
Received July 18, 2021, accepted August 10, 2021, date of publication August 20, 2021, date of current version August 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106342

Microservices Backlog—A Genetic Programming
Technique for Identification and Evaluation
of Microservices From User Stories
FREDY H. VERA-RIVERA 1,2,3, EDUARD PUERTO 1, HERNÁN ASTUDILLO 4, (Member, IEEE),
AND CARLOS MAURICIO GAONA 3
1Grupo de Investigación GIA, Universidad Francisco de Paula Santander, San José de Cúcuta, Norte de Santander 540003, Colombia
2Foundation of Researchers in Science and Technology of Materials—FORISTOM, Bucaramanga 680003, Colombia
3Grupo de Investigación Gedi, Universidad del Valle, Santiago de Cali 760001, Colombia
4Grupo de Investigación TOESKA, Universidad Técnica Federico Santa María, Valparaíso 7550276, Chile

Corresponding author: Fredy H. Vera-Rivera (fredyhumbertovera@ufps.edu.co)

This work was supported in part by Colombia’s Ministry of Science and Technology (Minciencias–Colciencias) through Doctoral
Scholarship ‘‘753—Formación De Capital Humano De Alto Nivel Para El Departamento Norte De Santander,’’ in part by the Francisco de
Paula Santander University, Cúcuta, Colombia, through the Doctoral Studies Commission 14, 2016, in part by the Universidad del Valle,
Cali, Colombia, and in part by Agencia nacional de investigación y desarrollo de Chile (ANID), Chile, through Grant
PIA/APOYAFB180002.

ABSTRACT The microservice granularity directly affects the quality attributes and usage of computa-
tional resources of the system, determining optimal microservice granularity is an open research topic.
Microservices granularity is defined by the number of operations exposed by the microservice, the number
of microservices that compose the whole application, and its complexity and dependencies. This paper
describes ‘‘Microservice Backlog (MB)’’, a semiautomatic model for defining and evaluating the granularity
of microservice-based applications; MB uses genetic programming technique to calculate at design time the
granularity of each microservice from the user stories in the ‘‘product backlog’’ or release planning; the
genetic algorithm combined coupling, cohesion, granularity, semantic similarity, and complexity metrics to
define the number of microservices, and the user stories associated with each microservice. MB decomposes
the candidate microservices, allowing to analyze graphically the size of each microservice, as well as
its complexity, dependencies, coupling, cohesion metrics, and the number of calls or requests between
microservices. The resulting decomposition (number of microservices and their granularity) performed
by MB shows less coupling, higher cohesion, less complexity, fewer user stories associated with each
microservice, and fewer calls among microservices. MB was validated against three existing methods, using
two state-of-the-art applications (Cargo Tracking and JPet-Store), and one real-life application (Foristom
Conferences). The development team and/or architect can use metrics to identify the critical points of the
system and determine at design time how the microservice-based application will be implemented.

INDEX TERMS Service-oriented systems engineering, service computing, software design, software
architecture, web services, micro-services granularity, micro-services decompositions, genetic algorithms,
software metrics.

I. INTRODUCTION
The complexity involved in software development has been
addressed with the use of agile methodologies and practices
that were born from the agile manifesto and its principles,
in contrast to traditional forms [1]. Last years, software
companies have been practicing agile development meth-
ods [2]; according to the 14th annual state of agile report [3],

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Ali Babar .

accelerating software delivery and enhancing ability to
manage changing priorities remain the top reasons stated
for adopting agile; the more used agile techniques were
daily standup, retrospectives, sprint/iteration planning,
sprint/iteration review, and short iterations; the most engi-
neering practices employed were unit testing, coding stan-
dards, continuous integration, refactoring, and continuous
delivery. Sprint/iteration planning is usually done in a prod-
uct backlog, which lists the functional requirements of the
application as user stories, along with their priorities and

117178 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4003-497X
https://orcid.org/0000-0001-9361-5837
https://orcid.org/0000-0002-6487-5813
https://orcid.org/0000-0003-1303-2207
https://orcid.org/0000-0001-9696-3626


F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

estimated time and story points [4]. The microservices archi-
tecture facilitates permanent, faster, and automated updates
usingDevOps practices, achieving shorter, automated, widely
tested deliveries, and refactoring [5].

Microservices are single-responsibility units (granules)
that encapsulate data and processing logic, they are deployed
remotely; these remote units are services that can be
deployed, changed, substituted, and scaled independently of
each other [6]. The quality of a microservice-based system
is influenced by the granularity of its microservices since
their size and number directly affect the system’s quality
attributes. The optimal size or granularity of a microser-
vice directly affects application performance, maintainabil-
ity, storage (transactions and distributed queries), and usage
and consumption of computational resources (mainly in the
cloud, the usual platform to deploy and execute microser-
vices) [7]. Although the size of microservice or optimal gran-
ularity is a discussion topic, few patterns, methods, or models
exist to determine how small a microservice should be.

Hassan et al. [8] stated that a granularity level deter-
mines ‘‘the service size and the scope of functionality a
service exposes [9]’’. Granularity adaptation entails merging
or decomposing microservices thereby moving to a finer
or more coarse-grained granularity level. Homay et al. [10]
stated that ‘‘the problem in finding service granularity is to
identify a correct boundary (size) for each service in the
system. In other words, each service in the system needs
to have a concrete purpose, as decoupled as possible, and
add value to the system. A service has a good granularity
if it maximizes system modularity while minimizing the
complexity. Modularity in the sense of flexibility, scalability,
maintainability, and traceability, whereas complexity in terms
of dependency, communication, and data processing’’.

The definition of microservices granularity is presented
in the following problem context, first in migrations from
monolith to microservices or decompositions, second in
the development of microservices-based applications from
scratch, and third in the development of microservices-based
applications composing existing services. The migrations
from monolith to microservices have been widely stud-
ied, migrations have a great interest to both academia and
industry, while the other two approaches have been studied
very few.

The problem addressed in this research focused on the
design of microservices-based applications from scratch,
which begins when the development team or architect, after
performing an analysis, determines that the application needs
to be implemented using themicroservices architecture, in the
context of agile software development. The development
team establishes the functional requirements as user stories in
the product backlog, establishing its priorities and estimates;
from the product backlog, the development team needs to
identify the number of microservices to be implemented and
associate the user stories to each microservice maintaining
low coupling, high cohesion, and low complexity among
microservices.

Furthermore, we introduce the Microservices Backlog
(MB), a model that allows software architects or development
team to graphically analyze the microservices granularity;
MB focus on three relevant activities: 1) Determining and
evaluating the granularity of microservices, 2) establishing
the number of user stories assigned to each microservice,
and 3) establishing the optimal number of microservices that
will be part of the application. These activities will support
microservices’ low coupling, high cohesion, and low com-
plexity properties. Design time metrics were adapted and
calculated to evaluate decomposition or microservice-based
applications.

MB was evaluated in three projects, two state-of-the-art
case studies (Cargo Tracking and JPet-Store) and one real-life
case studies (Foristom Conferences). Comparing the pro-
posed decomposition against domain-driven design (DDD)
and state-of-the-art methods; MB yields microservices-based
applications with lower coupling, less complexity, less com-
munication, and dependencies among microservices, fewer
user stories associated with a microservice, and higher
semantic coherence among the user stories in a microservice.

We have been working on this problem, in [11], a first
approximation of theMBwas proposed, which used a genetic
algorithm with coupling, cohesion, and granularity metrics;
this genetic algorithm did not consider the semantic similarity
between user stories and microservices, it did not use com-
plexity metrics. This paper extends that work considerably
including analysis of the semantic similarity among entities
of the user stories and microservices, a cognitive complex-
ity metric to evaluate decompositions was proposed, and
additional validations (initially with Cargo Tracking applica-
tion, now also with Jpet-Store and the real-life case studies
Foristom Conferences.

The main contributions from this work were: 1) a model
for determining and evaluating the granularity of microser-
vices at design time, establishing the number of user stories
assigned to a microservice and the number of microservices
that are part of the application, ensuring that microservices
have low coupling, low complexity, high cohesion, and fewer
dependencies; 2) identified and adapted metrics of complex-
ity, coupling, cohesion, size of the microservice, develop-
ment time, and calls between microservices; 3) mathematical
formalization of a microservice-based application in terms
of user stories and metrics, and 4) we update the previous
genetic algorithm to assign user stories to microservices,
including semantic similarity and complexity; although MB
can also be used in migrations.

The remainder of this paper is organized as follows,
section II related works; section III Methodology and eval-
uation methods used; section IV our approach; section V
discussing results; section VI limitations and future works
and Section VII, summarizes our conclusions.

II. RELATED WORKS
We identified several methods, methodologies, and tech-
niques to determine microservices granularity through a

VOLUME 9, 2021 117179



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 1. Related works to the microservice granularity problem.

systematic literature review. The most used techniques
included machine learning clustering, semantic simi-
larity, genetic programming, and domain engineering.
Table 1 details the papers by year compared with our
approach.

Additionally, Service Cutter is a method and tool frame-
work for service decomposition [12], in it, coupling infor-
mation is extracted from software engineering artifacts. This
approach is more appropriate for SOA applications, but it
has been used for comparative analysis in the surveyed
works.

Other authors proposed patterns to address microservice
development, such as Richardson [13] proposed decomposi-
tion patterns, Zimmermann et al. [14] proposed a microser-
viceAPI patter (MAP) for API design and evolution, with five
categories: (1) foundation, (2) responsibility, (3) structure,
(4) quality, and (5) evolution. These patterns are an important
reference for developing microservice-based applications.
However, there is no specific pattern to determine the number
and size of microservices.

None of the reviewed works used agile software develop-
ment artifacts as inputs, (i.e. user stories, product backlog,

117180 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 1. Research model. Design science research framework. Adapted
from Hevner et al. [44].

release planning, Kanban boards) to define or assess
microservices’ granularity.

The most addressed quality attributes in the reviewed
papers were scalability and performance (runtime character-
istics), and modularity and maintainability (software artifact
characteristics) were the least addressed. Only one paper [17]
addressed both runtime and software artifact characteristics.
No papers addressed functionality, performance, modularity,
and maintainability at the same time.

Some papers use metrics to evaluate microservices granu-
larity, including coupling, cohesion, number of calls, number
of requests, and response time, although fewmethods or tech-
niques use complexity as a metric: thus, [24] used Number
of singleton clusters and maximum cluster size, and [30]
used COSMIC function points (Common Software Measure-
ment International Consortium). Cognitive complexity was
not considered by related works.

III. METHODOLOGY AND EVALUATION METHODS
We used design science research, following the paradigm
of Hevner et al. [44] The design-science paradigm seeks
to extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts (see
figure 1). The proposed artifact was theMicroservice backlog
model.

The research process began with the design and devel-
opment of MB, which was iteratively evaluated in a field
study through a static and dynamic analysis; with each eval-
uation, it was improved and corrected until obtaining an

optimal proposal. The construction of MB is based on the
following theoretical foundations: software engineering, arti-
ficial intelligence, cloud computing, service computing, and
agile software development.

The stakeholders were software architects, software
development teams, and project leaders, who want to
develop or migrate a microservice-based application;
the microservice backlog model allows them to define
the microservice granularity and evaluate the application
architecture.

