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ABSTRACT Sparrow search algorithm (SSA) is easy to fall into local convergence and convergence
stagnation. In order to solve these problems, this paper introduced Circle chaos map into the original SSA
to improve its global search ability at the beginning of iteration. Meanwhile, it introduced T-distribution
variation to affect the sparrow population position update rules in different iteration periods. Finally,
we constructed the ‘‘similarity function’’ to measure the ‘‘dispersion’’ of the sparrow population, and
formulated the search rules of the sparrow population under different ‘‘dispersion’’. In order to test the
specific optimization performance of the proposed algorithm, the test results of 54 test functions are
compared with those of 9 other algorithms which are widely used, and then the test results are analyzed using
non-parametric tests in statistics. At the same time, this paper introduces this algorithm into three concrete
engineering test problems for testing. The results of these tests all prove that the proposed algorithm has
stronger global optimization ability and higher convergence precision compared with other algorithms.

INDEX TERMS Sparrow search algorithm, T-distribution variation, circle chaotic map, intrusion detection,
similarity function, adaptive algorithms.

I. INTRODUCTION
In recent years, with the wide application of swarm intelli-
gence optimization algorithms in machine learning, a large
number of bionic intelligent algorithms have been proposed
and studied [1], [2]. For example, ant colony optimiza-
tion (ACO) [3], manta ray foraging optimization (MRFO) [4],
glowworm swarm optimization (GSO) [5], gray wolf opti-
mization (GWO) [6], artificial ecosystem-based optimization
(AEO) [7], shark smell optimization (SSO) [8], flamingo
search algorithm (FSA) [9], and sparrow search algorithm
(SSA). Among them, SSA was proposed in literature [10]
in 2020. This is a new swarm intelligence optimization
algorithm. SSA solves specific optimization problems by
simulating the behavior of sparrows when foraging in nature.
Compared with other intelligent optimization algorithms,
SSA has the characteristics of high search accuracy, fast
convergence speed, good stability and strong robustness [11].
However, SSA is extremely prone to local convergence
and convergence stagnation in the later period of conver-
gence [12]. These problems will directly affect the optimiza-
tion effect of SSA, resulting in the failure to find the global
optimal solution.
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The problem of SSA is also the concern of swarm intel-
ligence optimization technology. Researchers try to influ-
ence the decision in the process of swarm optimization
through mathematical techniques. Literature [13] proposed
an enhanced whale optimization algorithm (EWOA), which
embedding fractional-order chaotic mapping in the search
process of EWOA to improve the search accuracy of EWOA.
Literature [14] proposed a sinusoidal chaotic gravity search
algorithm (SCGSA) as a further step for GSA to get rid of
its locally optimal stagnation. Literature [15] proposed an
evolutionary programming (EP) using mutations based on the
T-probability distribution (TEP). T-probability distributions
can be related to Gaussian and Cauchy probability distribu-
tions. Its variance can be changed by adjusting n degrees
of freedom. Literature [16] proposed an adaptive inverse
inertial non-particle swarm optimization algorithm based on
simulated annealing to solve the problem that the inverse
particle swarm optimization algorithm is easy to fall into local
optimum.

On the improvement of the sparrow search algorithm,
some of the latest studies include: Literature [17] pro-
poses a lens-learning sparrow search algorithm (LLSSA) to
improve the new sparrow search algorithm random and easy
to fall into local optimal defects. In the finder stage, the
algorithm introduces the reverse learning strategy based on
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the lens principle to improve the search range of individ-
ual sparrows, and then proposes the variable spiral search
strategy to make the follower’s search more detailed and
flexible. Finally, the simulated annealing algorithm is used
to determine the optimal solution. Literature [12] proposes
an improved sparrow search algorithm (ISSA) sparrows,
this method USES the center of gravity reverse learning
mechanism to initialization of population, the population has
better spatial distribution, and in the position of the discov-
erer update part introduces learning coefficient, improve the
global search ability of the algorithm. At the same time,
mutation operator is used to improve the sparrow posi-
tion update formula, so as to avoid the local convergence
problem.

Inspired by the literature mentioned above, this paper pro-
poses an adaptive sparrow search algorithm (CSSA) based on
improved Circle chaos mapping, T-distribution variation and
similarity to solve the key problem of local convergence of
group optimization algorithm. Currently the sparrow research
mainly is to solve the problem of local convergence algo-
rithm, the solution of these problems lies in on the sparrow
population of all the sparrow diffusion treatment, but no
specific judgment on whether you need a sparrow diffusion,
in order to solve this problem and combine the character-
istics of the sparrow algorithm itself, this paper constructs
a function to measure the clustering and scattered between
individuals in a population. That is, the ‘‘Similarity function’’
and then select the optimal strategy through the similarity
value. The over-aggregated sparrows were treated with dif-
fusion. The improved Circle chaos map proposed in this
paper was used to deal with the position of the sparrows
with the general aggregation degree, and the T-distribution
variation was used to deal with the position of the remaining
sparrows, while the original position remained unchanged.
This method is mainly used to solve the problem that the
sparrow algorithm is easy to fall into local convergence,
which greatly improves the convergence speed of the algo-
rithm and effectively avoids the problem of convergence
stagnation.

