
Received July 20, 2021, accepted August 14, 2021, date of publication August 20, 2021, date of current version August 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106550

Detection and Monitoring of Power Line Corridor
From Satellite Imagery Using RetinaNet and
K-Mean Clustering
FATHI MAHDI ELSIDDIG HAROUN , SITI NORATIQAH MOHAMAD DEROS,
AND NORASHIDAH MD DIN , (Senior Member, IEEE)
Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia

Corresponding author: Fathi Mahdi Elsiddig Haroun (fathi.mahdi@uniten.edu.my)

This work was supported in part by the Innovation and Research Management Center, Universiti Tenaga Nasional (UNITEN), under
the BOLD 2020 Grant Scheme Code RJ010517844/051, and in part by The Energy Sphere Satellite Laboratory, Universiti Tenaga Nasional.

ABSTRACT Monitoring of electrical transmission towers (TTs) is required to maintain the integrity of
power lines. One major challenge is monitoring vegetation encroachment that can cause power interruption.
Most of the current monitoring techniques use unmanned aerial vehicles (UAV) and airborne photography as
an observation medium. However, these methods are expensive and not practical for monitoring wide areas.
In this paper, we introduced a newmethod for monitoring the power line corridor from satellite imagery. The
proposedmethod consists of two stages. In the first stage, we used the existing state-of-the-art RetinaNet deep
learning (DL) model to detect the locations of the TTs from satellite imagery. A routing algorithm has been
developed to create a path between every adjacent detected TT. In addition to the routing algorithm, a corridor
identification algorithm has been established for extracting the power line corridor area. In the second stage,
the k-mean clustering algorithm has been used to highlight the VE regions within the power line corridor area
after converting the target satellite image into hue, saturation, and value (HSV) color space. The proposed
monitoring system was able to detect TTs from satellite imagery with a mean average precision (mAP)
of 72.45% for an Intersection of Union (IoU) threshold of 0.5 and 85.21% for IoU threshold of 0.3. Also,
the monitoring system was able to successfully discriminate high- and low-density vegetation regions within
the power line corridor area.

INDEX TERMS Deep learning, K-mean, satellite images, transmission tower detection.

I. INTRODUCTION
Electricity is of major importance to modern life, where a
power outage can pose risk to livelihood and economy. Elec-
trical transmission lines carry electrical energy to substations
where the transmission lines form the basic infrastructure
for the electrical power transmission system. The process of
transmitting electrical energy from generating stations needs
to be uninterruptible. However, several natural challenges
such as forest fires and vegetation encroachment may cause
interruptions that can lead to power outages [1]. There are
many remote sensing methods which are used for monitor-
ing transmission lines such as periodic manual inspection,
usage of light detection and ranging data, synthetic aperture
radar (SAR) data, aerial photography data from unmanned
aerial vehicles (UAV), and airborne photography. Most of
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these methods are time-consuming, expensive in relation to
the coverage area, and unsuitable for rough terrains [2], [3].

Using high-resolution satellite imagery is a promising
solution for monitoring power transmission lines. Satellite
imagery provides data for awide coverage areawith relatively
low cost compared with other optical remote sensing (ORS)
methods. Although satellite images can cover wide areas,
they may lack in data accuracy [4], [5]. Most of the previ-
ous works in power transmission lines detection and mon-
itoring depend on high-resolution UAV and aerial images
that cannot rapidly cover wide areas compared with satellite
images [6]–[12]. The previous studies on transmission line
monitoring and detection from ORS images can be catego-
rized into four main categories:

• Vegetation index (VI)-based methods, which depend
on the natural behavior of plants, where the near
Infrared (NIR) spectrum is reflected and the red color
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FIGURE 1. Illustration of RetinaNet structure that consists of two stages: the first stage is the backbone network, where (a) is
the backbone CNN and (b) is the feature pyramid network. The second stage is the prediction network, where (c) is the
classification subnet which consist of a FCN that detect the probability of observing a TT, and (d) is the regression subnet, which
consist of a FCN that predict the anchors around the TT.

spectrum is absorbed. Although these methods can
be effective for detecting vegetation encroachment,
the VI-based methods have no ability to detect transmis-
sion towers (TTs).However, VI-based methods can be
integrated with digital elevation modelling technology
to detect the locations of the TTs [13]–[15].