The research process is detailed below, the flowchart of the
methodology is presented in figure 2:

1. Problem context definition: we defined the prob-
lem context: microservices granularity, microservices
decompositions and migrations from monolith to
microservices, and development of microservices-
based applications.

2. Theoretical foundations and state of the art:
we performed a systematic literature review, identi-
fied, adapted, and proposed metrics for defining the
microservices granularity; and identified the related
works.

3. Design MB: We design the Microservices Backlog
and proposed a formal specification of the granularity
model.

4. Develop MB: We built the intelligent granular-
ity model and implemented the genetic algorithm
technique to decompose the product backlog into
microservices. We implemented an algorithm to eval-
uate metrics for microservices decompositions or
microservice-based applications.

5. Evaluation of MB: We evaluated the model using
state-of-the-art examples (Cargo Tracking and JPet
Store) and one real-life project (Foristom Confer-
ences). The evaluation compared decomposition yield
by MB versus decompositions by other methods:
Domain-driven design (DDD) [45], Service Cut-
ter [12], Microservices Identification Through Inter-
face Analysis (MITIA) [46], and Service Candidate
Identification from Monolithic Systems based on Exe-
cution Traces (Execution Traces) [17]. We took the
decompositions proposed by MITIA and Execution
traces about state-of-the-art examples, next we identi-
fied the operations associated with each microservice,
then the operations were associated with user stories.
Traditionally, the user stories specify the functional
requirements of the application, the user stories are
implemented as operations. Since DDD is the most
widely used method for microservices identification,
the evaluation of the real-life project verified that the
obtained decomposition was consistent and close to
DDD.

6. Propose MB: Based on metrics and analytical evalua-
tion including adjustment through the research process,
then MB was proposed as an intelligent specification
and granularity evaluation model.

VOLUME 9, 2021 117181



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 2. Research process flowchart.

A. EVALUATION METHODS
As recommended by Hevner et al. [44] we used observational
and analytical evaluationmethods to assessMB. The observa-
tional methodwas a field study, whichwe used andmonitored
the microservice backlog model in three projects, the projects
are detailed in section V.

The analytical methods were both static and dynamic anal-
ysis. We calculated metrics of complexity, coupling, cohe-
sion, dependencies, performance, and size of the proposed
decomposition (or microservice-based application), then we
compared it with other approaches. The metrics were cal-
culated from the user stories data and their dependencies at
design time.

We carried out the evaluation process as follow:

1. We analyzed and described the state-of-the-art exam-
ples and the real-life project.

2. The user stories of each project were specified.
3. We defined the dependencies among user stories.

Which were identified according to the business logic,
dataflow, invocations, or calls between operations or
uses stories.

4. We got the decomposition through MB and the decom-
positions of the state-of-the-art approaches.

5. For each decomposition, the metric calculator algo-
rithm calculated the metrics and draw the graph or
diagram.

1) 6. We evaluated the decompositions and compared the
metrics.

The evaluation aim was to verify that MB allowed to
define the appropriate granularity of the microservices and

to compare the cognitive complexity, coupling, cohesion, and
dependencies of the decompositions.

IV. MICROSERVICES BACKLOG
Microservice Backlog is a model (see figure 3), designed
to graphically analyze the microservices granularity, start-
ing from a set of functional requirements expressed as user
stories within a product backlog (prioritized and character-
ized list of functionalities that an application must contain).
The model specifies the architecture of microservices-based
applications. After this, the architect or development team can
evaluate the appropriate granularity or size of each microser-
vice considering some characteristics such as complexity,
coupling, cohesion, development time, and use of compu-
tational resources at design time. This way, the architect or
developer can find a strategy for its implementation.

MB was implemented in a web application
(Django - Python) and consists of the following components
(see figure 3):

A. Formal specification of the granularity model.
B. Parameterize component.
C. Grouping component, which implements the grouping

techniques.
D. Metric calculator component.
E. Microservices Backlog diagram and decomposition

evaluator.

A. FORMAL SPECIFICATION OF THE GRANULARITY
MODEL
The formal specification corresponds to the mathematical
expressions that allow to calculate the metrics and to evaluate
the objective function of the granularity model. The formal
specification is given in terms of the metrics of coupling
(CpT), cohesion (CohT), number of stories associated to the
microservice (WsicT), cognitive complexity (CxT), seman-
tic similarity (SsT), and the granularity metric (Gm). Addi-
tionally, for the evaluation process, metrics of complexity
(P: story points), communication, performance and estimated
development time are included.

According to Hassan et al. [8] and Homay et al. [10]
microservice granularity definition (see introduction), a rela-
tionship between the microservice granularity with coupling,
modularity and complexity of the system is evident. Changing
the size and scope of microservices implies changes in the
coupling, modularity, and complexity of the system. In this
case, granularity corresponds to defining the number of user
stories associated with a microservice (service size) and
the number of microservices that comprising the application
(application size).

A microservice can have a low granularity (smaller size),
but when interacting with other microservices the coupling
increases, if the coupling is very high, it is a bad deci-
sion to maintain that granularity in the microservice-based
system, then the microservice should be joined with other
microservices to reduce the coupling, when joiningwith other

117182 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 3. Microservices backlog model. Semi-automatic decomposition from user stories to microservices.

microservices its granularity increases, because it will have
more associated operations to expose. With the proposed
model, we seek to determine the appropriate granularity in
such a way that its coupling is low, that it has few dependen-
cies and little communication with other microservices, being
consistent with the theoretical definition.

Microservices should have a specific purpose, therefore,
services / operations / stories that refer to the same purpose
should be grouped in the samemicroservice, hence the impor-
tance of semantic similarity, if user stories that refer to the
same thing, which have a high semantic similarity should be
grouped in the same microservice, thus being an indicator of
high cohesion.

The specification formal of the granularity model will be
given in terms of the metrics and the granularity metric (Gm).
Let microservice-based application (MSBA) as:

MSBA = (MS,
−→
MT ) (1)

where MS is a set of microservices, MS = {ms1,
ms2, . . . ,msn} and

−→
MT is a vector of the metrics calculated

for MSBA.
−→
MT = [CpT ,CohT ,WsicT ,CxT , (100− SsT )] (2)

where CpT is the coupling, CohT is the cohesion, WsicT is
the greater number of user stories associated with a microser-
vice, CxT is the cognitive complexity points, and SsT is the

semantic similarity, which are metrics forMSBA. These met-
rics were adapted from state-of-the-art approaches [47], [48],
and [49]. We proposed the cognitive complexity points as a
complexity metric.
SsT corresponds to the value of the semantic similarity

obtained by the Spacy library, which is a value between zero
and one, the closer to one is, the greater semantic similarity
it has; for this model, we amplify the similarity value, it is a
number between 0 and 100 (percentage) in such a way that
its dimension is like the dimension of the other variables.
Equation (2) included (100 - SsT) to invert its relationship,
having greater semantic similarity when similarity is close
to 0; then, this expression is used to calculate Gm and is
minimized in the objective function of the genetic algorithm.

The microservices has associated user stories and metrics,
then:

msi = (HU i,MTS i) (3)

where msi is the i-th microservice, HUi is the set of user
stories associated with the i-th microservice, then HUi =
{hu1, hu2, . . . , hum}. MTSi is a set of metrics calculated for
msi.

1) COUPLING OF MSBA (CPT)
The coupling determines the degree of dependence of
one software component with another. Coupling is defined

VOLUME 9, 2021 117183



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

by three metrics: absolute importance of the microservice
(AIS), absolute dependence of the microservice (ADS), and
microservices interdependence (SIY). These metrics are cal-
culated based on the dependencies of the user stories for each
microservice.

a: THE ABSOLUTE IMPORTANCE OF THE MICROSERVICE
(AIS)
AIS is the number of other microservices that invoke at least
one operation of a microservice’s interface [49]. AISi is the
number of clients invoking at least one operation of MSi.
At the system level, the

−→
AIS vector is defined, which contains

the calculated AIS value for each microservice.
To calculate the total value of AIS at the system level

(AisT), the vector norm is calculated. Where n is the number
of microservices of the MSBA, thus:

−→
AIS = [AIS1,AIS2, . . . ,AISn] (4)

AisT =
∣∣∣−→AIS∣∣∣ = 2

√
AIS21 + AIS

2
2 + · · ·+AIS

2
n (5)

b: THE ABSOLUTE DEPENDENCE OF THE MICROSERVICE
(ADS)
ADS is the number of other microservices that microser-
vice depends on. The number of microservices from which
invokes at least one operation [49]. ADSi is the number of
other microservices on which the MSi depends. To calculate
the total value of ADS at the system level (AdsT) the

−−→
ADS

vector norm is calculated. Then:
−−→
ADS = [ADS1,ADS2, . . . ,ADSn] (6)

AdsT =
∣∣∣−−→ADS∣∣∣ = 2

√
ADS21 + ADS

2
2 + · · · + ADS

2
n (7)

c: MICROSERVICE INTERDEPENDENCE (SIY)
SIY is the number of interdependent microservices pairs [49].
SIY defines the number of pairs of microservices that depend
bi-directionally on each other divided by the total number
of microservices. At the system level, the vector

−→
SIY was

defined:
−→
SIY = [SIY 1, SIY 2, . . . , SIY n] (8)

SiyT =
∣∣∣−→SIY ∣∣∣ = 2

√
SIY 2

1 + SIY
2
2 + · · · + SIY

2
n (9)

Let the
−→
Cp vector as the MSBA level coupling metric,

calculating the norm of the vector
−→
Cp we have the coupling

value for the application (CpT):
−→
Cp= [AisT ,AdsT , SiyT ] (10)

CpT = 10 ∗
∣∣∣−→Cp∣∣∣ = 10 ∗ 2

√
AisT 2

+ AdsT 2
+ SiyT 2 (11)

We amplify CpT by 10, in such a way that its dimension is
like the dimension of the other variables of

−→
MT .

Figure 4 shows an example of the coupling metric calcula-
tion for a hypothetical case in which there are 3 microservices
forming MSBA. As follows ms1 = {hu1, hu2}, ms2 = {hu3}
and ms3={hu4}. Where hu1 has as dependencies {hu3, hu4},
hu2 has {hu4}, hu3 has {hu1} and hu4 has no dependencies.

2) COHESION OF MSBA (CohT)
Cohesion and coupling are two contrasting properties. A solu-
tion balancing high cohesion and low coupling. We used
the lack of cohesion (LC), lack of cohesion grade (Coh),
and semantic similarity (SsT) for measuring the cohesion of
MSBA.

a: LACK OF COHESION (LC)
LCmeasured the number of pairs of microservices not having
any dependency between them, adapted from [48]. LC ofMSi
was defined by us as the number of pairs of microservices not
having any interdependency betweenMSi.

b: LACK OF COHESION GRADE (Coh)
The degree of cohesion Coh of each microservice is defined
as the proportion of the lack of cohesion metric divided by the
total number of microservices that are part of the application.