The main structure of this paper is as follows: In Section II,
we describe the basic principles of the original SSA algo-
rithm. In Section III, an improved Circle chaos map and
T-distribution variation are proposed, and how these two
technologies are applied to the SSA algorithm is deduced and
constructed. Finally, the ‘similarity function’’ is constructed
to judge the ‘‘clustering and dispersion’’ of individual spar-
rows. The pseudocode, algorithm flow and computational
complexity of CSSA are also discussed. In Section IV, CSSA
and four optimization algorithms are tested and compared.
Nine benchmark functions with different characteristics are
selected for the test function, and the results are discussed.
In SectionV, we compared CSSAwith the ten latest optimiza-
tion algorithms, and CEC-2015 and CEC-2017 were selected
as the test functions. Finally, Wilcoxon Sign-Rank test was
conducted on the test results. In Section VI and Section VII,
CSSA is introduced into two specific engineering problems

for testing, and the test results of other algorithms are com-
pared. Finally, in Section VIII, we combine CSSA algorithm
with SVM model to construct a CSSA-SVM system, which
is used as a network intrusion detection system. Compared
with other detection systems, this detection system has better
detection accuracy. The above test results all show that CSSA
and SSA can better solve the local convergence problem, so as
to find the global optimal solution.

II. SPARROW SEARCH ALGORITHM
SSA can be simply abstracted into a finder-address-early-
warning model. In a D-dimensional search space, if there
are N sparrows, the position of the first sparrow in the
D-dimensional search space is Xi = [xi1, . . . , xid , . . . , xiD],
where i = 1, 2, . . . , n, xid represents the position of the ith
sparrow in the dth dimension. Finders generally account for
10%-30% of the population. The location update formula is
shown in (1).

x t+1id =

x tid × exp(
−i

α × T
), R2 < ST

x tid + Q× L, R2 ≥ ST
(1)

where, t represents the current iteration number; T is the
maximum number of iterations; Is the uniform random num-
ber between 0 and 1; Q is a random number following the
standard normal distribution; L represents a matrix of size
and elements of 1; R2 ∈ [0,1] and ST ∈ [0.5,1] represent
the warning value and the safety value respectively. When
R2 < ST, the finder can be widely searched; When R2 <

ST, the warning sparrow spots a predator, the finder quickly
moves toward safety.

Equation (2), as shown at the bottom of the next page, is the
update strategy of entrants. All sparrows in this population
that are not finders are entrants. Where: xwtd represents the
sparrow’s worst position in the d dimension when the popula-
tion is iterated in the tth iteration; xbt+1d represents the optimal
position of sparrow in d dimension in the (t + 1) th iteration
of the population.

x t+1id =

xb
t
d + β(x

t
id − xb

t
d ), fi 6= fg

x tid + K
(
x tid − xw

t
d

|fi − fw| + e

)
, fi = fg

(3)

Equation (3) is the updating formula of the position of the
early warning. In a sparrow population, 20% of the sparrows
are generally the early warning sparrows, β representing the
step size control parameters and obeying the normal distribu-
tion random numbers with a mean of 0 and a variance of 1.
K is a random number between -1 to 1, and it is the step size
control parameter; e is a minimal constant; fi is the fitness
value of the ith sparrow, fg and fw are the optimal and theworst
fitness values of the current sparrow population, respectively.
When fi 6= fg, indicates that the sparrow is at the edge of
the population, vulnerable to predator attack. When fi = fg,
indicates that the sparrow will get close to other sparrows in
time.
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FIGURE 1. The distribution interval of the circle map before(a) and
after(b) improvement.