• Stereo matching-based methods, where a 3D image is
constructed from two different ORS images that are
pointing to the same ground truth location. The main
advantage of these methods is the ability to estimate the
heights of objects surrounding the corridor area. Stereo
matching-based methods depend on the availability of at
least two satellite images from two different observation
perspectives to form the disparity map [16]–[20].

• Object detection-based methods, where a set of image
pre-processing steps need to be applied to detect the TTs
locations and the corridor area. Object-detection based
methods, involves manual setting of a set of filters for
every different type of satellite image which make these
methods ineffective [21], [22].

• Machine learning (ML)-based methods where most of
these studies used ML algorithms for inspecting the
integrity of the TT components and identifying possible
failures from low altitude UAV images [23]–[31].

The automatic vegetation encroachment detection from satel-
lite images have not been adequately studied. In this paper,
we introduced a new automatic technique to monitor the
power line corridor right-of-way from satellite imagery
using the RetinaNet deep learning (DL) model and k-mean
clustering.

II. BACKGROUND
This section provides an overview of the RetinaNet model
and K-mean clustering algorithm.

A. RETINANET
RetinaNet, which is introduced by Lin et al. [32], has been
mainly used to solve image detection and classification

problems. This DL model consists of two stages, as shown
in Figure 1:
• The first stage is the backbone network, which consists
of two components. The first component is the base
convolutional neuron network (CNN), which reduces the
size of the input image through several convolutional
layers from bottom to top to generate the feature map.
Many CNN can be used as a base model for RetinaNet,
such as ResNet 33] VGG [34], and mobileNets [35].
The second component of the backbone network is the
feature pyramid network (FPN) [36], where the last layer
of the CNN will be up-sampled into higher scales from
top to bottom to enable object detection at different sizes.

• The second stage is the prediction network, which con-
sists of two components. The first component is the
classification subnet which takes the combined output
from every level of the FPN and predicts the output class
k corresponding to every anchor A through a fully con-
nected convolutional network (FCN) that has a widthW
and a height H . The second component is the regression
subnet, which also consists of an FCN that takes the
combined output of each level of the FPN and predict
the anchor coordination 4A around the TT.

According to the original work of RetinaNet [32], the
performance of the RetinaNet model was compared with
other single-stage and two-stages state-of-the-art DL mod-
els such as Faster R-CNN+ + + [33], Faster R-CNN with
FPN [36], Faster R-CNN by G-RMI [37], Faster R-CNN
with TDM [38], YOLOv2 [39], SSD513 [40], [41], and
DSSD513 [41], and the best mean average precision (mAP)
achieved by RetinaNet with 59.1%, where the Intersection of
Union (IoU) threshold was 0.5.

B. K-MEAN CLUSTERING
K-mean clustering is an unsupervised ML algorithm. The
main idea behind k-mean clustering is to group different input
data points based on the distance from the nearest centroid
value, where the number of the desired centroids are related
to the value of k . The automatic clustering process begins
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FIGURE 2. Image shows the difference between (a) k-mean clustered image where (k = 5) and (b) is the input image.

by setting an arbitrary centroid value; then, the location is
adjusted so that each group of input data is associated with the
nearest centroid [42]. The same approach also can be used to
group similar neighbor values of image pixels into a unified
pixel value, such as shown in Figure 2.