Cohi = LC i/n (12)

where n is the number of microservices. At the system level,
the vector

−−→
Coh was defined, calculating the norm of the vec-

tor, we have the cohesion grade for the application (CohT):

−−→
Coh = [Coh1,Coh2, . . . ,Cohn] (13)

CohT =
∣∣∣−−→Coh∣∣∣ = 2

√
Coh21 + Coh

2
2 + · · · + Coh

2
n (14)

Figure 4 shows the cohesion metric calculation example
for the hypothetic case.

c: SEMANTIC SIMILARITY OF MSBA (SsT)
According to Cojocaru et al. [27] ‘‘semantic similarity uses
lexical distance assessment algorithms to flag the services
that contain unrelated components or unrelated actions hin-
dering cohesion’’.
SsT was calculated using the natural process language

library Spacy [50], in which the similarity is determined
by comparing word vectors or ‘‘word embeddings’’, multi-
dimensional meaning representations of a word. We calcu-
lated the semantic similarity between each user story, joining
the name and the description of the user story. We calculated
SsT as follow:

1. We selected the nouns from the name and description
of the user story.

2. We identified the lemmas of the noun in each user story.
3. We defined a dictionary that contains the semantic

similarity values among the user stories as follow:

DSS = {< ‘‘hu1 − hu2’’,

× a1−2 >, < ‘‘hu1 − hu3’’, a1−3 >, . . . ,

× < ‘‘huj − huk ’’, aj−k >} (15)

where:
‘‘huj − huk ’’ is the dictionary’s key, which is formed
by the concatenation of the user stories’ identifiers.

117184 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 4. Example of metrics calculation.

aj−k is the dictionary’s value, which corresponds to
the semantic similarity value obtained by spacy among
user stories j and k , it is a float number between 0 and 1.

4. We calculated the semantic similarity (SSi) of MSi as
the average of the semantic similarity values between
its user stories. The total semantic similarity of MSBA
was the semantic similarity average of the microser-
vices. For obtaining a value of semantic similarity
between 0 and 100 we multiplied the average by 100.

SS i =
1
c

∑m

j=1,k=j+1
aj−k (16)

SsT =
100
n

∑n

i=1
SS i (17)

where:
m is the number of user stories of the i-th microservice.
c is the number of comparisons done to calculate SS; it is

the number of combinations between the microservice user
stories.
n is the number of microservices ofMSBA.

3) GRANULARITY OF MSBA (WSICT)
The granularity corresponds to the size of each microservice
and the size of the application. We used the granularity met-
rics listed below.

a: THE NUMBER OF MICROSERVICES (N)
The number of microservices that are part of the system or
MSBA.

b: WEIGHTED SERVICE INTERFACE COUNT (WSIC)
WSIC is the number of exposed interface operations of
MSi [51]. For our model, a user story is related to an operation

(one-to-one); so, we adapt this metric as the number of user
stories associated with the microservice. Other authors called
this metric the operation number. We adaptWSIC as the num-
ber of user stories assigned to each microservice. We defined
WsicT as themaximumnumber of user stories associatedwith
a microservices, so WsicT is the maximum WSIC of MSBA,
then

WsicT = Max(WSIC1,WSIC2, . . . ,WSICn) (18)

Also, figure 4 illustrates the calculation of WsicT.

4) PERFORMANCE
Estimating the performance of an application at design
time is difficult and imprecise. We used the number of
calls and requests between microservices for estimating the
performance.

We assume that if there aremore calls and requests between
the microservices, then the communication, latency, and
response time of the application is increased, therefore the
performance of the application is directly affected. The aim
may be to have microservices that do not have commu-
nication between them and work independently. Therefore,
we define two metrics:

Calls of a microservice (Callsi): Calls corresponds to the
number of invocations of MSi to another microservices of
MSBA.

Requests of a microservice (requesti): Request corre-
sponds to the number of invocations of other microservices
to MSi of MSBA.

Average of calls of MSBA (Avg. Calls): Avg. Calls are the
average of calls among microservices of MSBA.

Avg.Calls =
1
n

∑n

i=1
Callsi (19)

VOLUME 9, 2021 117185



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

where:
n is the number of microservices ofMSBA.
Figure 4 presents an example of the calculation of the

request and calls for a MSBA.

5) COMPLEXITY OF MSBA (CXT)
Measuring complexity is fundamental for developing
microservice-based applications. If the complexity is high,
then the cost of change is higher. So, the used complexity
metrics are detailed below.

a: USER STORY POINTS (P)
The user story points are an estimated point of the effort
needed to develop the user story. The story points are an
indicator of the speed of development of the team; then we
defined Pi as the user story points ofMSi as follow:

Pi =
∑m

j=1
PH j (20)

where:
Pi is the total of user story points ofMSi.
m is the number of user stories ofMSi.
PHj is the estimated user story points of j-th user story of

MSi.

b: COGNITIVE COMPLEXITY POINTS (CxT)
We proposed a metric of cognitive complexity points (CxT)
as follows: Points were added according to the complexity of
themicroservice, its relationships, and dependencies. The dif-
ficulty of developing and maintaining a microservice-based
application was estimated. The starting point was the estima-
tion of story points made by the development team.
CxT was based on the complexity of a graph and its depth.

We started from a base case, which corresponds to the least
complexity. This case would be a single microservice, with
one user story and one estimated story point for its develop-
ment. For this case Cx0 = 2. CxT corresponds to the number
of times that the application is more complex in relation to
the base case. Formally CxT was defined as follows:

Cx =
((∑n

i=1
Cgi

)
+Max (P1, . . . ,Pn)

+ (n ∗WsicT )+
(∑n

i=1
Pf i
)
+

(∑n

i=1
SIY i

))
(21)

CxT =
Cx
Cx0

(22)

where:
CxT = Cognitive complexity points ofMSBA.
i = i-th microservice
Cgi = Pi ∗ (Callsi + Requesti), Callsi are the outputs of

MSi and Requesti are the inputs ofMSi.
Pi = Total user story points ofMSi. According to (20)
Max(P1, . . . ,Pn): Maximum Pi of MSBA.
n = number of microservices ofMSBA.
WsicT:GreaterWSIC of the application. According to (18)

Pfi: Number of nodes used sequentially from a call that
makes a microservice to other microservices, counted from
the i-th microservice; A larger depth implies a greater com-
plexity of implementing and maintaining the application.
SIY:Microservice Interdependence.
Cx0: The base case where the application has onemicroser-

vice, one user story with one estimated story point. Then Cg1
= 0, Greater(P1) = 1, n = 1, WsicT = 1, Pf1 = 0, SIY = 0,
and Cx = 2. Therefore Cx0 = 2.

6) ESTIMATED DEVELOPMENT TIME OF MSBA (T)
The microservices are implemented and organized around
business capabilities; ideally, each one is managed by an
independent development team. For the evaluations of this
model, we assumed that each microservice is developed in
parallel and independently; thus, the estimated development
time of the application corresponds to the longest estimated
development time of the microservices that are part ofMSBA.
In real life this is not entirely true, a development team
oversees several microservices and several microservices are
developed sequentially; this restriction will be considered in
future work.

The development team estimates the user story points and
the development time in the release planning. Many software
development companies define a scale of conversion of user
story points to development time (hours). We assumed that
de estimated development time of the user stories as an input
data of this model. We defined two evaluation metrics as
follows.

a: MICROSERVICE’S DEVELOPMENT TIME (ti )
The microservice’s development time corresponds to the sum
of the estimated development time of each user story that is
part of the microservice.

ti =
∑m

j=1
TH j (23)

where:
ti is the estimated development time ofMSi.
m is the number of user stories ofMSi.
THj is the estimated development time of the j-th user story

of MSi., it is an input data of the model.
Application development time (T): Greater estimated

development time of the microservices that are part ofMSBA.

T = Max(t1, t2, . . . , tn) (24)

7) GRANULARITY METRIC OF MSBA (GM)
Finally, the value of the target function Gm use (2), Gm is
defined as the

−→
MT vector norm.

Gm =
∣∣∣−→MT ∣∣∣

=
2
√
CpT 2

+CohT 2
+CxT 2

+WsicT 2
+(100− SsT )2

(25)

This mathematical expression allowed us to determine how
good or bad is the decomposition. A small Gm implies a

117186 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

good granularity. The aim is to obtain a solution with low
complexity (CxT), low coupling (CpT), low lack of cohesion
grade (CohT), smallWsicT, and high semantic similarity (SsT
was a number between 0 and 100 so that we can minimize
Gm, we include in the

−→
MT vector the value of 100 minus

SsT, so values close to zero correspond to a greater semantic
similarity). We tested different combinations of CpT, CohT,
CxT, WsicT, and SsT in the Gm metrics, we selected the best
results, and they are presented in section V.

B. PARAMETERIZATION COMPONENT
It is responsible for taking input data and converting it into a
format that can be processed by the grouper. It extracts the key
data, such as identifier, name, description, estimated points,
estimated time, scenario, observations, and dependencies,
from the user story. Later, with this data, the model can group
the user stories in microservices and calculate the metrics
from the user stories dependencies. The format of the user
stories is a CVS file where the key data (i.e., identifier, name,
description, estimated points, estimated time, scenario, and
observations) are supplied.

A user story describes the functionality that will be provide
value to a user or customer of the software system [52], [53].
The information that a user story can contain according to
Kent Beck is: the date, the type of activity (new, correction,
improvement), functional test, story number or identifier,
technical and customer priority, reference to another story,
risk, technical estimate (points and hours), a description,
notes and a follow-up list with the date, status of things to
be completed and comments [54].

User (architect or development team) creates the project
and loads the information of user stories from the CVS file to
MB. Then the user defines dependencies among user stories
(HU) according to the business logic, dataflow, database,
or calls. We defined a dependence amongHUi andHUj when
HUi calls or executes HUj.

C. GROUPER COMPONENT
This component groups user histories into microservices.
User or architect can add up and generate automatic decom-
positions of these user stories in microservices (using
a genetic algorithm, or a semantic grouping algorithm),
or creating the decomposition manually by themselves. The
semantic grouping algorithm will be addressed in future
work.

1) GENETIC PROGRAMMING
The genetic algorithm seeks to find the best combination,
the best assignation of stories to microservices in such a way
that Gm is lower, using (25).

