed sequence for segmenting the semantic
region of the host lane in challenging images. The sequence
includes two major stages: adaptive region identification
and lane features enhancement. These two stages are con-
sidered the most critical while dealing with challenging
images of diverse road scenarios. Fig. 3 briefly represents the
steps of lane segmentation in the context of enhanced lane
features.

1) DISTORTION CORRECTION
The road scene images represent 2D mapping for the 3D
real world. There are two types of image distortions that
are likely to occur: radial distortion and tangential distortion.

When radial distortion occurs, the lines on an image appear
either less or more curved than how they actually are while in
tangential distortion, the objects appear at deceptive distances
[12], [47]. k1, k2, k3 are the radial distortion coefficients,
while p1 and p2 are the tangential distortion coefficients. The
radial correction formulas are given as follows [12], [47]:

xcorrected = x(1+ k1r2 + k2r4 + k3r6) (1)

ycorrected = y(1+ k1r2 + k2r4 + k3r6) (2)

while the tangential correction formulas are given as [12]:

xcorrected = x + [2p1y+ p2(r2 + 2x2)] (3)

ycorrected = y+ [p1(r2 + 2y2)+ 2p2x] (4)

where r is the distance between a point on a corrected
image (undistorted) and the center of that image, (x, y)
are the coordinates of a point on the distorted image,
while (xcorrected , ycorrected ) is where that point will appear
on the undistorted image. According to the previous equa-
tions, it is obvious that the distortion coefficients must
be known first to eliminate these types of distortion and
restore the straightness within an image. These coefficients
can be derived using the camera calibration process where
the above formulas are utilized as mathematical models.
In this work, the checkerboard-based calibration technique
is adopted to drive the needed distortion coefficients [12].
The camera matrix, which represents the intrinsic parame-
ters matrix K , also obtained by camera calibration, is given
as [12], [16], [48]: fx 0 cx

0 fy cy
0 0 1

 (5)

where fx and fy represent camera focal lengths, while cx and
cy represent the optical centers. After obtaining the distortion
coefficients and the camera matrix, transformation matrix is
derived to map the undistorted (corrected) images.

2) ADAPTIVE REGION IDENTIFICATION
Images captured from road scenes come with many details
(e.g. sky and buildings), yet some of them can be useless or
lead to inaccurate lane segmentation. Consequently, different
adaptive and optimized methods are adopted in this approach
to overcome this limitation. An adaptive region of inter-
est (AROI) based on the vertical mean distribution (VMD)
method is chosen for road segmentation. For identifying the
lane region, we utilize the progressive probabilistic Hough
transform (PPHT) to estimate the vanishing point. Based
on the estimated vanishing point, it is possible to generate
warped images showing the lane region without interference
from undesired information.

a: VERTICAL MEAN DISTRIBUTION
In order to minimize the undesired effects of such off-lane
information, filtering out must be done by masking parts of
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the images. Hence, we use in this work an adaptive algo-
rithm based on a horizon line to segment the road [49].
Identifying the horizon line position is done using the VMD
method proposed in [50]. The reason behind using VMD
is that road scenes are generally divided horizontally into
two main regions: sky/buildings region and road region. The
intensities of the pixels throughout these two regions vary
unevenly where the pixels of the sky region usually possess
higher intensities than road pixels [50]. This variation shows
a sudden change in pixel intensities across the line (rows)
dividing the two regions. The VMD method relies on this
feature and determined by using this equation [49]:

VMD(R) =
1
W

W∑
C=1

IG(R,C) (6)

Among them, W is the width of the image (number of
columns), while R and C stand for the row and column
numbers, respectively. IG(R,C) is the gray pixel intensity
at row R and column C . This equation is applied on every
row of an image to finally plot the row numbers versus their
corresponding average pixels values which represents the
vertical mean distribution of an image. In this work, we use
the images in size of 1280 × 720. The best horizon line is
found to be identified at the local minimum occurs from row
300 to row 400 (counting from above to below) as shown
in Fig. 4. It can be noticed that no big jumps of intensities
difference are found in the desired region due to the urban
nature of the images.

b: PROGRESSIVE PROBABILISTIC HOUGH TRANSFORM
After segmenting the road, we need to identify the region
containing only lanes with no undesired road information

FIGURE 4. Detected horizon lines using VMD method.