III. RELATED WORKS
ML algorithms have been implemented in a wide range of
satellite imagery applications, such as land mapping and
object detection [43]–[47]. However, the classification per-
formance of the ML algorithms can be affected by the type of
the extracted features, which can be a challenge in selecting
the most related features. DL algorithms can be used to avoid
this downside by taking the whole image as an input to
the deep neuron network. This technique can automatically
create a feature map through a set of deep CNN layers. The
objects in satellite images are small in size with respect to
the whole image, making objects detection localization in
satellite images a challenging issue for ML algorithms. For
instance, Malof et al. [48] used random forest ML classifier
to detect small-scale solar photovoltaic panels from high-
resolutions satellite images. The authors used a set of image
pre-processing operations after the classification process to
enhance the object detection and localization processes. The
current state-of-the-art DL algorithms can solve both classifi-
cation and localization problems that encouraged the choice
of using DL algorithms for object detection in satellite
imagery.Manyworks on using DLmodels for detecting small
objects from satellite imagery showed promising results. For
instance, Yun Ren et al. [49] have modified the R-CNN DL
model to detect small objects in satellite imagery by reducing
the size of anchors in the region proposal network (RPN) and
adding a single high-level feature by designing a top-down
and skip connection to the R-CNN architecture. The proposed
modified R-CNNmethod achieved an average precision (AP)
of 72.9% in ship detection.

Wang et al. [50] used RetinaNet to detect ships from SAR
imagery. The study compared the performance of different
DL models where the RetinaNet achieved the best mAP of
96.9% in comparison with SSD, Faster R-CNN and FPN.

One of the most used method to detect vegetation activity
from satellite images is the normalized difference vegeta-
tion index where the vegetation observation process depends
on the availability of the NIR band and the red green and
blue (RGB) bands [51]–[53]. However, this method involves
multispectral satellite images.

Several studies used the hue saturation and value (HSV)
color space to directly detect the vegetation activity from the
image pixels without using the multispectral satellite bands.
For instance Hassanein et al. [54] used the hue color value as
a main feature to discriminate between vegetation regions by
utilizing only the RGB values. The proposed segmentation
method achieved a mean accuracy of 87.29%. A similar
study by Xiao et al. [55] proposed a vegetation segmentation
algorithm based on the distribution of the hue channel and
the roughness of the image which depends on the distribution
of the saturation channel, where the proposed algorithm was
able to identify vegetation areas from satellite images.

IV. METHODOLOGY
This section provides details about the proposed vegetation
monitoring system. The monitoring system has been divided
into two parts. The first part includes the TT detection,
TT routing process, and corridor extraction process while
the second part includes the K-mean clustering process.

A. DATASET CREATION AND LABELING
Training a DL model heavily depends on the amount of the
prepared dataset. Ample data is required to ensure that the
model will be able to handle the new cases.

To train, evaluate, and test the RetinaNet model, several
satellite images containing transmission lines were collected
from different sources, such as Google Map, ESRI Imagery,
Google Earth, the Malaysian Space Agency (MYSA) and the
electric transmission and distribution infrastructure imagery
dataset [56]. The RGB color space bands of the dataset have
been extracted and cropped into 1300 × 1300 pixel, where
Figure 3 shows the histogram of the pixel intensity distribu-
tion of the dataset. The histogram distribution shows a very
high values for the green pixels and lower values for red

116722 VOLUME 9, 2021



F. Mahdi Elsiddig Haroun et al.: Detection and Monitoring of Power Line Corridor From Satellite Imagery

FIGURE 3. Histogram distribution of the dataset pixels intensity.

pixels which describes the behavior of the vegetated areas.
The output of the labeling process was 2498 labels, where
2014 labels were extracted for training and 484 labels, were
used for testing. Since the TTs are difficult to be observed
from satellite image, the shadows of TTs are incorporated
with their body structure and labeled as one unit to provide
more information for the CNN.