III. ADAPTIVE HYBRID SPARROW ALGORITHM BASED
ON THE CONSTRUCTION OF ‘‘CONVERGENCE AND
DIVERGENCE’’ SIMILARITY
A. IMPROVED CIRCLE CHAOS MAPPING
At present, there have been a large number of studies on the
application of chaotic mapping to the optimization of swarm
intelligence algorithms [18]. Circle map is an excellent map-
ping function with good order, existence and uniqueness [19].
In this paper, the problems existing in the chaos mapping
of Circle are mainly improved, and a new improved Circle
mapping is constructed to enhance its randomness, so that it
can overcome the mapping inequality problems existing in
the chaos mapping of Circle. The original formula of chaos
mapping of Circle is:

Ci+1 = mod(Ci + a− (
b
2π

) sin(2πCi), 1), (4)

where, a and b are both mapping parameters, generally a =
0.2 and b = 0.5 respectively. The distribution diagrams of
sequences generated in 5000 iterations in different intervals
are shown in Fig. 1a:

It can be clearly seen from Fig. 1a that the values formed by
the original Circle map mostly concentrate between 0.2 and
0.6, and their probabilities vary at different values. In order to
enhance its randomness, the original chaotic mapping equa-
tion of Circle is improved in this paper, and a new mapping
function is constructed as follows:

Ci+1 = mod(Ci + a− (
b
4π

) sin(2πCi)− (
b
4π

) cos(2πCi)

+random(0, 1), 1) (5)

where, a and b are parameters, generally a = 0.2, b =
0.5; random(0,1) is a random number between 0 and 1. The
interval distribution diagram of the improved Circle chaotic
map is shown in Fig. 1b. Compared with the original Circle
chaotic map, the distribution is more uniform and the value is
more random. It can be clearly seen from the scatter diagram

FIGURE 2. Distribution scatter diagram(a) and distribution sequence
diagram(b).

(see Fig. 2a) and time sequence diagram (see Fig. 2b) of the
map distribution.

The Circle chaotic map constructed above is introduced
into the sparrow algorithm to ensure the uniformity and
randomness of the sparrow population distribution. Then,
the initial value of the ith dimension of the sparrow is shown
in (6):

xij = lb+ (ub− lb)× Ci (6)

In (6), lb is the lower limit of the search space and ub is
the upper limit of the search space. Then the position of the
sparrow can be obtained by taking the sequence of length D
(D is the dimension of the goal problem).

B. T-DISTRIBUTION VARIATION
Here, this paper introduces the T-distribution in statistics
[20]. T-distribution is a special distribution function, which
contains parameter degree of freedom n. The smaller n is,
the flatter the curve is. Its equation is as follows.

f (x, n) =
0( n+12 )
√
nπ0( n2 )

(1+
x2

n
)−

n+1
2 ,−∞ < x < +∞ (7)

At that time, the T-distribution curve is the Cauchy distri-
bution curve, that is t (n = 1)= C (0,1),C (0,1) is the Cauchy
distribution as shown in (8):

f (x) =
1

π(1+ x2)
,−∞ < x < +∞ (8)

The larger n is, the closer the curve is to the normal
distribution curve. In the case of n → ∞, the T-distribution
curve is approximately a gaussian distribution curve, this
is t(n → ∞) → N (0,1), where N (0,1) is a Gaussian
distribution, as shown in (9):

f (x) =
1
√
2π

exp(
−x2

2
),−∞ < x < +∞ (9)

x t+1id =


Q× exp(

xwtd − x
t
id

i2
), i >

n
2

xbt+1d +
1
D

D∑
d=1

(rand{−1, 1} ×
∣∣∣x tid − xbt+1d

∣∣∣), i ≤
n
2

(2)
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FIGURE 3. Variation of t distribution with different values of n.

In other words, with the change of n value, the distribution
curve of T-distribution will gradually approach to Cauchy
distribution or Gaussian distribution, as shown in Fig. 3. It can
be seen that the Cauchy mutation is more likely than the
Gaussian mutation to produce the next generation points far
away from the parent. According to the unique properties
of T-distribution, this paper proposes the following adaptive
sparrow update strategy based on the number of iterations and
the fitness value of each sparrow:

In this paper, the T-distribution idea is integrated into the
finder update strategy of the sparrow algorithm, as shown in
the following equation.

x t+1id =

x tid · exp(
−i

α × T
), R2 < ST

x tid + t(t)× L, R2 ≥ ST
(10)

In the reconstructed finder update (10), denotation obeys
the T-distribution with T of freedom. When the warning
value is greater than the safety value, the population is more
inclined to search in the form of Cauchy distribution proba-
bility at the early stage of the search, so as to ensure that the
finder, as the sparrow with the better position in the whole
population, increases the local search ability at the later stage
of the iteration, and increases the global search ability at the
early stage of the iteration.

At the same time, this paper improves the renewal strategy
of participants. As shown in (11), if the sparrow’s fitness fi is
greater than the average fitness favg, it means that the sparrow
needs to fly to other locations to search for energy. If the
sparrow’s fitness fi is less than or equal to the average fitness
favg, then the sparrowwill randomly search for a position near
the current optimal position for foraging. At the same time,
this paper introduces the T-distribution and the improved
Circle mapping, namely Ci+1 in (11), so as to increase the
randomness of its value, where, rand {-1,1} represents the
random value -1 or 1, and t(t) represents the T-distribution
with the degree of freedom of t .