The genetic algorithms were established by Holland [55],
which is iterative, in each iteration, the best individuals are
selected, everyone has a chromosome, which is crossed with
another individual to generate the new population (repro-
duction), some mutations are generated to find the optimal
solution to the problem [56]. Our genetic algorithm consisted

TABLE 2. Example of an assignment matrix.

of distributing or assigning user stories to microservices
automatically, considering coupling, cohesion, granularity,
complexity, and semantic similarity metrics. We designed the
genetic algorithm as follows. See figure 5.

a: GET INITIAL POPULATION METHOD
There is a set of user stories HU= {hu1, hu2, hu3, . . . , hum},
which must be assigned to the microservices. We have a set
of microservices MS = {ms1, ms2, ms3, . . . ,msn} and some
metrics calculated from the information contained in the user
story. Individuals are defined from the assignment of stories
to microservices; therefore, the chromosome of everyone is
defined from an assignmentmatrix of ones and zeros, wherein
the columns there are user stories and in the rows are the
microservices, and the cross contains a 1 when the user story
is assigned to the microservice or zero if not. In table 2,
an example is presented for two microservices MS = {ms1,
ms2} and 5 user stories HU = {hu1, hu2, hu3, hu4, hu5}.
The resulting chromosome would be the union of the

assignments of each user story to each microservice (rows),
for this case, it would be:

Chromosome: 10011 01100.
From this chromosome, it was possible to define the func-

tion of adaptation or objective function, using (24).
From this chromosome, we define the adaptation function

or objective function, which is based on equation (25), uses
a combination of the metrics of coupling (CpT, equation 11),
cohesion (CohT, equation 14), granularity (WsicT, equation
18), complexity (CxT, equation 22) and semantic similarity
(SsT, equation 17). The objective functions used are detailed
below:

F1= 2
√
(10Cpt)2 + CxT 2

+WsicT 2
+ (100− SsT )2 (26)

F2= 2
√
(10Cpt)2 +WsicT 2

+ (100− SsT )2 (27)

F3= 2
√
CxT 2

+ (100− SsT )2 (28)

F4= 2
√
(10Cpt)2 + CohT 2

+ (100− SsT )2 (29)

F5= 2
√
(10Cpt)2 + (100− SsT )2 (30)

F6= 2
√
(10Cpt)2+CohT 2

+WsicT 2
+ (100− SsT )2 (31)

F7= 2
√
(10Cpt)2 + CxT 2

+ (100− SsT )2 (32)

F8= 2
√
(10Cpt)2 + CohT 2

+WsicT 2 (33)

b: REPRODUCTION METHOD
A different assignment would be generated from selected
parents. In this case, the father and mother are randomly

VOLUME 9, 2021 117187



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 5. Genetic algorithm design of the microservices backlog.

selected from the population; to generate the child informa-
tion is taken from the father and mother, from the assign-
ment matrix the first columns of the father are taken, and
the last columns of the mother are joined, generating a new
assignment. It must be considered that a user story cannot
be assigned twice, this means that in the assignment matrix
only one can appear in each column. Example: Given the two
chromosomes:

1) Father: 10011 01100.
2) Mother 01000 10111.
The son would be 10000 01111.

c: MUTATION METHOD
The mutation indicates changing a random bit of the chro-
mosome, changing a bit of the chromosome of this problem
from 1 to 0 or from 0 to 1, implies that a user story is assigned
or unassigned to a microservice and this must be assigned
or unassigned to another microservice. This implies that the
mutation is done on two bits. Example:

Mutate bit 7 of the obtained chromosome: 01011 10100.
Mutated chromosome: 00011 11100.
In this case, bit 7 which is zero must be changed to one, i.e.

the user story in column 2 of the matrix must be assigned to
the second microservice and at the same time be unassigned
from the first microservice.

The mutated chromosomes must be included in the popu-
lation. This process is carried out randomly, the individuals
to be mutated are selected from the population, the mutation
of a bit is also carried out randomly, for the mutation the

value of the target function is calculated and included in the
population.

d: SELECT BETTER METHOD
In the processes of genetic selection, the strongest survive,
in the case of the problem of the automatic generation of the
assignment of user histories to microservices, the n individu-
als who best adapt to the conditions of the problem survive.
The assignments that imply a lower Gm.

The selection was from the objective function, it was
applied to each individual and the population was ordered in
ascending form, considering the first places, the best individ-
uals, corresponding to the assignments involving lower Gm
using (21).

e: CONVERGENCE
To determine the convergence of the method, the number of
iterations or generations of the population to be processedwas
defined, we defined the convergence when 10% of the pop-
ulation converge to the same Gm value. If did not converge,
at the end of the iterations, the algorithm is stopped, and the
chromosome located in the first place was selected, which
would be the best assignment of user stories to microservices.
For the case studies used to evaluate the proposed method,
a population of 1000 individuals was generated, with a max-
imum of 400 iterations or generations, with 500 children
and 500 mutations in each generation. The algorithm was
tested several times obtaining the same result, even with more
individuals and more iterations.

117188 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 6. Microservices backlog for cargo tracking application, microservices identified using domain-driven design. 1) MSBA
metrics; 2) Dependencies graph of MSBA; 3) Microservice metrics; 4) Microservices details.

D. METRICS CALCULATOR COMPONENT
The system through the metric calculator component calcu-
lates the metrics of coupling, cohesion, complexity, gran-
ularity, estimated performance (microservices requests and
calls), and estimated development time. With these met-
rics, we can evaluate and compare the decompositions of
the project to make decisions at design time. These metrics
were defined in subsection A of the Microservices Backlog
model.

We implemented algorithms to calculate the metrics and
generate comparative tables for analyzing the microservices-
based applications.

E. MICROSERVICES BACKLOG DIAGRAM AND
DECOMPOSITION EVALUATOR
Figure 6 shows Microservices Backlog for the Cargo Track-
ing application. The outputs of the model are the microser-
vices backlog diagram and the metrics.

The diagram shows key information to the designer such as
the size of each microservice, its complexity, dependencies,
coupling, cohesion, and development time. The architect can
notice at first sight that the purplemicroservice – Localization
(see the diagram of figure 6) is a critical point of the system,
because that it is massively used by all the others, if this
microservice failure, then the whole system can fail. The
architect at design time can already think about fault tolerance
mechanisms, load balancing, and monitoring on that critical
microservice. They can have a vision of the global system at
design time.

The microservices backlog in figure 6 was obtained
by decomposition using DDD and the following macro-
algorithm:

1) Identify and describe the user stories of the application
(Cargo Tracking in this case).

2) Define the dependencies among the user stories.
3) Identify the entities.
4) Define the aggregates,
5) Establish the delimited contexts and link the entities

and their respective user stories.
6) Calculate metrics for each microservice and the whole

application through the metric calculator component.

We highlight that the grouper component of MB automat-
ically identifies the candidate microservices when using the
genetic algorithm or the grouping algorithm, then steps 3 to 5
are automatic.

After obtaining the decompositions, we can perform join or
decompose operations of the microservices, perform a com-
parative analysis of the decompositions, and select the best
one. Figure 7 presents the comparative table of a project reg-
istered in the system. Metrics are presented for each decom-
position, which can be automatically ordered for analysis and
comparison.

V. RESULTS
We evaluated MB by comparing it with two state-of-the-
art examples: Cargo Tracking and JPet Store; and one real-
life project: Foristom Conferences. We compared Cargo

VOLUME 9, 2021 117189



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 7. Evaluate decompositions in the microservices backlog.

Tracking and Jpet Store against the decomposition (microser-
vices and their user stories) obtained with DDD, state-of-
the-art approaches, and our model. Whereas the real-life
project were compared against DDD, and the decomposition
obtained by our model. We run the genetic algorithm for all
tests with a population of 1000 individuals, convergence 10%,
the maximum number of iterations 400 with 500 children and
500 mutations in each iteration. The following process was
carried out for each case study:

1. The case study is described.
2. User stories are identified, and the product backlog is

defined.
3. Dependencies between user stories are identified.
4. Decompositions are obtained for each comparison

method.
5. Metrics are calculated through the metrics calculator

component.
6. The solutions proposed by each method are presented

graphically.
7. The metrics data table is presented for comparative

analysis.
8. Comparative charts of the metrics for each method are

presented.
9. The value obtained in the cognitive complexity and in

the Gm granularity metrics is compared.
10. The best results of the genetic algorithm are compared

against DDD.

A. CARGO TRACKING APPLICATION
In Baresi et al. [46] Cargo Tracking application is described,
as follows, ‘‘the focus of the application is to move a Cargo
(identified by a TrackingId) between two Locations through
a RouteSpecification. Once a Cargo becomes available, it is

TABLE 3. Product backlog for cargo tracking application.

associated with one of the Itineraries (lists of CarrierMove-
ments), selected from existing Voyages. HandlingEvents then
trace the progress of the Cargo on the Itinerary. The Delivery
of a Cargo informs about its state, estimated arrival time, and
is on track’’. We extracted and defined the user stories; the
product backlog is detailed in Table 3. The points and times
are input data to our model.

A critical point of our proposedmethod is the dependencies
between user stories. They must be identified and registered
in MB through the parameterizing component, which offers
the functionality to define dependencies between user stories.
We define a dependence between hui and huj when hui calls
or executes huj. For example, to create a voyage (hu1) we
must get the locations (hu12), this implies that the hu1 has

117190 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 8. Microservice backlog model compared with DDD, MITIA, and service cutter for cargo tracking application.

TABLE 4. User stories dependences for cargo tracking.

a dependence on hu12. Table 4 presents the dependencies
identified by us among the user stories. To illustrate the pro-
posed genetic algorithm the statement of these dependencies
is valid.

Dependencies are used to calculate the metrics, for exam-
ple, to calculate the AISmetric of the decomposition obtained
with DDD for the microservice called Localization (see fig-
ure 6). ms1(Voyage) = {hu1, hu3, hu13}, ms2 (Tracking) =
{hu2, hu5, hu14}, ms3 (Localization) = {hu4, hu12}, ms4
(Voyage Planning) = {hu6, hu7, hu8, hu9, hu10, hu11}.
The metric AIS is the number of clients that invoke at least

one operation of a microservice’s interface (see (4) and (5)).

Then we count the number of microservices that invoke or
use hu4 or hu12 from the dependencies. hu4 is not used by
any other user stories, it does not appear in any dependencies
(see table 4), whereas hu12 is used by hu1, hu2, hu3. hu8, hu9,
and hu10 corresponding to 3 microservices, therefore AIS =
3. Similarly, other metrics are calculated.

Figure 8 presents the microservice backlog for the decom-
positions generated by theMicroservice Backlog model com-
pared with DDD, MITIA, and Service Cutter for Cargo
Tracking application.

We done an analysis of the objective functions (F1 to F8),
which used different combinations ofCpT, CohT, WsicT, CxT,
and SsT. The best results were using CpT, CxT, WsicT, and
SsT, which contained three microservices.

All evaluated methods converged to almost the same num-
ber of microservices (3 or 4 microservices). The distribution
of user stories into microservices was different.

The number of microservices was 3 or 4 in all pro-
posed decompositions, the genetic algorithm has fewer
microservices than DDD and MITIA, in the first and third
method.

Our genetic algorithm obtained coupling values of 3.16,
2.83, and 2, these values were smaller or equal than

VOLUME 9, 2021 117191



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 5. Comparative analysis of decompositions for cargo tracking application.

DDD (2.83), Service Cutter (3.16), and MITIA (6.78);
the smaller coupling was the genetic algorithm using
CpT, CohT, and WsicT in the objective function, there-
fore the decomposition obtained by MB has low cou-
pling (see table 5, we highlighted the solution with lower
Gm).

The cohesion values were 1.16, 1.5, and 1.16 for the
genetic algorithm, whereas DDD (1.5), Service Cutter (1.15),
and MITIA (1.06) obtained similar values; the semantic sim-
ilarity of the genetic algorithm was greater than 70%, so our
genetic algorithm obtained coherent decompositions from
the semantic point of view, therefore the semantic cohesion
was high. The smaller number of calls among microservices
correspond to the genetic algorithm and MITIA (5 calls),
whereas DDD (6 calls) and Service Cutter (10 calls) had
more calls; then the genetic algorithm obtained solutions
with fewer dependencies and less communication among
microservices.