B. TRAINING
After the labeling process, the RetinaNet model was trained
with the ResNet-152 as a backbone for the CNN. The
ResNet-152 was pretrained using the COCO dataset [57] to
reduce the initial error loss value and the training time. The
training process was performed using Fizyr Keras python
framework [58], [59]. The total training period was about
18 hours and 41 minutes. The number of epochs was 200,
and the minimum error loss was obtained at epoch num-
ber −148. A Graphical Processing Unit (GPU) was used
to accelerate the training process. Table 1 shows the main
specifications and configurations used in the training process,
and Figure 4 shows classification loss, regression loss, and
total loss per epoch. The derivation of the RetinaNet loss can
be described by the following equations [32], [60]:

CE (p, y) =

{
−log (p) , if y = 1
−log (1− p) , otherwise

(1)

where CE is the cross-entropy loss, y is the class output and
p represents the probability of the class where p ∈ [0, 1].
The probability p of the output class y will be 1 for every

positive sample. The same equation in (1) can be rewritten
such as in (2):

pt =

{
p, if y = 1
1− p, otherwise

(2)

where CE (p, y) = CE (pt) = log(pt ).
The final notation of the RetinaNet classification loss is the

focal loss (FL) as described in equation (3):

FL (pt) = −α (1−pt)γ log (pt) (3)

FIGURE 4. The regression loss, classification loss and total loss per epoch
where the total loss is the algebraic summation of the regression and
classification error loss.

TABLE 1. Main training specifications and configurations.

where α is a weight factor which is used to balance the output
class, and γ is a focusing parameter where γ ≥ 0.
On the other hand, the regression loss can be calculated as

follows:

smoothL1 (x) =

{
0.5x2, if |x|< 1
|x| −0.5, otherwise

(4)

Lreg
(
tu, v

)
=

∑
i∈{x,y,w,h}

smoothL1
(
tui −vi

)
(5)

where smoothL1 (x) function was used to reduce the effect
of the outliers, Lreg is the regression loss, tu represent the
prediction of the anchor, v is the required anchor value, and
{x, y,w, h} represents the anchor coordination. The final loss
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FIGURE 5. The proposed monitoring method that consists of three stages: satellite image preprocessing, transmission tower detection and vegetation
encroachment monitoring.

L can be written as follows:

L = FL (pt)+ λLreg
(
tu, v

)
(6)

where λ is the control parameter of the loss balance. The
overall power line monitoring method goes through several
steps as shown in Figure 5. First of all, the size of the input
image should be reduced to an appropriate size. Wherein
this study, all the training and testing samples have been
cropped into less than or equal to 1300 × 1300 pixels. In the
second step, we used the trained RetinaNet model to predict
the locations of the TTs. After the detection process a path
creation algorithm has been used to create a path between
every detected adjacent TTs. Before the monitoring step,
a corridor extraction algorithm has been used to extract the
power line corridor area from the background image.

C. TRANSMISSION TOWER ROUTING AND CORRIDOR
EXTRACTION
The path of the power line can be predicted through the
locations of the TTs especially, when the locations of the TTs
form up a straight line. The purpose of identifying the power
line path is to create a virtual path that describes the trajectory
of the power line as illustrates in Figure 6. This process aimed
to create a visual inspection mechanism that helps to observe
whether the vegetation encroachment form a risk to the power
lines.

Algorithm 1 provides pseudocode of the TT routing pro-
cess, which automatically draws a line through all the TTs in
the image in order to establish the path of the transmission
line. The algorithm starts with the detection process in the
while loop (line 1–4) to produce the bounding box (BB)
coordination, where box [b0, b1, b2, b3] is the coordination
list. The centers of the BB are computed by finding the
middle point (line 2) of the BB. Since the RetinaNet algo-
rithm randomly detects TTs due to the FPN effect, the cen-
ters of all BBs are consequently sorted in ascending order
according to their locations in the image (line 5) starting
from location (0,0) to location (1300,1300). In the last part,
the algorithm will draw lines between every adjacent center
draw_line((centers[i]), (centers[i+ 1])) (line 10). Therefore,
the final path between all TTs in the image will start from

FIGURE 6. The process of creating the path between every adjacent
centers in the image, where p represents the center of the BB.