(e.g. pavements, trees, and parked cars). This helps in extract-
ing themost beneficial lane features out of an image. Perspec-
tive transform has proven its efficiency in identifying the lane
region in many previous studies. However, to map an image
to another perspective, vanishing point estimation is crucial.
In this work, the progressive probabilistic Hough transform
along with an optimized procedure are used for estimating
the VP of each image. PPHT algorithm which was proposed
in [51] is an optimization of HT that can detect different
line orientations efficiently [49]. This algorithm utilizes only
a small random subset of the available edge points that are
sufficient to detect lines. As a result, PPHT is applied here
to the edges obtained by Canny technique to deal with the
arbitrary lane shapes found in the used images.

According to [52], straight lines can be parameterized by
(ρ, θ) and the points on a specific straight line in the image
space can be mapped into a single point in the parame-
ter (Hough) space by applying Hough transform as shown
in Fig. 5. ρ is the perpendicular distance from the origin to the
line, while θ is the angle between ρ and the horizontal axis.
Hence, the mapping relation between image space (X ,Y ) and
polar parameter space (ρ, θ) is giving by:

ρ = x cos θ + y sin θ (7)

where (x, y) is a point on a straight line in an image.
For an input image, the (ρ, θ) plane is divided into Np x

Nθ 2D matrix (rectangular cells) and represented by an accu-
mulator array to hold places (bins) for all ρ and θ possible
values [53]. PPHT algorithm works as follows:

FIGURE 5. Mapping from (a) image space (X ,Y ) to (b) polar parameter
space (ρ, θ).
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1) Selecting randomly a point from an input image, and
then deriving all the possible pairs of (ρ, θ) by substi-
tuting in equ.(7) with all the possible θ values to get the
corresponding ρ.

2) Removing the selected pixel point from the input
image, then updating the accumulator.

3) Scanning all over the updated accumulator to get the
highest peak (bin that contains pair of (ρ, θ) with the
most voting points) and comparing it with a pre-defined
threshold (Th) value. If greater than (Th), proceed in the
steps, otherwise return to Step1.

4) Choosing the longest segment found along the corridor
of the peak in the accumulator that either is continuous
or exhibits a gap not exceeding a given threshold. After
that, removing all the points of the longest segment
from the input image pixels.

5) Eliminating the points of the selected segment from
the accumulator to no longer be a part of any voting
process. Then, taking the selected segment as one of the
output lines if it is longer than a predefined minimum
length. Return to Step1.

After PPHT is applied to detect the lines, the vanishing
point can be estimated. However, it is hard to get a unique
intersection point when more than two lines exist. As a result,
an optimization procedure should be employed as done before
in [16]. If each output line i, after applying PPHT, can be
represented by a point on it pi and unit normal to it ni, then
the total squared distance from the VP to all the lines can be
defined as a cost function given by [16]:

I =
1
2

∑
(nTi ( Vp − pi) )2 (8)

And it is required to find the minimum cost function to
define the vanishing point. Accordingly, differentiation with
respect to Vp is done to obtain the following expression which
identifies the vanishing point [16]:

Vp = (
∑

ninTi )−1 (
∑

ninTi pi ) (9)

c: PERSPECTIVE TRANSFORM
From just one image, we can mimic various images taken
for the same scene at different angles and positions using
perspective transform [54]. The road scene frames are usually
captured using camera attached to the top of the vehicle
resulting in images with many off-lane information. Conse-
quently, using PT is useful in the context of lane segmentation
where the original images can be transformed into warped
images as if they are acquired from above the lanes as shown
in Fig. 6. In order to get the target perspective of a warped
image, it is needed to transform a trapezoid patch of the
frontal road view into a rectangular image of the road from
above. The trapezoid patch can be easily defined from the
top, bottom, and side edges that all meet in the vanishing
point [54]. By utilizing the vanishing point which we have
estimated earlier in Equation (9), the needed edges can be

FIGURE 6. Applying perspective transform: (a) The normal scene view;
(b) Result of perspective transform.