After a round of position updating of the whole sparrow
population, T- distribution variation was carried out for some

sparrows with better fitness based on sparrow xoldi,j with better
fitness. The variation formula was as follows: (12).

xnewi,j = xoldi,j + t(n)× x
old
i,j = xoldi,j (1+ t(n)) (12)

where, n is the current number of iterations, and t(n) repre-
sents a T-distribution with n degrees of freedom. Therefore,
in the initial stage of optimizing the algorithm, the above
formula is also inclined to Cauchy distribution variation, and
its variation is more likely to produce the next generation
far away from the parent. When the algorithm enters the
later stage of optimization, the formula will be inclined to
Gaussian distribution variation, and the algorithm will have
good local variation performance.

C. SIMILARITY FUNCTION
This paper constructs a new similarity function based on
cosine similarity and Euclidean similarity. In this paper, a cer-
tain point in the search space is selected as the reference
point to calculate the similarity. That is, under the condition
that the upper limit of the search space is ub and the lower
limit is lb, the coordinate of the reference point determined
is M (ub, ub, . . . , ub) and the coordinate of the edge point is
B (lb, lb, . . . , lb).

Euclidean similarity is derived from the distance formula
between two points in Euclidean space, which measures the
absolute distance between each point in multi-dimensional
space [21]. Given that the position coordinate of the sparrow
is Xi, the Euclidean similarity of this point is as shown in (13).

Di(Xi,M ) =

∥∥Xi − Xj∥∥
‖B−M‖

(13)

Cosine similarity uses the cosine value of the angle
between two vectors in the vector space as the size of the
difference between two individuals [22], which pays more
attention to the difference between two vectors in direction
rather than in distance or length. The cosine similarity after
normalization in the sparrow algorithm is shown in (14).

Ci(Xi,M ) =
1
2
(1−

−→
Xt ·
−→
M

‖Xi‖ · ‖M‖
) (14)

Then, the overall similarity calculation method of the ith
sparrow is shown in (15) and (16).

ρ(xi) =
M∑
j=1

1, Ml ≤
Di
Dj
≤ Mu and Ml ≤

Ci
Cj
≤ Mu

0, otherwise
(15)

d(xi) =
ρ(xi)
M

, i = 1, 2, 3, · · · ,M (16)

In (15), Ml and Mu are the parameters, and the values of
0.85 and 1.15 are the optimal after testing. ρ(xi) is how many
sparrows in the population are in a position similar to the ith
sparrow. When the sparrow and a sparrow are similar in all
dimensions, it is judged that they are similar, and the value is
1; Otherwise, it’s 0. d(xi) is the similarity of the ith sparrow.
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D. ALGORITHM FLOW
Aiming at the problem that the SSA is easy to fall into local
convergence, this paper introduces the improved Circle chaos
map and the improved T-distribution variation, and adds the
similarity function constructed for the SSA to form theCSSA,
which has a strong global optimization ability. The specific
algorithm process is as follows:

Step1: Introduce initial parameters: population size N ,
finder ratio FR, early-warning ratio WR, dimension M
of objective function, maximum number of iterations T ,
upper bound ub and lower bound lb of search range. The
improved Circle chaotic mapping (5) is used to generate N
m-dimensional vectors.

Step2: Initialize sparrow population through (6).
Step3: fi of each sparrow and favg of the average fitness of

the whole population were calculated. Sparrows with the top
FR in the fitness ranking were regarded as finders, and the
rest were considered as participants. Their distribution was
updated according to (10) and (11), as shown at the bottom
of the page, and FR♦N sparrows were randomly selected
to update the positions of early warning sparrows according
to (3).

Step4: If fi > favg, then calculate the similarity value
of each sparrow according to (13)-(16), and calculate the
average similarity value of the whole sparrow population
davg; if di > davg, introduce the chaotic mapping of improved
Circle to diffuse it. If the similarity value of the ith sparrow
is less than the average similarity value (di ≤ davg), then the
t-distribution variation is carried out for it according to (12).

Step5: If fi ≤ favg, keep the sparrows in this part to enter
the next iteration.

Step6: Boundary detection.
Step7: Whether the ending condition is met. No: go to

Step3; Yes: output the optimal sparrow position and the opti-
mal solution.

The algorithm flow chart is shown in Fig. 4.

E. ALGORITHM PSEUDO-CODE
This sub-section shows pseudo-code of CSSA.

F. COMPLEXITY ANALYSIS OF CSSA
This subsection analyzes the complexity of the CSSA. The
time complexity and space complexity of CSSA are described
separately below.