LISTING 1. TT routing algorithm which draws a line between every
adjacent TT in the satellite image based on the spatial coordination order.
The number of routing lines is n− 1 where n is the total number of
detected TTs in the image.

the location with the least ranked to the highest ranked in
the coordination list. However, if the TTs are closed to each
other or there is a wrong classification of the TT, then the
created path will be affected, and a wrong connection will be
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LISTING 2. Corridor detection algorithm which detects the power line
corridor area by establishing two lines parallel to the routing lines then
drawing a closed surface that isolates the corridor area from the
background image. The distance between the center of the TT and
the parallel lines is m where m can be determined by the user based on
the surrounding environment.

generated. The purpose of the corridor extraction process is
to confine the monitoring process within the corridor area.
The power line corridor detection process is vital to power
line safety. For example, power line corridor detection can be
used to inspect the integrity of the power lines [8].

Algorithm 2 is the pseudocode of the developed corridor
extraction algorithm. The algorithm starts by getting all the
centre points of the TTs (lines 1-3). Then, for every detected
adjacent TTs pair in the image, the algorithm extracts the
center coordination of the adjacent pairs (x1, y1), (x2, y2) and
draws two lines parallel to the routing path (lines 4-11) as

FIGURE 7. Corridor extraction process where (x1, y1) and (x2, y2)
represent the centers of two detected adjacent TTs in the image
(x2−m,y2), (x1−m,y1), (x1+m, y1), and (x2+m, y2) are the contour
coordination, where m is the guard distance.

shown in Figure 7. This aims to make the corridor detection
process dynamic in which the corridor extraction algorithm
can follow any sudden turns in the corridor path. The parallel
lines represent the corridor border where m is the distance
between the centre of the routing path and the surrounding
environment. The distancem value governs by the type of the
surrounding environment and can be predefined by the user.

In order to discover the closed corridor area, the algorithm
draws two parallel lines (lines 12-17) to create a closed
surface as shown in Figure 7. After determining the corridor
area, the algorithm stores all the closed surface points (lines
18-21), sorts the points in a clockwise manner, and draws a
contoured surface around the corridor area (lines 23-26).

This method is valid for all positions except in case if the
centre points reside at the same alignment at 180◦ the image
should be rotate at any positive or negative angle to create an
offset along the x axis.

D. VEGETATION MONITORING
To detect vegetation along the power line corridor, a color
clustering-based technique has been used to distinguish
between high- and low-density vegetation regions. The mon-
itoring process was directly applied after the detection pro-
cess. The proposed monitoring technique depends on the
properties of the HSV color space, where the HSV channels
can differentiate the VE regions. The direct conversion from
RGB to HSV color space, will produce a very sharp colors
in some regions, as shown in Figure 8. Therefore, the k-mean
clustering algorithm was used to reduce the sharp colors by
staging the colors into only five groups.

Experimentally, using visual inspection, we found that the
visual vegetation-dense discrimination will be more precise
when the number of color clusters k = 5 and k = 4. The con-
version from RGB to HSV can be described in the following
equations [63]:

R′ =
R
255

, G′ =
G
255

, B′ =
B
255

(7)
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FIGURE 8. The difference between the direct conversion of the satellite image into HSV color space and the effect of using the
k-mean clustering algorithm to reduce the sharp colors where (a) represents the direct HSV conversion of the satellite image
and (b) represents the k-mean clustering of the HSV image where the number of color clusters (k = 5).

FIGURE 9. An example of the detection result where the proposed detection method was able to identify TTs from satellite image, extract the spatial
coordination noting that the spatial coordination listing not in order, and to identify the transmission line right-of-way.

where R′,G′ and B′ represent a rescaled RGB
range that converts the color range from [0-255]
to [0-1].

Cmax = MAX
(
R′,G′,B′

)
,Cmin= MIN

(
R′,G′,B′

)
1 = Cmax−Cmin (8)

H =



60
◦

×

(
G′−B′

1
mod (6)

)
, Cmax = R′

60
◦

×

(
B′−R′

1
+2
)
, Cmax = G′

60
◦

×

(
R′−G′

1
+4
)
, Cmax = B′

(9)
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S =

 0,1 = 0
1

Cmax
,

1 6= 0 (10)

V = Cmax (11)

V. RESULTS
This section discusses about the evaluation results and the
computation used to find the mAP. The evaluation test cases
are 171 images that contain 484 TTs. The hardware specifi-
cations used in the training process were the same as those
used in the evaluation process.