The decomposition performed by our method was differ-
ent from DDD, our model did not group the entities and
their stories or operation that make up the aggregate, neither
considered transactions among user stories or business logic
of the application. These topics will be considered in future
work.

In the decomposition obtained with the genetic algorithm,
the critical point of failure of the proposed DDD solution is
removed, Localization microservice is used for all microser-
vices. The number of calls between microservices is reduced,
thus improving performance. The maximum number of oper-
ations associated with a microservice is also reduced, as well
as the cognitive complexity and the estimated development
time. In the decomposition generated by genetic program-
ming, more microservices can work independently without
depending on other microservices. Whereas in the solution
proposed by DDD, only one microservice can work inde-
pendently. In the decomposition proposed by DDD, there are
more dependencies.

By distributing user stories differently, shorter develop-
ment times of the entire system can be obtained. Considering
that each microservice is developed by an independent team
in parallel.

FIGURE 9. Comparative analysis of evaluation metrics of cargo tracking
application.

FIGURE 10. Comparative analysis of cognitive complexity points of cargo
tracking application.

Figure 9 shows graphically the comparative analysis of the
evaluation metrics. Figure 10 shows specifically the cognitive
complexity obtained by the methods studied.

The number of calls of our approach is less than DDD,
Service Cutter, andMITIA. This metric measure or determine
the degree of dependence that have the microservices that
are part of the application, a larger value implies a greater
dependence and lower performance because they require the
execution of operations that belong to other microservices in
other containers.

Cognitive complexity metrics estimate the difficulty
of understanding, implementing, and maintaining the
microservice-based application, depending on the complexity

117192 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 11. Comparative analysis of granularity metric (Gm) of cargo
tracking application.

FIGURE 12. Results of the comparative analysis of cargo tracking
application. T: Estimated development time.

of eachmicroservice, the interactions between them, and their
number. MB obtained (74, 141, and 124) lower cognitive
complexity points than DDD (145), MITIA (190), and Ser-
vice Cutter (202.5); therefore, MB can reduce the complexity
of the microservice-based applications.

The results obtained for semantic similarity are very sim-
ilar in all proposed decompositions. It can be highlighted
that the semantic similarity for all cases exceeds 70%, there-
fore, the decompositions were coherent from the semantic
point of view. Figure 11 shows the comparative analysis
of the metric GM. The lower Gm value corresponds to the
genetic algorithm (85.79) of MB, whereas DDD (156.64),
MITIA (203.14), and Service Cutter (206.79), Therefore,
the decomposition obtained by MB corresponds to the best
solution to the problem. We observed that the solution
proposed with less complexity, less coupling, and fewer
calls also corresponds to the one with the lowest value of
the Gm metric and corresponds to the genetic algorithm
of MB.

Finally figure 12 presents the comparative results for
Cargo Tracking, comparing MB genetic algorithm against
DDD.

Where T is the estimated development time of the decom-
position obtained by each method. The genetic algorithm
obtains less estimated development time, fewer calls between

TABLE 6. Product backlog for JPet store application.

microservices, less complexity, greater cohesion, less cou-
pling, and less Gm than DDD.

B. JPET STORE APPLICATION
The JPetStore Demo1 is an online pet store. We can browse
and search the product catalog, choose items to add to a
shopping cart, amend the shopping cart, and order the items
in the shopping cart. You can perform many of these actions
without registering with or logging into the application. How-
ever, before you can order items you must log in (sign in) to
the application. To sign in, you must have an account with
the application, which is created when you register (sign up)
with the application [57]. The functionalities of Jpet Store are
listed below.

• Signing Up
• Signing In
• Working with the Product Catalog: Browsing the Cata-
log, Searching the Catalog

• Working with the Shopping Cart: Adding and Removing
Items, Updating theQuantity of an Item, Ordering Items,
Reviewing an Order

This application has been used to validate decomposi-
tion methods and migrations from monolithic applications
to microservices [17], [28], [34]. From the description, def-
inition, and source code of the application, the following
user stories were identified. We identified the operations;
from them, we specify and estimate the user stories
(see Table 6).

The points and times were estimated according to our
experience and correspond to the effort and time it would take
for us to develop each user story; the total time corresponds to

1 http://demo.kieker-monitoring.net/jpetstore/help.html

VOLUME 9, 2021 117193



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 13. Microservice backlog model compared with DDD and execution traces for JPet store application.

a sequential order of development of the user stories. In real-
life software development using agile methodologies, this
estimate would be made by the development team in the
release planning considering their own characteristics and
speed of development.

A dependency is defined when a user story uses or calls
another user story. This example can be considered as migra-
tion from monolith to microservices, in this case, the user
stories can be replaced by the operations/methods or services
of the application; a dependency corresponds to an execution
dependency, in which an operation calls another operation to
fulfill its purpose.

In this example, the source code of the monolithic
application was available. To define the dependencies
among user stories, the source code was analyzed to iden-
tify invocation dependencies between user stories and/or
operations (OrderService, CatalogService, AcountService,
Cart entity, and other entities). The process is detailed
below:

Dependencies of hu1- View category:
ViewCategory method calls to ListCategories method.

It corresponds to another user story (hu2). ViewCategory calls
to catalogService.getProductListByCategory – It is the same
user story and corresponds to its implementation. ViewCate-
gory calls to catalogService.getCategory(id) – It corresponds

to another user story (hu19), Therefore, the dependencies of
hu1 are hu2 and hu19. hu1 = {hu2, hu19}.

Dependences of hu2- Listar categorías - List categories:
ListCategories calls to accountAction.getCategories() – It

is the same user story and corresponds to its implementation.
Therefore, hu2 has not dependencies. hu2 = {}.

Dependencies of HU6- Add item to cart:
AddItemtoCart calls to cart.incrementQuantityByItemId

(workingItemId). It is the same user story and corre-
sponds to its implementation. AddItemtoCart calls to cat-
alogService.isItemInStock(workingItemId). It corresponds to
another user story (hu21) AddItemtoCart calls to catalogSer-
vice.getItem(workingItemId); It corresponds to another
user story (hu5). Therefore, HU6 has two dependencies
HU21 and HU5. HU6 = {HU5, HU21}.
We did this process for the other user stories. Table 7 shows

the identified dependencies.
We compared the decompositions of user stories to

microservices obtained by our model against DDD, and Exe-
cution Traces, see figure 13. The results obtained by DDD
and Execution traces were the same, only one user story was
in a different microservice, but the metrics and comparison
were equals.

Automatically MB obtained more candidate microservices
(seven and six microservices) than DDD (four microservices)

117194 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 7. User stories dependencies for JPet store application.

and Execution traces (four microservices), the user did some
join operations of microservices and got five microser-
vices, this solution was close to DDD and Execution
traces.

The decompositions proposed by our model had semantic
similarity coherence (greater than 85%) and maybe a good
candidate solution to the problem. The comparative analysis
of the metrics is detailed in table 8.

The decomposition which had more coupling was 22MS
(the finer granularity), if we followed the single respon-
sibility principle, then we may associate one user story
with only one microservice, thus this may increase the cou-
pling of global application; therefore the single responsi-
bility principle be ‘‘group things that referred to the same
things’’, so the semantic similarity is fundamental for group-
ing similar things. Our model grouped the user stories the
referred to the same entity keeping low coupling and high
cohesion.

MB obtained the lowest coupling (1.41) for this application
than DDD and ‘‘Execution Traces’’ (3.46); similar lack of
cohesion (1.79) than DDD and ‘‘Execution Traces’’ (1.5),
the lowest WsicT (5), and the smaller complexity (102.5)
compared to DDD (200), and ‘‘Execution Traces’’ (175.5);
MB presented a smaller number of calls (3 calls) among
microservices than DDD (9 calls) and ‘‘Execution Traces’’
(8 calls); the estimated development time of the solution
proposed by our model (32 hours) was lower than DDD
(36 hours) and close to ‘‘Execution Traces’’ (31 hours),
as well as the maximum number of user story points asso-
ciated with a microservice (MB 21 points, DDD 22 points,
and ‘‘Execution Traces’’ 19 points).

Changing a user story or operation from one microservice
to another can have consequences on performance, complex-
ity, and coupling; therefore it is an important point to consider
when designing microservice-based applications and should
be done based onmetrics such as those proposed in this paper,
where the impact of those changes and different distributions
of user stories or operations on microservices can be graphi-
cally analyzed, all at design time.

Figure 14 shows the comparative analysis of the metrics
and figure 15 shows the complexity of the obtained decom-
positions of JPet Store. The first two bars correspond to DDD
and ‘‘Execution traces’’, the others correspond to MB.

FIGURE 14. Comparative analysis of evaluation metrics of Jpet store.
MS: Number of microservices, CPT: Coupling of MSBA, COHT: Lack of
cohesion grade of MSBA, WSICT: Maximum WSIC of MSBA, WSIC is the
number of user stories of the MS. CALLS: number of calls between
microservices. SS: Semantic similarity.

FIGURE 15. Comparative analysis of cognitive complexity points of Jpet
store application. Where SS: Semantic similarity.

Figure 16 shows the comparative analysis of the granularity
metric Gm. We observed that the solutions proposed by the
genetic algorithm obtained lower Gm (104.7) than DDD
(203.7), and ‘‘Execution Traces’’ (179.7).

The genetic algorithm of the MB obtained greater seman-
tic similarity (89.4%) than DDD (85.3%) and ‘‘Execu-
tion Traces’’ (84.1%); additionally, MB obtained a high
semantic similarity value, being greater than 85% for all
cases; then the MB obtained coherent decompositions from
the semantic point of view, indicating a high semantic
cohesion.

The comparative analysis of Jpet-Store application is pre-
sented in figure 17, we compared the solution with lower
Gm against DDD; where T is the estimated development
time.

The genetic algorithm obtained lower coupling, higher
cohesion, lower complexity, high semantic cohesion, fewer
calls between microservices, and lower Gm compared to
DDD.

MB obtained decomposition for the hypothetical projects
Cargo Tracking and Jpet-Store with less coupling, less com-
plexity, less communication between microservices (less
‘‘calls’’), greater cohesion, lower Gm value, and shorter
development time compared to DDD. This is a promising and

VOLUME 9, 2021 117195



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 8. Comparative analysis of decompositions for Jpet store application.

FIGURE 16. Comparative analysis of the granularity metric of Jpet-store
application.

FIGURE 17. Comparative analysis of Jpet-store application.

important result because DDD is one of the most widely used
methods for defining the granularity of microservices.

The results of our model were similar in JPet-Store and
Cargo Tracking applications, MB obtained low coupling,
low or similar lack of cohesion, high semantic cohesion,
small calls, and low complexity than the state-of-the-art
approaches.

C. FORISTOM CONFERENCES APPLICATION
Foristom conferences is a web application that allows the
management of information and organization of virtual

conferences of the Foristom Foundation.2 Foristom confer-
ences allow us to manage everything from the creation and
dissemination of the conference to the publication and pre-
sentation of the articles submitted. The Foristom Foundation
is a non-profit organization. From the description and defini-
tion of the case study, the following user stories were identi-
fied, which will be implemented following the microservices
architecture. The product backlog of Foristom Conferences is
detailed in table 9.