1) TIME COMPLEXITY
Initializing the population takes O(n♦d) time, where n
is the population size and d is the dimension size. The

O(IterMax♦n♦d) time required to find the fitness of each
sparrow, where IterMax is the maximum number of iterations.

2) SPACE COMPLEXITY
The spatial complexity of the CSSA is O(n♦d), where n
is the population size and d is the dimension size, that is,
the maximum amount of space occupied when initializing the
population.

IV. BENCHMARK FUNCTION TESTING
A. SELECTION OF BENCHMARK FUNCTIONS
In order to test the optimization ability of the improved
algorithm in different functions, as well as the feasibility
of the algorithm and the efficiency of optimization, this
paper selects 9 different types of benchmark functions and
carries out simulation on their selection of different dimen-
sions to verify the optimization ability of the algorithm in low
and high dimensional space, as shown in Table 1.

B. EXPERIMENTAL ENVIRONMENT
The experiments in this paper are both carried out on a
computer configured as Intel(R) Core (TM) i7-10750H CPU
@ 2.60GHz 2.59GHz, with a memory size of 16GB and an
operating system of Window10. The code part of the exper-
iment was written, run and tested by Python. The version of
Pythonwas 3.8.3, the development tool PyCharm version was
2020.3.3, and the mapping tool of the benchmark function
was MATLAB, the version was 2018a.

C. IMPROVE THE SSA ALGORITHM TO TEST THE
BENCHMARK FUNCTION
In order to verify the specific optimization performance
of the CSSA constructed above, nine benchmark functions
with different properties were selected in this section to test
them in different dimensions (as shown in Table 1). At the
same time, the popular PSO, GWO, WOA, and SSA before
improvement were selected to optimize the nine benchmark
functions in Table 1. The number of fixed iterations is 200,
and the population is 50. In order to avoid the contingency of
single optimization results, this paper carried out a total of ten
tests, and took the optimal values of these test results, and cal-
culated the average value(see AVG), standard deviation(see
STD), and average running time(see Runtime). Parameter
settings are shown in Table 2.

The test results are shown in Table 3: Through comparison,
it can be found that the CSSA has better optimal value than
the original SSA, GWO, PSO andWOA in terms of algorithm
optimization performance, no matter in low dimensions (F1,
F2, F4, F5, F8, and F9) or in high dimensions (F3, F6, and F7).

x t+1id =


t(t)× exp(

xwtd − x
t
id

i2
), fi > favg

xbt+1d +
1
D

D∑
d=1

(rand{−1, 1} × Ci+1 ×
∣∣∣x tid − xbt+1d

∣∣∣), fi ≤ favg
(11)
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FIGURE 4. CSSA flow chart.

TABLE 1. Selection of benchmark functions.

It performs well in both single-modal functions (F1 and
F2), multi-modal functions (F3, F4, F5, F6, and F7), and
fixed-dimensional functions (F8 and F9), among which the

CSSA for F2, F3, and F4 functions is 2-3 orders of magnitude
better than the original algorithm. On average, F1, F5, F6,
and F7 will reach the optimal value 50-80 iterations ahead

117586 VOLUME 9, 2021



L. Jianhua, W. Zhiheng: Hybrid SSA Based on Constructing Similarity

of the original algorithm, which greatly improves the con-
vergence speed and accuracy of the algorithm. Fig. 5 shows
a line chart comparing the change trend of the optimal
value of the five algorithms in the process of searching for
the optimal function from F1 to F9 by randomly select-
ing one test result out of ten tests conducted by the five
algorithms.

V. TEST OF CEC-2015 AND CEC-2017 TEST FUNCTIONS
In this section, I will test and compare CSSAwith ten popular
swarm intelligence algorithms at the present stage. The test
function set I choose is the CEC-2015 data set and the CEC-
2017 data set. These ten algorithms are as follows: Particle
swarm Optimization (PSO) [23], Whale Optimization Algo-
rithm (WOA) [24], Grey Wolf Optimizer (GWO), Tunicate
Swarm Algorithm (TSA) [25], Butterfly Optimization Algo-
rithm (BOA) [26], Satin bowerbird Optimization (SBO) [27],
Pigeon Inspired Optimization (PIO) [28], Improved Sparrow
Search Algorithm (ISSA), Lens Learning Sparrow Search
Algorithm (LLSSA), and Sparrow search algorithm (SSA).
We conducted non-parametric Test on the Test results, and
the Wilcoxon Sign-Rank Test was selected in this paper. The
results are presented in subsection C.