A. mAP
The mean distribution precision as known mAP is used to
evaluate the performance of the detection model as in equa-
tion (16). The mAP can be calculated using the following
equations (12) – (16) [64]–[66]:

p =
detected items

detected items+ undetected items
(12)

r =
detected items

detected items+ false detected items
(13)

The relation between precision p and the recall r can be
formed in the shape of a curve where the recall accuracy
divided into 11 equal intervals, and the area under the curve
represents the AP as in equation (14):

AP =
1
11

∑
i∈{0,0.1,0.2...,1}

Pinterp (i) (14)

The Pinterp(i) is the interpolation of the precision at the
i instance of the recall where the interpolation can be calcu-
lated as in equation (15).

Pinterp (i) = max r̃·r̃≥rp
(
ĩ
)

(15)

where p(ĩ) is the precision at a given ĩ instance.

mAP =
6N
i=1AP (i)

N
(16)

where N is the total number of given samples and i is the
instance sample.

B. INTERSECTION OF UNION
The IoU is the area shared between the ground truth BB and
the predicted anchor over the total union area, as shown in
equation (17), where A is the ground truth area and B is the
predicted area [67].

IoU =
A ∩ B
A ∪ B

(17)

The accuracy of the detection process depends on the
threshold value of the BB.

TABLE 2. The mAP for different IoU threshold values.

TABLE 3. Comparison between different state-of-art DL models.

C. EVALUATION RESULTS
The evaluation of the TT detection model was performed
on 171 images that contain 484 TTs, where a mAP
of 0.7245 was obtained for IoU ≥0.5 and 0.8521 for
IoU ≥0.3. Table 2 shows the outcome of the mAP and IoU
and. The average inference time was 0.14718 seconds, where
the inference time is the time taken by the hardware to drive
the result of a new sample.

D. DETECTION RESULTS
After evaluating the performance of the TT detection model,
the detection systemwas tested on several new samples where
the system was able to achieve the following, as shown
in Figure 9:

• Identifying the TTs in the image.
• Identifying the transmission line right-of-way.
• Extracting the spatial coordination for every TT in the
image.

The performance of the RetinaNet has been com-
pared with others state-of-the-art deep learning models
such as YOLO, SSD, and Faster R-CNN as shown on
Table 3. All the models were pretrained on the COCO
standard dataset and fine-tuned using the custom TT
dataset.

However, DL accelerators such as GPUs can gen-
erate false hardware error that can propagate to the
software calculations and effect the accuracy of the
model [68].

E. MONITORING RESULTS
The proposed monitoring system has been tested on
several images that contain a power line corridor cross-
ing area. The k-mean clustering of the HSV conver-
sion showed a good ability to discriminate between
high- and low-dense vegetation regions, as shown in
Figure 10.
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FIGURE 10. Examples of the vegetation monitoring results along the power line corridor, where (a) is the direct clustered HSV transformation of the
target satellite image with (k = 5) and (b) is the extracted region of interest.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced a new method of monitoring the
power line corridor through satellite images using RetinaNet
and k-mean clustering algorithms.

The proposed monitoring method can automatically detect
TTs with a mAP of 0.7245 for IoU ≥0.5.
Beside this, the monitoring system able track the power

line where a routing algorithm has been developed to route
all the TTs in the image. In addition to the routing algo-
rithm, an automatic corridor extraction algorithm has been
developed to extract the region of interest. We also have
successfully shown that the monitoring of the VE near the
TTs can be carried out by discriminating between high- with
low low-density vegetation areas using the k-mean clustering
algorithm on the HSV conversion of the satellite image.

This study has some limitations that can be improved in the
future works. The suggested improvements are listed below.

• Improve the mAP by selecting the most related samples
for training, which can also improve the false routing
issue related to the false and miss classifications.

• Improve the routing algorithm to enable parallel line
detection.

• Estimate the vegetation height, which can provide a
better monitoring solution.

• Improve the monitoring method to enable monitoring in
panchromatic satellite images.
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