FIGURE 7. Lab color space for yellow lanes detection: (a) Warped image
contains yellow lane; (b) ’B’ channel in Lab color space.

known. Fig. 6b, shows the identified lane region which obvi-
ously visualizes the desired lane features.

3) LANE FEATURES ENHANCEMENT
By knowing that the lane lines are parallel, straight, and
have different colors, some image processing techniques can
be done to preserve and enhance such features. Color space
conversion and morphological operations are employed here
to urge an accurate lane segmentation.

a: COLOR SPACE CONVERSION AND CHANNELS SELECTION
After applying the PT for better lane recognition, features
enhancement is an important step for an efficient lane
segmentation. To show more information about the lanes,
the images are converted into the HLS (Hue Lightness Satura-
tion) color space and Lab color space. The (L) channel in both
spaces stands for the Lightness and utilized to track the bright
regions of an image where the lanes are considered from [25],
[55]. On the other hand, the (B) channel in Lab color space
is used to visualize and track the yellow lanes as illustrated
in Fig. 7 [25], [55]. Consequently, different lane colors can
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be differentiated by utilizing the effect of both channels in
the two color spaces.

b: TOP-HAT AND EROSION MORPHOLOGICAL OPERATIONS
The morphological top-hat operation is typically used in this
approach to isolate the brighter areas in the images from their
darker surroundings. Lane lines are represented by bright
pixels in the images. Hence, top-hat operation boosts accu-
rate lane segmentation against different lightning changes
by helping in de-noising and enhancing the contrast [56].
The bright edges can be detected easily using the top-hat
operation without any interference from the other non-bright
edges. This undesired interference is likely to occur using
other detection techniques like Canny edge detection. Fig. 8
shows a visual comparison between the top-hat operation
and the Canny technique in detecting the edges within the
warped image (found in Fig. 6b). It is clear from the fig-
ure that the top-hat operation efficiently isolates the lane
lines, which enhances the lane information for the upcoming
stage. Erosion morphological operation is then utilized to
eliminate noises coming from regions smaller than a defined
structuring element.

FIGURE 8. Edge detection: (a) Result of applying Canny edge technique;
(b) Result of applying top-hat morphological operation.

c: LANE LINES FITTING AND FILLING
After applying the perspective transform to identify the lane
region and enhancing lane features, line fitting is needed to
finalize the segmentation stage. Afterward, we can easily
generate the desired ground truth labels. In this framework,
the objective is to deal with different lane colors and orien-
tations. Thus, fitting the straight, dashed, and curved lane
lines are essential. The histogram of each image is com-
puted along its width (columns) to get the peaks at which
lane lines are present. Prominently, there are two peaks in
each image around its center, giving intuition about where
to start the line fitting [57]. For more flexible fitting while
dealing with arbitrary shapes, a sliding window search is
used to iterate upon different lines shapes starting from the
found starting point. Based on the previous, it is needed to

fit a polynomial line on the detected lanes to segment it.
Accordingly, we use second-order polynomial fit, which can
be described as follows [57]:

f (y) = ay2 + by + c (10)

The fitted parallel lines are then drawn, and the area
between them is filled to segment the whole region bounded
by the lane. Eventually, the inverse perspective transform is
applied to unwrap the images to the normal view, and then
single channel conversion is done to produce the required
ground truth labels.