A. EVALUATION OF IEEE CEC-2015 TEST FUNCTIONS
Table 4 is the CEC-2015 benchmark function set. Parameter
selection of each algorithm in our test is shown in Table 2, the
maximum number of iterations is 1000, the dimension size is
shown in Table 4, and the population number is set to 50.
The test results are shown in Table 6. As can be seen from
Table 6, when testing 9 benchmark functions such as CEC-3,
CEC-5, CEC-6, CEC-8, CEC-9, CEC-11, CEC-12, CEC-13,
and CEC-15, the test results of CSSA are better than those of
the other algorithms. PSO optimizes best when testing func-
tions CEC-3, CEC-4, CEC-7, and CEC-10. Combined with
these test results, CSSA is undoubtedly the best optimization
algorithm.

B. EVALUATION OF IEEE CEC-2017 TEST FUNCTIONS
Table 5 shows the benchmark functions for CEC-2017.
Parameter selection of each algorithm in our test is shown
in Table 2, the maximum number of iterations is 1000,
the dimension size is shown in Table 5, and the popu-
lation number is set to 50. The test results are shown
in Tables 7 and 8. We can see that the test results of 15 of the
30 test functions of CSSA are better than those of the other
four optimization algorithms. These functions are as fol-
lows: CEC-1, CEC-2, CEC-5, CEC-6, CEC-7, CEC-9, CEC-
12, CEC-13, CEC-15, CEC-18, CEC-19, CEC-24, CEC-25,
CEC-27, and CEC-30. PSO has 10 test functions that perform
better than the other algorithms, these functions are: CEC-
10, CEC-14, CEC-16, CEC-17, CEC-20, CEC-21, CEC-23,
CEC-26, CEC-27, and CEC-29. Combined with these test
results, CSSA is undoubtedly the best optimization algo-
rithm.

TABLE 2. Parameter settings.

C. ANALYSIS OF STATISTICAL SIGNIFICANCE
Wilcoxon Signed-Rank Test (WSRT), as a nonparametric
test, can effectively assess statistical significance difference
between two optimizers. The statistical results of WSRT on
45 benchmark functions in 30 runs are presented in Tables 9 to
12, where T+ and T− are calculated and their p-values can
be obtained. ‘‘=’’ indicates the case in which there is no
significance difference between CSSA and its competitor,
‘‘+’’ indicates that CSSA performs worse than the compar-
ison algorithm at the 95% significance level (a = 0.05), and
‘‘−’’ indicates that CSSA performs better than the compar-
ison algorithm. We can clearly see from the table that the
optimization effect of CSSA is obviously better than other
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TABLE 3. Comparison of optimization results of SSA, CSSA, GWO, PSO, and WOA.

TABLE 4. IEEE CEC-2015 benchmark test functions.

algorithms in the whole test function set. Compared with
SSA, ISSA, and LLSSA, the optimization result of CSSA
is obviously a global optimization algorithm. These results
also prove that CSSA can better solve the local convergence
problem.

VI. SPEED REDUCER DESIGN PROBLEM
The main purpose of this engineering design problem is to
minimize the weight of the reducer [29], as shown in Fig. 6.

When dealing with this problem, the following requirements
need to be met [30]: bending stress of the gear teeth, surface
stress, transverse deflections of the shafts, stresses in the
shafts.

The design problem of this project has seven design vari-
ables: face width (b), module of teeth (m), number of teeth in
the pinion (p), length of the first shaft between bearings (l1),
length of the second shaft between bearings (l2), diameter
of first (d1) shafts, and diameter of second shafts (d2). The
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FIGURE 5. Convergent plot (F1-F9).

specific mathematical formula for this engineering design
problem is as follows:

Consider:

−→z = [ z1 z2 z3 z4 z5 z6 z7 ]

= [ b m p l1 l2 d1 d2 ],

Minimize:

f (−→z ) = 0.7854z1z22(3.3333z
2
3 + 14.9334z3 − 43.0934)

−1.508z1(z26 + z
2
7)+ 7.4777(z36 + z

3
7)

+0.7854(z4z26 + z5z
2
7)

Subject to:

g1(
−→z ) =

27

z1z22z3
− 1 ≤ 0, g2(

−→z ) =
397.5

z1z22z
2
3

− 1 ≤ 0,

g3(
−→z ) =

1.93z34
z2z46z3

− 1 ≤ 0, g4(
−→z ) =

1.93z35
z2z47z3

− 1 ≤ 0,

g5(
−→z ) =

[(745(z4
/
z2z3))2 + 16.9× 106]1/2

110z36
− 1 ≤ 0,

g6(
−→z ) =

[(745(z5
/
z2z3))2 + 157.5× 106]1/2

85z37
− 1 ≤ 0,

FIGURE 6. Reducer design problem diagram.