In this case, the dependencies were defined according
to the business logic of the application and the data flow
between the different user stories. See Table 11.

The aim was to compare the design proposed by the
architect using DDD against the design obtained with MB.
When using DDD, following the approaches proposed by
Evan [45], [58], then the entities, valuable objects, delimited
contexts must be identified to propose the microservices that
are going to be part of the application.

Figure 18 shows the decompositions for Foristom
Conferences.

For the identified microservices, complexity, coupling,
granularity metrics were calculated, and development time
was estimated. In this way, the architect can graphically
observe several solutions or decompositions, compare them,
evaluate them, and select the one he wants to implement.
The comparative metric analysis of the proposed solutions to
Foristom Conferences application is presented in Table 10.
The results were like Cargo Tracking and JPet-Store applica-
tions results.

We tested different objective functions of the genetic algo-
rithm. The best results were with CpT, CxT, WsicT, and SsT
metrics, which obtained 13 microservices, the user did a few
simple joins operations, so he could reduce de decomposition
to 4microservices (equal to DDD); another good solutionwas
with CpT, CohT, SsTmetrics in the objective function, which
automatically obtained 9 microservices, next the user could
reduce to 5 microservices.

The greater coupling was 29MS decomposition (the finer
granularity with 9.27), the coupling of de decomposition

2www.foristom.org

117196 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

FIGURE 18. Microservice backlog model compared with DDD for foristom conferences application.

obtained by MB was zero, this means that the microservices
had not dependences and they were independent, whereas the
coupling of DDDwas 3.16. Our model has lessWsicT (4 user
stories, DDD had 9), lower cognitive complexity (49.5, DDD
had 426), fewer estimated development time (59 hours),
and user story points (29 points) than DDD (167 hours and
83 points).

These results can be seen graphically in figure 19 and
figure 20.

The cognitive complexity of MB (49.5) was considerably
less than the complexity of the decomposition proposed by
DDD (426). The same result was repeated as in the previous

cases, so we concluded that our model obtains solutions of
less complexity, thus being easier to implement and maintain.

The decompositions proposed by our model were semanti-
cally and functionally coherent (greater than 74%); we were
able to obtain completely independent microservices, this
being an important feature to implement, maintain and deploy
a microservice-based application.

If the proposed solutions present a high semantic similar-
ity (greater than 70%), then they suggest that microservices
group the stories that refer to the same entity, therefore, their
cohesion is high. All obtained solutions present high semantic
similarity.

VOLUME 9, 2021 117197



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 9. Product backlog for foristom conferences application.

FIGURE 19. Comparative analysis of evaluation metrics of foristom
conferences application. MS: Number of microservices (N), CPT: Coupling
of MSBA, COHT: Lack of cohesion grade of MSBA, WSICT: Maximum WSIC
of MSBA, WSIC is the number of user stories of the microservice. CALLS:
number of calls between microservices. SST: Semantic similarity.

We observed that it is not enough to have only high seman-
tic similarity to consider a good distribution of user stories in
microservices, other factors such as coupling, dependencies,

FIGURE 20. Comparative analysis of cognitive complexity points of
foristom conferences application.

FIGURE 21. Comparative analysis of granularity metric for foristom
conferences application.

FIGURE 22. Comparative analysis of foristom conferences application.

and communication among the application microservices
must be analyzed.

Figure 21 details the results of the granularity metric Gm
for the decompositions obtained by MB compared to DDD.

The results of Gm were considerably lower for the genetic
algorithmwith 56.3, whereas DDDwas 428. Figure 22 shows
the comparative analysis for the best solutions (those with the
lowest Gm) proposed by the genetic algorithm compared to
DDD.

117198 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 10. Comparative analysis of decompositions for foristom conferences application.

TABLE 11. User stories dependencies for foristom conferences
application.

The join and disjoint operations were essential to obtain
better results than DDD, automatically in some cases simi-
lar or better results are obtained than DDD, but we should
always check that the user stories were associated in the right
place, for example, the semantic similarity algorithm assumes
that the presentation session is semantically very similar to
the user’s session, being two different things, for this rea-
son, the user’s intervention is very important to analyze and
evaluate what is obtained automatically, in order to propose
improvements and get better results.

In this case study, we demonstrated that the MB obtained
decompositions from user stories to microservices with low
coupling, high cohesion (from the semantic point of view),
low complexity, low communication between microservices,
and shorter estimated development time; therefore, MB is a
viable option for the design and evaluation of the granularity
of microservices-based applications.

In summary, the analysis of the results obtained in this
research work is presented in Table 12, comparing the results
obtained with each method in all projects.

We analyzed the results, the solution proposed by MB
presented low coupling, high cohesion, low complexity, less
communication, and fewer dependencies compared to the
solution proposed by state-of-the-art methods and DDD;
additionally, the proposed solutions were coherent from

the semantic point of view (high semantic similarity, SsT
greater than 70% in all cases); therefore, the proposed
model MB improves the decomposition and identification of
microservices.

We analyzed the results, the solution proposed by MB
presented low coupling, high cohesion, low complexity, less
communication, and fewer dependencies compared to the
solution proposed by state-of-the-art methods and DDD;
additionally, the proposed solutions were coherent from
the semantic point of view (high semantic similarity, SsT
greater than 70% in all cases); therefore, the proposed
model MB improves the decomposition and identification of
microservices.

VI. LIMITATIONS
To determine the user stories of the state-of-the-art case stud-
ies, we used the information reported in the published papers,
we studied their business logic, and we made our best effort
not to bias this definition. The definition and description
of the user stories were reviewed by each of the authors
independently and contradictions were resolved by common
agreement among the authors. We selected those state-of-the-
art case studies because they were the most used in the related
works.

Few datasets of microservices projects with user sto-
ries were identified, we found that Rahman et al. [59]
shared a dataset composed of 20 open-source projects
using specific microservice architecture patterns, and Mar-
quez and Astudillo [60] shared a dataset of open-source
microservice-based projects when investigating actual use of
architectural patterns; those projects did not specify the user
stories.

The definition of the dependencies among user stories is
a critical point of our model. They were defined from the
information contained in the user story, from the business
logic of the application, from the source code, from the data
flow, and the dependencies in the data model. For larger
applications that have many user stories, it can be a complex
task to determine these dependencies.

The problem of assigning user stories to microservices
has an NP-hard complexity, when the number of user sto-
ries increases the runtime of the genetic algorithm increases

VOLUME 9, 2021 117199



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

TABLE 12. Summary of microservices backlog results.

considerably. The average time of execution in the tests car-
ried out did not exceed 10 minutes, using a core-i7 computer,
with 16 gigabytes of Ram (a population of 1000 indi-
viduals, convergence 10%, the maximum number of iter-
ations 400 with 500 children and 500 mutations in each
iteration).

The genetic algorithm is not deterministic, in each exe-
cution it can give different results, to reduce this problem,
we executed the algorithm several times, we selected for each
case the best solution, and we verified that it was repeated
most of the times. The results can converge to a local min-
imum, or lead to a result that is not the most appropriate,
for this reason the supervision of the architect or developer
is important, who are responsible for evaluating the solution
and proposing union or division operations of the candidates
microservices.

An algorithm was implemented that calculates the evalua-
tion metrics; the same algorithm was used for calculating the
metrics of all the decompositions used for comparison.

The ‘‘Lack of cohesion’’ metric is calculated from the
interdependence of the microservices, it depends on the
number of microservices. We concluded that MB proposes
high cohesion solutions because their semantic similarity
is high, so the microservices refer to the same topic, sub-
ject, or entity; semantic cohesion was proposed by other
authors [26], [61].

Further optimization in the genetic programming tech-
nique is possible, we can propose another metrics in the
objective function, for example, another cohesion, coupling,
or complexity metric. Additionally, we can implement a non-
dominated sorting genetic algorithm-II or a multi-objective
genetic algorithm and compare the results with these results.
We can propose another optimization technique, such as, ant
colony optimization algorithms (ACO).

The mutation process changes a bit of the chromosome,
it involves removing a user story from one microservices and
assigning it to another, an interesting change in the mutation
process could consist of the mutation of several bits of the
chromosome to observe and compare the results obtained in
this work.

To reduce the possibility of deadlock and starvation situ-
ation, we define a fixed number of iterations (1000), a per-
centage of convergence (10%), a number of mutations (500)

and children (500) in the reproduction process, if the algo-
rithm does not converge the user can evaluate the obtaining
solution, perform union or division operations, or discard the
obtained solution, also the user can change the algorithm
parameters and execute it again. MB allows modifying these
parameters and running the algorithm as many times as the
software architect wishes.

VII. CONCLUSION AND FUTURE WORK
Microservices Backlog model (MB) allows architects,
designers, or developers to reasoning about microser-
vice granularity at design time, they can analyze met-
rics, diagrams, and dependencies of the microservices;
they can notice critical points, estimated development time
of the application; they can test different solutions or
decomposition, analyze them, and select the better to be
implemented.

The development team can evaluate different ways of dis-
tributing the user stories in microservices and take decisions
based on metrics, graphs, and comparative analysis at design
time. Therefore, using the MB model is possible to reason
about the granularity of microservices at design time, thus
filling one of the research gaps proposed in the literature
review.

The distribution of user stories in microservices affects
coupling, cohesion, complexity, impacting the performance,
modularity, and maintainability of the microservice-based
application. Associating a user story to a single microser-
vice (finer granularity), following the simple responsibility
principle, implies more coupling to the application, equally
having a monolithic application is not the best option in
terms of maintainability, scalability, testing, and deploy-
ment of the application. The optimal solution is some-
where in between these two and depends on the functional
requirements and characteristics of the application, the devel-
opment team and the non-functional requirements to be
addressed.

When comparing MB with the related works, none of
the identified works used user stories as input data, none
used data from agile practices or agile software development.
MB model obtained low coupling, low or similar lack of
cohesion, small calls, and low complexity than the state-of-
the-art approaches; therefore, using our model, the software

117200 VOLUME 9, 2021



F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

architect or development team can obtain microservices-
based applications with low coupling, low complexity, and
fewer calls between microservices.

Unlike other proposed works, one of the identified works
used performance, functionality, maintainability, and mod-
ularity at the same time to evaluate the granularity of the
microservices as MB. Only one paper used quality attributes
as runtime characteristics (i.e. scalability, performance) and
at the same time software as an artifact characteristic (i.e.
modularity, maintainability). No papers addressed functional-
ity, performance, modularity, and maintainability at the same
time.

MB covers both aspects of runtime characteristics and
software as artifact characteristics and MB uses coupling,
cohesion, and complexity metrics to evaluate the candidate
microservices of the application. Therefore, this research
work fills proposed research gaps in the state of the art
and represents a novel proposal to the development of
microservice-based applications.

Moreover, according to limitations we propose the future
work as follow: we will build a dataset of the reported
microservices projects, identifying user stories and depen-
dencies for a deeper validation, we will propose an automatic
method of determining dependencies among user stories; we
will implement the genetic algorithm using parallel program-
ming to improve the runtime; we will review and propose
another cohesion metric, include it in the model and evaluate
the results; and we will generate source code or templates
for the selected solution, as well as estimate computational
resources, and deployment options for the microservices-
based application.