B. DEEP LEARNING ARCHITECTURES
By proceeding in this framework, lane detection will be
recognized as a semantic segmentation task of two classes:
lane or non-lane. FCNs, introduced in [58], take advantage
of the existing CNNs as being powerful visual models capa-
ble of learning hierarchies of features. Different FCN-based
architectures can be supervised trained to produce a pixel-
to-pixel semantic segmentation map by identifying each out-
put pixel as a lane, or non-lane pixel [58]–[61]. In FCN,
the fully connected layers were replaced with convolutional
ones to form a fully convolutional network that outputs spatial
maps. Inspired by the success of the two basic FCN-based
architectures: SegNet [62], and U-Net [63], they will be
used in this approach along with other improved architec-
ture. A brief description of these two architectures will be
presented below:

1) SEGNET
Based on the encoder-decoder architecture where at the
encoder network, convolution and max pooling operations
are performed. Each encoder performs convolution with a
filter bank to produce a set of feature maps followed by batch
normalization. Element-wise rectified linear unit (ReLU)
is then applied, followed by max-pooling. Each encoding
layer has a corresponding decoding layer in the decoder
network. The decoder upsamples its input feature maps using
the indices of the max-pooling to develop sparse feature
maps. These maps are convolved then with a decoder filter
bank. In the end, the final decoder outputs high dimen-
sional feature representation, which is fed to a trainable
Softmax classifier that classifies each pixel giving the final
segmentation [62].

2) U-NET
This architecture consists of two main paths: a contracting
path and an expansive path. The contracting path represents
a repeated application of two unpadded convolutions fol-
lowed by the rectified linear unit (ReLU) activation function
and max-pooling operation for downsampling. The num-
ber of feature channels is doubled at each downsampling
step. Each step consists of feature map upsampling and then
up-convolution in the expansive path, concatenating with
the corresponding cropped feature map from the contracting
path. This halves the number of feature channels. At the same
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FIGURE 9. A sample from the selected frames of nuScenes dataset: Frame (a) is at daylight; (b) is rainy; (c) is at night, (d) is cloudy, and (e) is shadowy.
Frames (a) and (e) contain yellow straight lane lines; (c) contains curved white lane lines; while (b) and (d) contain white straight lane lines.

decoding step, two convolutions followed by ReLU are done.
At the final layer, a convolution operation maps the output of
the network [63].

Since we aim in this work to benchmark different state-
of-the-art architectures on the developed data, a comparative
approach is supposed to be done. Accordingly, both ResUNet
[64] and ResUNet++ [65], beside U-Net and SegNet, are
implemented. ResUNet stands for deep Residual U-Net,
where it uses the encoder-decoder backbone of U-Net com-
bined with residual connections, atrous convolutions, spatial
pyramid pooling (SPP), and multi-tasking inference [64].
ResUNet++ significantly outperforms U-Net and ResUNet
according to [65]. It contains one stem block followed
by three encoder blocks, Atrous Spatial Pyramid Pooling
(ASPP), and three decoder blocks. There are other networks
that have focused on multi-scale feature extraction modules
which can be used in our study, such as SPP and Inception
blocks. However, in a couple of chosen architectures for our
study, we utilize the SPP block, which is comparably similar
to the inception block in its effect [64], [65]. Other layer types
such as self-attention, squeeze, and excitation modules have
not been experimented here.

Moreover, simple modifications are done to SegNet to
make it computationally less complex. Instead of adding
batch normalization after each convolutional layer, it is added
only in the input layer of the encoder part. Also, by know-
ing that Softmax fits more in multi-class classification and
our problem is based on only two classes, it is replaced
in a modified version with ReLU. Finally, we add some
dropouts to avoid overfitting. At this point, we have five
architectures: SegNet, Modified SegNet, U-Net, ResUNet,
and ResUNet++ to be trained on the lane detection task in
complex road scenes.

IV. EXPERIMENTS AND RESULTS
Early in this section, the data setup and the training strat-
egy will be presented. After training the architectures based
on the developed data, certain evaluation criteria will be
used to measure the performance of the models on testing
them in various challenging conditions. An ensemble-based
approach will be conducted in this section as well. Finally,
the results will be discussed and compared to other related
work.