g7(
−→z ) =

z2z3
40
− 1 ≤ 0, g8(

−→z ) =
5z2
z1
− 1 ≤ 0,

g9(
−→z ) =

z1
12z2
− 1 ≤ 0, g10(

−→z ) =
1.5z6 + 1.9

z4
− 1 ≤ 0,

g11(
−→z ) =

1.1z7 + 1.9
z5

− 1 ≤ 0,

where, 2.6 ≤ z1 ≤ 3.6, 0.7 ≤ z2 ≤ 0.8, 17 ≤ z3 ≤ 28, 7.3 ≤
z4 ≤ 8.3, 7.3 ≤ z5 ≤ 8.3, 2.9 ≤ z6 ≤ 3.9, 5.0 ≤ z7 ≤ 5.5.
After testing, the test results are shown in Table 13 and

Fig. 7. The optimal solution of SSA is [3.5459843, 0.7060
7238,17.05650762,7.51461454,8.18743412,3.48360511,
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TABLE 5. IEEE CEC-2017 benchmark test functions.

TABLE 6. AVG and STD deviation of best optimal solution for 30 independent runs on CEC-2015 benchmark test functions.

5.2899798], the corresponding optimal value is 3100.355814.
At the same time, the optimal solution of CSSA is
[3.51058267, 0.70141566,17.02162146,7.48680426,
8.11370926,3.35946343,5.32393441], the corresponding
optimal value is 3045.542 957. It can be clearly seen from
the test results that CSSA’s optimization results are better than
SSA when dealing with reducer design problems.

VII. WELDED BEAM DESIGN PROBLEM
The main purpose of this engineering design problem is to
minimize the manufacturing cost of welded beams, as shown

in Fig. 8. When dealing with this problem, the following
requirements need to be met [16]: shear stress (τ ), bending
stress (θ ) in the beam, buckling load (Pc) on the bar, end
deflection (δ) of the beam.
This project design problem has four design variable:

thickness of weld (h), length of the clamped bar (l), height of
the bar (t), thickness of the bar (b). The specific mathematical
formula for this engineering design problem is as follows:

Consider:

−→z = [ z1 z2 z3 z4 ] = [ h l t b ],
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TABLE 7. AVG and STD deviation of best optimal solution for 30 independent runs on CEC-2017 benchmark test functions (CEC1-CEC15).

TABLE 8. AVG and STD deviation of best optimal solution for 30 independent runs on CEC-2017 benchmark test functions (CEC16-CEC30).

TABLE 9. Statistical comparisons of CSSA vs. PSO, WOA, GWO, TSA, and BOA. (CEC-2015).

Minimize:

f (−→z ) = 1.10471z21z2 + 0.04811z3z4(14.0+ z2),

Subject to:

g1(
−→z ) = τ (−→z )− 13600 ≤ 0,

g2(
−→z ) = σ (−→z )− 30000 ≤ 0,

g3(
−→z ) = δ(−→z )− 0.25 ≤ 0,

g4(
−→z ) = z1 − z4 ≤ 0,

g5(
−→z ) = 6000− Pc(−→z ) ≤ 0,

g6(
−→z ) = 0.125− z1 ≤ 0,

g7(
−→z ) = 0.10471z21 + 0.04811z3z4(14.0+ z2)− 5.0 ≤ 0,

where,

0.1 ≤ z1 ≤ 2, 0.1 ≤ z2 ≤ 10,
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TABLE 10. Statistical comparisons of CSSA vs. SBO, TLBO, PIO, and SSA. (CEC-2015).

TABLE 11. Statistical comparisons of CSSA vs. PSO, WOA, GWO, TSA, and BOA. (CEC-2017).

TABLE 12. Statistical comparisons of CSSA vs. SBO, TLBO, PIO, and SSA. (CEC-2017).

0.1 ≤ z3 ≤ 10.0, 0.1 ≤ z4 ≤ 2.0,

τ (−→z ) =

√
(τ ′)2 + (τ ′′)2 + (lτ ′τ ′′)

/√
0.25(l2 + (h+ t)2),

τ ′ = 6000
/
√
2 hl, σ (

−→z ) = 504000
/
t2b,

δ(−→z ) = 65856000
/
(30× 106)bt3,
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TABLE 13. The comparison between the optimal solution and the optimal
value of the reducer problem.

FIGURE 7. Welded beam design problem.

τ ′′ =
6000(14+ 0.5l)

√
0.25(l2 + (h+ t)2)

2[
√
2hl(l2

/
12+ 0.25(h+ t)2)]

,

Pc(−→z ) =
4.013× 30× 106

√
36× z23z

6
4

14× 14
(1−

z3
28

√
0.625).

After testing, the test results are shown in Table 14 and
Fig. 9. The optimal solution of SSA is [0.13561309,
6.77516019, 9.74777439, 0.18708584], the corresponding
optimal value is 1.96039428. At the same time, the optimal
solution of CSSA is [0.17324276, 4.00413158, 9.793008,
0.18093193], the corresponding optimal value is 1.66751421.
It can be clearly seen from the test results that CSSA is better
than SSA when dealing with the design problems of welded
beams.