REFERENCES
[1] K. Beck and M. Fowler, Planning Extreme Programming. Reading, MA,

USA: Addison-Wesley, 2001.
[2] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still,

‘‘The impact of agile practices on communication in software develop-
ment,’’ Empirical Softw. Eng., vol. 13, no. 3, pp. 303–337, Jun. 2008,
doi: 10.1007/s10664-008-9065-9.

[3] (2019). 14th Annual State of Agile Report. [Online]. Available:
http://www.stateofagile.com

[4] T. Sedano, P. Ralph, and C. Peraire, ‘‘The product backlog,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 200–211,
doi: 10.1109/ICSE.2019.00036.

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘‘Microservices architec-
ture enables devOps: Migration to a cloud-native architecture,’’ IEEE
Softw., vol. 33, no. 3, pp. 42–52, May /Jun. 2016, doi: 10.1109/MS.
2016.64.

[6] O. Zimmermann, ‘‘Microservices tenets: Agile approach to service devel-
opment and deployment,’’ Comput. Sci.-Res. Develop., vol. 32, nos. 3–4,
pp. 301–310, Jul. 2017, doi: 10.1007/s00450-016-0337-0.

[7] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov,
‘‘Microservices: The journey so far and challenges ahead,’’ IEEE
Softw., vol. 35, no. 3, pp. 24–35, May 2018, doi: 10.1109/MS.2018.
2141039.

[8] S. Hassan, R. Bahsoon, and R. Kazman, ‘‘Microservice transition and its
granularity problem: A systematic mapping study,’’ Softw. Pract. Exp.,
vol. 50, pp. 1–31, Feb. 2020, doi: 10.1002/spe.2869.

[9] N. Kulkarni and V. Dwivedi, ‘‘The role of service granularity in a
successful SOA realization a case study,’’ in Proc. IEEE Congr. Ser-
vices, vol. 1, Jul. 2008, pp. 423–430, doi: 10.1109/SERVICES-1.
2008.86.

[10] A. Homay, M. de Sousa, A. Zoitl, and M. Wollschlaeger, ‘‘Service granu-
larity in industrial automation and control systems,’’ inProc. 25th IEEE Int.
Conf. Emerg. Technol. Factory Automat. (ETFA), Sep. 2020, pp. 132–139,
doi: 10.1109/ETFA46521.2020.9212048.

[11] F. H. Vera-Rivera, E. G. Puerto-Cuadros, H. Astudillo, and
C. M. Gaona-Cuevas, ‘‘Microservices backlog—A model of granularity
specification and microservice identification,’’ in Proc. Int. Conf. Service
Comput. (SCC), in Lecture Notes in Computer Science, vol. 12409,
Jun. 2020, pp. 85–102, doi: 10.1007/978-3-030-59592-0_6.

[12] M. Gysel, L. Kölbener,W. Giersche, and O. Zimmermann, ‘‘Service cutter:
A systematic approach to service decomposition,’’ in Proc. IFIP Int. Fed.
Inf. Process., 2016, pp. 185–200, doi: 10.1007/978-3-319-44482-6_12.

[13] Chris Richardson and Microservices.io. Microservice Archi-
tecture Pattern. Accessed: Dec. 12, 2019. [Online]. Available:
https://microservices.io/patterns/microservices.html

[14] O. Zimmermann, M. Stocker, U. Zdun, D. Lübke, and C. Pautasso. (2019).
Microservice API Patterns. Accessed: Dec. 17, 2019. [Online]. Available:
https://www.microservice-api-patterns.org/introduction

[15] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kroger,
‘‘Microservice decomposition via static and dynamic analysis of the
monolith,’’ in Proc. IEEE Int. Conf. Softw. Archit. Companion (ICSA-C),
Mar. 2020, pp. 9–16, doi: 10.1109/ICSA-C50368.2020.00011.

[16] O. Al-Debagy and P. Martinek, ‘‘Extracting microservices’ candi-
dates from monolithic applications: Interface analysis and evalua-
tion metrics approach,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst.
Eng. (SoSE), Jun. 2020, pp. 289–294, doi: 10.1109/SoSE50414.2020.
9130466.

[17] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, ‘‘Service candi-
date identification from monolithic systems based on execution traces,’’
IEEE Trans. Softw. Eng., vol. 47, no. 5, pp. 987–1007, May 2021, doi:
10.1109/TSE.2019.2910531.

[18] M. Abdullah, W. Iqbal, and A. Erradi, ‘‘Unsupervised learning approach
for web application auto-decomposition into microservices,’’ J. Syst.
Softw., vol. 151, pp. 243–257, May 2019, doi: 10.1016/j.jss.2019.02.
031.

[19] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan,
‘‘A dataflow-driven approach to identifyingmicroservices frommonolithic
applications,’’ J. Syst. Softw., vol. 157, Nov. 2019, Art. no. 110380, doi:
10.1016/j.jss.2019.07.008.

[20] D. Taibi and K. Systä, ‘‘From monolithic systems to microservices:
A decomposition framework based on process mining,’’ in Proc.
9th Int. Conf. Cloud Comput. Services Sci. (CLOSER), Mar. 2019,
pp. 1–13.

[21] N. Santos, N. Ferreira, M. Pereira, C. E. Salgado, F. Morais, M. Melo,
S. Silva, R. Martins, M. Pereira, H. Rodrigues, and R. J. Machado,
‘‘A logical architecture design method for microservices architectures,’’
in Proc. 13th Eur. Conf. Softw. Archit. (ECSA), 2019, pp. 145–151, doi:
10.1145/3344948.3344991.

[22] O. Al-Debagy and P. Martinek, ‘‘A new decomposition method for
designing microservices,’’ Periodica Polytechnica Electr. Eng. Com-
put. Sci., vol. 63, no. 4, pp. 274–281, Jun. 2019, doi: 10.3311/
PPee.13925.

[23] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, ‘‘Business
object centric microservices patterns,’’ in Proc. OTM Confederated Int.
Conf. Move Meaningful Internet Syst., in Lecture Notes in Computer
Science: Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics, vol. 11877, 2019, pp. 476–495, doi:
10.1007/978-3-030-33246-4_30.

[24] L. Nunes, N. Santos, and A. R. Silva, ‘‘From a monolith to a microservices
architecture: An approach based on transactional contexts,’’ in Proc. 13th
Eur. Conf. ECSA, in Lecture Notes in Computer Science, vol. 11681, 2019,
pp. 37–52, doi: 10.1007/978-3-030-29983-5_3.

[25] A. Homay, A. Zoitl, M. de Sousa, M. Wollschlaeger, and C. Chrysoulas,
‘‘Granularity cost analysis for function block as a service,’’ in Proc. IEEE
17th Int. Conf. Ind. Informat. (INDIN), Jul. 2019, pp. 1199–1204, doi:
10.1109/INDIN41052.2019.8972205.

[26] M. Cojocaru, A. Uta, and A.-M. Oprescu, ‘‘MicroValid: A validation
framework for automatically decomposed microservices,’’ in Proc. IEEE
Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Dec. 2019, pp. 78–86,
doi: 10.1109/CloudCom.2019.00023.

[27] A. Christoforou, L. Odysseos, and A. Andreou, ‘‘Migration of software
components to microservices: Matching and synthesis,’’ in Proc. 14th
Int. Conf. Eval. Novel Approaches Softw. Eng., 2019, pp. 134–146, doi:
10.5220/0007732101340146.

VOLUME 9, 2021 117201

http://dx.doi.org/10.1007/s10664-008-9065-9
http://dx.doi.org/10.1109/ICSE.2019.00036
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1002/spe.2869
http://dx.doi.org/10.1109/SERVICES-1.2008.86
http://dx.doi.org/10.1109/SERVICES-1.2008.86
http://dx.doi.org/10.1109/ETFA46521.2020.9212048
http://dx.doi.org/10.1007/978-3-030-59592-0_6
http://dx.doi.org/10.1007/978-3-319-44482-6_12
http://dx.doi.org/10.1109/ICSA-C50368.2020.00011
http://dx.doi.org/10.1109/SoSE50414.2020.9130466
http://dx.doi.org/10.1109/SoSE50414.2020.9130466
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.1016/j.jss.2019.07.008
http://dx.doi.org/10.1145/3344948.3344991
http://dx.doi.org/10.3311/PPee.13925
http://dx.doi.org/10.3311/PPee.13925
http://dx.doi.org/10.1007/978-3-030-33246-4_30
http://dx.doi.org/10.1007/978-3-030-29983-5_3
http://dx.doi.org/10.1109/INDIN41052.2019.8972205
http://dx.doi.org/10.1109/CloudCom.2019.00023
http://dx.doi.org/10.5220/0007732101340146


F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

[28] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, ‘‘Towards auto-
mated microservices extraction using muti-objective evolutionary search,’’
in Proc. 17th Int. Conf. Service-Oriented Comput., in Lecture Notes
in Computer Science, vol. 11895, Oct. 2019, pp. 58–63, doi: 10.1007/
978-3-030-33702-5_5.

[29] M. I. Josélyne, D. Tuheirwe-Mukasa, B. Kanagwa, and J. Balikuddembe,
‘‘Partitioning microservices: A domain engineering approach,’’
in Proc. Int. Conf. Softw. Eng. Afr. (SEiA), 2018, pp. 43–49, doi:
10.1145/3195528.3195535.

[30] H. Vural, M. Koyuncu, and S. Misra, ‘‘A case study on measuring the size
of microservices,’’ in Proc. Int. Conf. Comput. Sci. Appl. (ICCSA), 2018,
pp. 454–463, doi: 10.1007/b98054.

[31] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, ‘‘Identifying microser-
vices using functional decomposition,’’ in Proc. Int. Symp. Dependable
Softw. Eng., Theories, Tools, Appl., vol. 10998, 2018, pp. 50–65, doi:
10.1007/978-3-319-99933-3.

[32] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge, ‘‘Function-
splitting heuristics for discovery of microservices in enterprise systems,’’
in Proc. Int. Conf. Service-Oriented Comput., 2018, pp. 37–53.

[33] M. Tusjunt and W. Vatanawood, ‘‘Refactoring orchestrated web ser-
vices into microservices using decomposition pattern,’’ in Proc. IEEE
4th Int. Conf. Comput. Commun. (ICCC), Dec. 2018, pp. 609–613, doi:
10.1109/CompComm.2018.8781036.

[34] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and T. Huang,
‘‘Migrating web applications from monolithic structure to microservices
architecture,’’ in Proc. 10th Asia–Pacific Symp. Internetware, Sep. 2018,
pp. 1–10, doi: 10.1145/3275219.3275230.

[35] W. Hasselbring and G. Steinacker, ‘‘Microservice architectures for scal-
ability, agility and reliability in E-commerce,’’ in Proc. IEEE Int.
Conf. Softw. Archit. Workshops (ICSAW), Apr. 2017, pp. 243–246, doi:
10.1109/ICSAW.2017.11.

[36] J.-P. Gouigoux and D. Tamzalit, ‘‘From monolith to microservices:
Lessons learned on an industrial migration to a web oriented architecture,’’
in Proc. IEEE Int. Conf. Softw. Archit. Workshops (ICSAW), Apr. 2017,
pp. 62–65, doi: 10.1109/ICSAW.2017.35.