A. DATA SETUP
By focusing on dealing with the complex and dynamic road
scenes, choosing an adequate dataset to apply our framework
on is important. Specifically, we are concerned with different
illumination conditions and lane shapes common in the real
driving environment. The steps for developing the extended
data, including the data selection and the qualitative assess-
ment, will be presented in the upcoming part.

1) DATA SELECTION
NuScenes [7] is the only chosen dataset to be used in this
framework. It is considered the first dataset to carry the
full autonomous vehicle sensor suite (6 cameras, 5 radars,
1 LIDAR, GPS, and Inertial Measurement Unit (IMU)) [7].
However, only the front camera frames are utilized in this
work. The driving scenes data were collected in Boston and
Singapore where dense traffic and highly challenging driv-
ing situations are found [7]. The reason behind choosing
nuScenes in this approach is the availability of various unla-
beled frames for harsh road scenes. This is needed to train
reliable models capable of detecting road lanes under various
conditions. NuScenes dataset contains 1.4 million RGB (Red
Green Blue) images for various road scenes, especially the
challenging urban ones. However, some frames either does
not contain any lane lines or contain pedestrian crossing
road marking and turning spots which are not useful in our
work.

Consequently, around 26, 000 sequential frames from dif-
ferent scenes were randomly downloaded, then converted into
videos to pick and build up useful training data efficiently.
To discard the frames containing no useful information, some
parts of the videos were cropped. Once again, the videos were
trimmed down to balance the different lane categories and
road conditions contained within the training data to reach
9, 121 frames finally. These frames provide all the essential
information and conditions needed for training the imple-
mented FCN-based architectures as they contain different:
• Lane colors (yellow and white).
• Lightning conditions (shadowy, daylight, night, cloudy,
and rainy).

• Lane orientations (straight and curved).
Fig. 9 shows a sample from the selected images, which

contains a diversity of the needed complex road scenes.
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TABLE 1. Content distribution among the selected frames from nuScenes
dataset for the training stage.

The distribution of the various lighting conditions and the
morphological information of the lanes among the selected
frames is illustrated in Table 1. The upper part of the table
shows the distribution of different lighting conditions, while
the lower part shows the distribution of different lane colors
and orientations. A road with a yellow lane line usually
contains a parallel white one; thus, we can notice fromTable 1
that the frames containing white lanes are predominant.

2) QUALITATIVE ASSESSMENT
Afterwards, the selected images are passed through our pro-
posed automatic segmentation algorithm, presented earlier,
to generate their corresponding labels. At this point, no ref-
erence tells about the reliability of these automatically gen-
erated labels, and thus they can be considered weak labels.
As the precise segmentation of the host lane in the images
would significantly improve the training efficiency of the
deep networks, a qualitative assessment is needed to ensure
the validity of the generated labels. During this qualitative
assessment, two independent raters were asked to visually
evaluate 200 generated ground truth labels selected randomly
with their corresponding original frames. For each label,
the rater should give a score according to the four categories
described in Table 2. This visual assessment was done two
times by each rater where the data were shuffled in the second
assessment to ensure unbiased decisions. Results of the qual-
itative assessment are illustrated in Fig. 10. The chart shows
the reliability of the generated labels based on the four visual
assessments of the two raters, a total of 800 evaluations, as the
labels with insufficient lane segmentation are a minority. For
a better realization of the qualitative assessment, we con-
sidered the inter-raters variability and the intra-rater vari-
ability. The inter-raters variability represents the number of
disagreements between the two raters.Whereas the intra-rater
variability represents the number of disagreements between

the two visual assessments of each rater. Table 3 shows the
number of disagreements corresponding to variability kinds.
The ratio in the fourth column of the table represents the
number of labels evaluated with disagreements to the total
number of labels (200) selected for evaluation.