FIGURE 8. Welded beam design problem.

TABLE 14. The comparison between the optimal solution and the optimal
value of the welded beam design problem.

FIGURE 9. Convergence curve of welded beam design problem.

VIII. APPLICATION TEST OF CSSA ALGORITHM IN
NETWORK INTRUSION DETECTION
In order to verify the feasibility and improvement of the
CSSA proposed in this paper in practical application, the Sup-
port Vector Machine (SVM) model commonly used in net-
work intrusion detection [31]–[33] was selected in this paper.
The CSSA can be used to solve the parameter optimization
problem of the model, that is, to find the optimal solution of
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TABLE 15. Comparison of SVM optimization results.

FIGURE 10. Distribution of network intrusion detection prediction results.

the parameter C in the SVM model and the parameter g of
the radial basis kernel function. The data source selected in
this section is KDD99 data set, in which there are four main
network attack means: DoS attack, Probe attack, R2L attack,
and U2R attack.

Firstly, the data set was processed. 5000 pieces of data
were randomly selected as the experimental data source in
this section, and the quantitative and normalized processing
was carried out. Then, 20% of the 5000 data sources were
randomly selected as a sub-data set. Meanwhile, in order to
avoid the influence of other uncontrollable factors on the
accuracy of training, this paper adopted ten-fold cross valida-
tion and obtained its average value to obtain the results. At the
same time, this section uses the same method to optimize the
SVMmodel respectively for sparrow search algorithm (SSA)
and genetic algorithm (GA), and finally compares the predic-
tion results of these three models. In this section, the upper
bound of the search space of SSA, GA and CSSA is set as
0.001, the lower bound of the search space is set as 200,
the maximum number of iterations is 20, the dimension is 2,
the crossover rate of GA is 0.8, and the mutation rate is 0.15.
The predicted results are shown in Table 15.

As can be seen fromTable 15, comparedwith GA and SSA,
the overall prediction accuracy of CSSA in the optimized
SVMmodel is 3% higher than that of SSA and 6%higher than
that of GA. In addition, for different attacks, the prediction

accuracy of intrusion detection models built according to this
algorithm has increased to different degrees. From the 10 ran-
domly selected experimental results, the scatter diagram of
the prediction results of the SVMmodel and the actual results
is shown in Fig. 10.

IX. CONCLUSION
This article mainly aims at SSA easy to fall into local optimal
problems, introduces the improved chaotic mapping Circle,
as well as the t distribution variation, and puts forward a
kind of function to measure similarity of sparrow cluster
divergence to improve the original sparrow algorithm. Circle
chaoticmapping canmaximum limit increase the randomness
of the sparrow population distribution, t distribution variation
can satisfy different iterations the sparrow population for
value to update the size of the size, the similarity function can
be used to measure each iteration cycle the sparrow popula-
tion aggregation and dispersion, thereby minimize CSSA in
a local convergence problem. The algorithm is based on dif-
ferent population distribution of adaptive iteration times and
adjust the sparrow position. In order to test the performance of
the algorithm, this paper mainly carries out the following five
experiments: In experiment 1, we mainly test and compare
the existing good algorithm with the test function of the
original SSA and CSSA in the optimization, the experimental
results show that the CSSA can better solve the problem of
local convergence of the original algorithm, at the same time
greatly increases the convergence speed. In Experiment 2,
we tested and compared CSSAwith ten other latest optimiza-
tion algorithms. CEC-2015 and CEC-2017 were selected as
Test function sets, and Wilcoxon Sign-Rank Test was used.
In experiment 3 and experiment 4, we used CSSA and SSA to
optimize problem reducer design problem and welded beam
design problem. The experimental results show that the test
results of CSSA are better than that of SSA, because CSSA
has a strong global optimization capability. In Experiment 5,
we applied CSSA to the network intrusion detection model
and constructed the CSSA-SVM model. The experimental
results show that the CSSA-SVMmodel has higher prediction
accuracy, which verifies the feasibility of the algorithm in
practical application. These experimental results show that
CSSA has been able to greatly solve the local convergence
problem and is an optimization algorithm with local and
global optimization ability.

Even though CSSA has a strong performance and perfor-
mance in the optimization performance, it has a relatively
obvious improvement on the original SSA algorithm, but
there is also a certain direction of improvement, that is,
the running cost of CSSA algorithm is also increased com-
pared with SSA, which will be one of the directions for
the next improvement. In addition to that, the application of
CSSA in specific practical projects still needs further research
and verification, which will also be the main direction of
future improvement and development.
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