[37] D. Shadija, M. Rezai, and R. Hill, ‘‘Microservices: Granularity vs. per-
formance,’’ in Proc. Companion, 10th Int. Conf. Utility Cloud Comput.
(UCC), Dec. 2017, pp. 215–220, doi: 10.1145/3147234.3148093.

[38] S. Hassan, N. Ali, and R. Bahsoon, ‘‘Microservice ambients: An archi-
tectural meta-modelling approach for microservice granularity,’’ in Proc.
IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017, pp. 1–10, doi:
10.1109/ICSA.2017.32.

[39] L. Baresi, M. Garriga, and A. De Renzis, Microservices Identification
Through Interface Analysis, vol. 10465. Cham, Switzerland: Springer,
Nov. 2017.

[40] G. Mazlami, J. Cito, and P. Leitner, ‘‘Extraction of microservices from
monolithic software architectures,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 524–531, doi: 10.1109/ICWS.2017.61.

[41] G. Kecskemeti, A. Kertesz, and A. C. Marosi, ‘‘Towards a methodology to
formmicroservices frommonolithic ones,’’ in Proc. Euro-Par 2016, Paral-
lel Process. Workshops, in Lecture Notes in Computer Science, vol. 10104,
Grenoble, France. Cham, Switzerland: Springer, 2017, pp. 284–295, doi:
10.1007/978-3-319-58943-5_23.

[42] S. Hassan and R. Bahsoon, ‘‘Microservices and their design trade-offs:
A self-adaptive roadmap,’’ in Proc. IEEE Int. Conf. Services Comput.
(SCC), Jun. 2016, pp. 813–818, doi: 10.1109/SCC.2016.113.

[43] M. Ahmadvand and A. Ibrahim, ‘‘Requirements reconciliation for scal-
able and secure microservice (De)composition,’’ in Proc. IEEE 24th Int.
Requirements Eng. Conf. Workshops (REW), Sep. 2016, pp. 68–73, doi:
10.1109/REW.2016.026.

[44] A. R. Hevner, S. T. March, J. Park, and S. Ram, ‘‘Design science in infor-
mation systems research,’’ MIS Quart., vol. 28, no. 1, pp. 75–105, 2004.
Accessed:May 16, 2018. [Online]. Available: https://pdfs.semanticscholar.
org/fa72/91f2073cb6fdbdd7c2213bf6d776d0ab411c.pdf

[45] E. Evans, Domain-Driven Design Reference—Definitions and Pattern
Summaries. Indianapolis, IN, USA: Dog Ear Publishing, LLC, 2015.

[46] L. Baresi, M. Garriga, and A. De Renzis, ‘‘Microservices identification
through interface analysis,’’ in Proc. Eur. Conf. Service-Oriented Cloud
Comput., in Lecture Notes in Computer Science, vol. 10465, Sep. 2017,
pp. 19–33, doi: 10.1007/978-3-319-67262-5_2.

[47] J. Bogner, S. Wagner, and A. Zimmermann, ‘‘Towards a practical main-
tainability quality model for service- and microservice-based systems,’’
in Proc. 11th Eur. Conf. Softw. Archit., Companion (ECSA), Sep. 2017,
pp. 195–198, doi: 10.1145/3129790.3129816.

[48] I. Candela, G. Bavota, B. Russo, and R. Oliveto, ‘‘Using cohesion and
coupling for software remodularization: Is it enough?’’ ACM Trans. Softw.
Eng.Methodol., vol. 25, no. 3, pp. 1–28, Aug. 2016, doi: 10.1145/2928268.

[49] D. Rud, A. Schmietendorf, and R. R. Dumke, ‘‘Product metrics for service-
oriented infrastructures,’’ in Proc. Appl. Softw. Meas. Int. Workshop
Softw. Metrics DASMA Softw. Metrik Kongress (IWSM/MetriKon),
2006, pp. 1–14. Accessed: Jun. 18, 2019. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.6887&
rep=rep1&type=pdf

[50] Spacy.io. Word Vectors and Semantic Similarity · spaCy Usage
Documentation. Accessed: Nov. 20, 2020. [Online]. Available:
https://spacy.io/usage/vectors-similarity#basics

[51] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, ‘‘A metrics suite for
evaluating flexibility and complexity in service oriented architectures,’’
in Proc. Int. Conf. Service-Oriented Comput. Berlin, Germany: Springer,
2009, pp. 41–52.

[52] M. Cohn, User Stories Applied for Agile Software Development. Reading,
MA, USA: Addison-Wesley, 2004.

[53] M. Cohn, Agile Estimating and Planning. Boston, MA, USA: Addison-
Wesley, 2004.

[54] K. Beck, Extreme Programming Explained: Embrace Change. Reading,
MA, USA: Addison-Wesley, 2000.

[55] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI,
USA: Univ. Michigan Press, 1975.

[56] F. Herrera, M. Lozano, and J. L. Verdegay, Algoritmos Genéticos: Fun-
damentos, Extensiones y Aplicaciones. Morrisville, NC, USA: ProQuest,
1995.

[57] MyBatis.Mybatis Jpetstore-6: A Web Application Built on Top of MyBatis
3, Spring 3 and Stripes. Accessed: Nov. 22, 2020. [Online]. Available:
https://github.com/mybatis/jpetstore-6

[58] E. Evans, Domain-Driven Design. Reading, MA, USA: Addison-Wesley,
2004.

[59] M. I. Rahman, S. Panichella, and D. Taibi, ‘‘A curated dataset
of microservices-based systems,’’ in Proc. Joint Inforte Summer
School Softw. Maintenance Evol. (CEUR Workshop), vol. 2520,
2019. Accessed: Feb. 14, 2020. [Online]. Available: http://research.
tuni.fi/clowee

[60] G. Marquez and H. Astudillo, ‘‘Actual use of architectural pat-
terns in microservices-based open source projects,’’ in Proc. 25th
Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2018, pp. 31–40, doi:
10.1109/APSEC.2018.00017.

[61] M. Perepletchikov, C. Ryan, and K. Frampton, ‘‘Cohesion met-
rics for predicting maintainability of service-oriented software,’’ in
Proc. 7th Int. Conf. Qual. Softw. (QSIC), 2007, pp. 328–335, doi:
10.1109/QSIC.2007.4385516.

FREDY H. VERA-RIVERA received the bachelor’s
degree in systems engineering, in 2005, and the
master’s degree in engineering with an emphasis in
computer science from the Universidad Industrial
de Santander, Bucaramanga, Colombia, in 2009,
and the Ph.D. degree in engineering and com-
puter science from the Universidad del Valle, Cali,
Colombia, in 2021.

From 2005 to 2013, he was a Web Developer
and a Technical Leader at software companies in

Bucaramanga. He is currently an Assistant Professor with the Universidad
Francisco de Paula Santander, Cúcuta, Colombia, and the Director of Infor-
mation Systems with the Foristom Foundation, Bucaramanga. His research
interests include microservice architectures, cloud computing, component-
based software, artificial intelligence, agile software development, and web
development.

117202 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-030-33702-5_5
http://dx.doi.org/10.1007/978-3-030-33702-5_5
http://dx.doi.org/10.1145/3195528.3195535
http://dx.doi.org/10.1007/b98054
http://dx.doi.org/10.1007/978-3-319-99933-3
http://dx.doi.org/10.1109/CompComm.2018.8781036
http://dx.doi.org/10.1145/3275219.3275230
http://dx.doi.org/10.1109/ICSAW.2017.11
http://dx.doi.org/10.1109/ICSAW.2017.35
http://dx.doi.org/10.1145/3147234.3148093
http://dx.doi.org/10.1109/ICSA.2017.32
http://dx.doi.org/10.1109/ICWS.2017.61
http://dx.doi.org/10.1007/978-3-319-58943-5_23
http://dx.doi.org/10.1109/SCC.2016.113
http://dx.doi.org/10.1109/REW.2016.026
http://dx.doi.org/10.1007/978-3-319-67262-5_2
http://dx.doi.org/10.1145/3129790.3129816
http://dx.doi.org/10.1145/2928268
http://dx.doi.org/10.1109/APSEC.2018.00017
http://dx.doi.org/10.1109/QSIC.2007.4385516


F. H. Vera-Rivera et al.: Microservices Backlog—Genetic Programming Technique for Identification

EDUARD PUERTO received the M.S. degree
in computer science and the Ph.D. degree in
applied sciences from the University of the Andes
Venezuela, in 2019. He is currently an Assistant
Professor with the Universidad Francisco de Paula
Santander, Cúcuta, Colombia, where he is the
Director with the Artificial Intelligence Research
Group GIA, Systems and Informatics Department.
He is certified as a Junior Researcher accord-
ing to the Colombian Science and Technology

Department—Minciencias. He is the author/coauthor of over ten publica-
tions in international journals. His research interests include artificial intel-
ligence, machine learning, cognitive maps, and computation autism.

HERNÁN ASTUDILLO (Member, IEEE) received
the Ph.D. degree in information and computer sci-
ence from Georgia Tech, in 1995. He has been an
Informatics Engineer with UTFSM, since 1988.
Heworked several years as a Lead or Senior Appli-
cations Architect for consulting companies in the
USA and Chile, before joining the Universidade
de São Paulo, Brazil, and finally UTFSM, in 2003,
where he is currently an Elected Trustee on behalf
of professors. He is also the Principal Investigator

of the Toeska Research and Development Team, which conducts teaching,
research, and technology transfer in software architecture, semantic soft-
ware systems and software process improvement, and their application in
e-governance and heritage computing. He is also responsible for UTFSM’s
software architecture academic activities. He is currently a Professor of
informatics with the Universidad Técnica Federico Santa María (UTFSM),
the highest-ranked Chilean University by Times Higher Education. He has
published over 100 peer-reviewed articles in international journals and con-
ferences, supervised tens of graduate theses, organized several national and
international conferences and workshops, and lead numerous research and

development projects and international collaboration ventures. His research
interests include identification, recovery, and reuse of architectural deci-
sions and architectural knowledge (especially architectural tactics). He is
a member of the IFIP TC2 (software engineering) and the Chile Mirror
Committee for ISO TC3 (Intelligent Transportation Systems [ITS]). He was
the Founding President of ArquiTIC the Chilean association of IT architects
and, until recently, represented Chile in CLEI (the Association of Latin
American Informatics Departments) and chaired the Chilean Scholarships
Commission for Computing and Informatics. He is also the Chair of the
UTFSM’s doctorate in informatics engineering and the Co-Chair of the
UTFSM’s BPM Center.

CARLOS MAURICIO GAONA received the Ph.D.
degree in computer science from the University of
Massachusetts Lowell, in 1998. He is currently an
Associate Professor with the School of Computer
System, Universidad del Valle, Cali, Colombia.
He is the Leader of the Software Engineering
Group, Universidad del Valle.

He is the author/coauthor of over 20 publica-
tions in international journals and conferences,
and has participated in more than 15 projects for

different companies. His research interests include software engineering
and web development. His main research activities covered microservices
architectures, SaaS, and PWA applications.

VOLUME 9, 2021 117203