Accordingly, we can now consider the generated labels
reliable to develop a framework for training different state-
of-the-art FCN-based architectures on the lane detection task.
A sample from the segmentation results showing the gener-
ated ground truth labels is found in Fig. 11.

FIGURE 10. Categorical distribution among our generated labels
according to the results of the qualitative assessment.

To enrich the number of available data and to achieve a
more balanced distribution among the available information,
augmentation is done by using flipping and rotation opera-
tions to increase the data up to 13, 521 available frames. The
augmentation is done on the frames by considering only the
lighting conditions. The content distribution before and after
augmentation is illustrated in Fig. 12.

B. TRAINING STRATEGY
Based on the extended part of nuScenes dataset, the five state-
of-the-art architectures can be efficiently trained. We ran-
domly split the training data for the training stage, where
the ratio of the training set to the validation set is chosen
to be 0.9 : 0.1. The training is performed twice for each
architecture: one time for 50 epochs and the other for 100
epochs. In the experiments, the images are sampled to a
resolution of 256×128. In order to improve the performance
of the FCN-based architectures, it is crucial to obtain the
optimal parameters during the training stage. Thus, defining
loss function(s) suitable for the semantic segmentation task
is carefully done to approach the needed optimal parame-
ters. In this work, a hybrid loss function using the Binary
Cross-Entropy and the Dice Loss is utilized [66]. They are

TABLE 2. Scoring criteria defined for the qualitative assessment.
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TABLE 3. Inter- and intra-rater variability during the qualitative
assessment.

FIGURE 11. Visualizing a sample from the generated labels after lane
segmentation.

mathematically given as the following:

LBCE (y, ŷ) = − (y log (ŷ) + (1− y) log (1− ŷ)) (11)

DL (y, ŷ) = 1 −
2yŷ + 1
y + ŷ + 1

(12)

where y is the predicted value by the prediction model and ŷ
is the actual value.

C. PERFORMANCE EVALUATION
Evaluating and comparing the performance of the five trained
models is one of the objectives of this work to benchmark
different state-of-the-art architectures. All the implemented
architectures are meant to perform semantic segmentation
based on pixel-wise classification of two classes. Con-
sequently, metrics that were employed for evaluating the
models are:
• Pixel Accuracy
• Insertion-Over-Union
• Dice Coefficient
The pixel accuracy is recognized as the percent of pixels

classified correctly when a binary semantic segmentation is

FIGURE 12. The content distribution before and after the augmentation.

applied. However, pixel accuracy is not the best metric to
rely on for evaluating semantic segmentation models. The
reason behind this is the class imbalance nature of the images.
For the lane detection example, the classes within an image
are extremely imbalanced, where the lane information class
makes up only a small portion of the image. Thus, misclas-
sifications are likely to occur, and still, this metric can give
out high accuracy. On the other hand, insertion-over-union
(IoU), also known as Jaccard Index, and dice coefficient can
represent the performance more efficiently as they depend
on the degree of overlap between the predicted segmentation
mask and the reference segmentation mask [67]. Both metrics
can be formulated as follows:

Dice Coefficient =
2

∑
Ppred Ptrue∑

Ppred +
∑

Ptrue
(13)

IoU =

∑
Ppred Ptrue

(
∑

Ppred+
∑

Ptrue)−(
∑

Ppred Ptrue)
(14)

According to the formulas, the dice coefficient represents
double the overlap area between the predicted and the ref-
erence segmentation masks divided by the total number of
pixels in both masks. On the other hand, IoU represents the
overlap area divided by the union area between the predicted
mask and the ground truth label (reference mask). Based
on these metrics, Table 4 illustrates the performance of the
models while training at 50 and 100 epochs. Fig. 13 shows
how loss and dice coefficient values of the training and vali-
dation sets change over the pre-defined epochs. According to
Table 4, we can conclude that ResUNet++ outperforms all
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FIGURE 13. Curves of loss and dice coefficient while training and validating the models at 100 epochs.

the other architectures and gives dice coefficient value up to
0.978. The training results also show that the modifications
to SegNet yielded better performance relative to the original
SegNet architecture.

D. TESTING RESULTS AND DISCUSSIONS
For the testing stage, 100 images for each of the testing road
conditions shown in Table 5 are selected from the nuScenes
dataset other than that were used in training and validating the
models. Using our automatic segmentation algorithm, labels
for these images are generated to form a testing set. Based
on the best weights of the models and the developed testing
set, benchmarking the five state-of-the-art architectures is
done on the lane detection task. In this subsection, there
are two main objectives will be conducted. Firstly, perfor-
mance evaluation for the models will be done quantitatively
based on different lighting conditions and lane morphologies.
Secondly, a robustness verification will be done based on a
visual basis.

TABLE 4. Validation results of the training stage.

Based on the pre-defined evaluation metrics, Table 5 illus-
trates the average testing results of every category separately.
As discussed earlier, the dice coefficient gives a better intu-
itionwhile dealingwith semantic segmentation. Thus, wewill
be focusing on this metric while analyzing the testing results.
The main objective of this work is to deal with complex
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FIGURE 14. Samples from the detection results based on the extended nuScenes dataset. Each row represents a specific testing road condition. The
conditions are arranged from above to below as follows: night, rainy, shadowy, cloudy, daylight/yellow lane line, curved lane, and dashed lane. The rows
from left to right represent the output results of ResUNet++, ResUNet, U-Net, Modified SegNet, and SegNet.

TABLE 5. The testing results of the trained models.
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scenes which are likely to give a better realization of different
and wide-scale road environments and conditions. Accord-
ingly, an accurate lane detection model is supposed to be able
to cope with challenging driving conditions like the changes
in illumination and the different lane shapes. Because the
used dataset is ultimately made up of urban roads, all the
categories can be considered challenging. For the scenes
recorded in daylight, ResUNet++ can give out dice coef-
ficient up to 98.3%, while in a more challenging context,
it can give out values up to 98.9% and 97.2% for cloudy
and rainy conditions, respectively. In the case of shadowy
scenes, the models cannot detect lanes efficiently, as shown
in the table, where dice coefficient values do not exceed
66.9%. In night scenarios, the performance is considered
satisfactory rather than robust as ResUNet++ can give values
up to 92.2% dice score. However, both SegNet and modified
SegNet are not reliable to be used in night scenes as they give
a relatively unsatisfactory prediction.

For the remaining three lane categories: dashed, curved,
and yellow, the selected scenes are different from the used
ones in the previously discussed lighting conditions. Also,
these selected scenes do not include any shadows to avoid
misclassifications. From Table 5, it is clear that ResUNet++
outperforms all the other models except for the curved lanes
as U-Net gives better quantitative results with this lane
orientation. Quantitatively, the results show robust perfor-
mance as the average dice coefficient values on testing the
models on all the lane categories and road conditions are
93.1%, 90.5%, 91.9%, 88.8%, and 88.6% for ResUNet++,
ResUNet, U-Net, Modified SegNet and SegNet, respectively.
From a visual aspect, according to Fig. 14, it is obvious that
the quantitative results discussed earlier give out a realistic
representation of the models’ performance. However, the out-
put images shown in Fig. 14 are samples from the testing
phase; thus, the unpalatable realization may occur.

From the visual results and after benchmarking the state-
of-the-art architectures quantitatively, we can conclude that
relying on deep learning for the lane detection task is promis-
ing. Consequently, it is necessary to overcome the appearing
limitation of inaccurate lane detection in the case of shadowy
scenes. As eachmodel separately performs a partially reliable
prediction in shadowy scenes, we can generate ensemble pre-
dictions using the top three models: ResUNet++, ResUNet,
and U-Net by averaging their output. Fig. 15 shows that
we have sufficiently overcome the limitation of lane detec-
tion in shadowy scenes by merging the predictions of the
most outstanding models. Another way to qualitatively test
the robustness of our top models’ ensemble segmentation
is to obscure the scene by including some distorting and
distracting elements and investigate their effect on the detec-
tion. These distorting objects are likely to exist in different
dynamic road scenarios. They can be in form of a preced-
ing vehicle in the host lane, parked vehicles, sidelong trees,
or pedestrians. As shown in Fig. 16, the enhanced ensemble
segmentation still shows robustness in different scenes with
distorting elements.

FIGURE 15. Sample from the ensemble prediction in the shadowy scenes.

FIGURE 16. Sample results on testing the ensemble segmentation in
different scenes with distorting objects.

E. COMPARISON WITH OTHER RELATED WORK
A comparative analysis will be carried out in this sub-
section concerning the lane detection task. In this paper,
we have regarded the following: (i) Dealing with the host
lane (ego-lane) detection as a semantic segmentation task;
(ii) Using nuScenes dataset to be employed for the first time
for the lane detection task; and (iii) Focusing on the complex
and dynamic road scenes. Accordingly, it is challenging to
find other related work covering all the mentioned concerns
to compare our work with. However, we can compare our
results with other related work by focusing on just the com-
mon concerns for lane detection. Wang et al. [15] proposed
a framework that utilizes range and camera images along
with OpenStreetMap for ego-lane detection in challenging
scenarios with dynamic features. Chen and Chen [35] intro-
duced RBNet to simultaneously detect road lanes, while
a deep learning methodology for lane segmentation using
up-convolutional networks was presented in [68]. In terms
of dice coefficient (which is equivalent to F1-measure in the
binary segmentation context), our method shows maximum
dice coefficient of 98.9% while the maximum F1-measure
(MaxF) was 93.56%, 90.54%, and 89.88% in [15], [35] and
[68], respectively. In [16], authors considered the host lane
detection based on the normal map in harsh road condi-
tions. The average accuracy of their method reached nearly
94.51% under various scenarios, while the performance of

VOLUME 9, 2021 117577



R. Yousri et al.: Deep Learning-Based Benchmarking Framework for Lane Segmentation

ResUNet++ in our approach reaches average accuracy of
96.55%. Cao et al. [12] proposed an automatic host lane
detection algorithm in challenging road scenes based on
traditional computer vision techniques. The authors used
the accurate recognition rate that reached 99.15% as the
main evaluation metric; however, the accurate recognition
rate is 100% with our deep learning approach. The work in
[12], [16], [69] and [49] have considered testing their pro-
posed methodologies on different challenging road scenes,
i.e., night, shadowy, urban, etc. Unfortunately, their output
segmentation or detection considered only the lane lines
while we segmented the host lane, which makes the quan-
titative comparison technically difficult.

V. CONCLUSION
This paper has developed a benchmarking framework for lane
detection in complex road scenes with harsh environments
and dynamic scenarios. This framework combines traditional
computer vision and deep learning to employ the advan-
tages of each of them. A proposed sequence of adaptive and
optimized traditional computer vision techniques has been
experimented to generate ground truth labels of the host lane.
After developing the labels based on nuScenes dataset, which
contains the needed challenging scenes, a visual qualitative
assessment was done to validate their reliability before being
utilized in the deep learning approach. By proceeding in this
framework, lane detection is recognized as a semantic seg-
mentation task of two classes: lane or non-lane. Hence, five
state-of-the-art deep learning architectures were supervisely
trained on this task relying on the developed data. SegNet,
Modified SegNet, U-Net, ResUNet, and ResUNet++ are
compared on the lane detection task based on quantitative
evaluation and visual examination. On testing, the mod-
els show high performance, especially ResUNet++, under
various challenging conditions. The ensemble segmentation
proves its reliability to strengthen the lane detection in harsh
scenarios like shadowy scenes and obscured road perception.
The overall experimental results give a promising intuition
about the reliability and robustness of semantic segmentation
for the lane detection task.
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