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ABSTRACT We are witnessing the evolution from Internet of Things (IoT) to Internet of Vehicles (IoV).
Internet connected vehicles can sense, communicate, analyze and make decisions. Rich vehicle-related data
collection allows to apply artificial intelligence (AI) such as machine learning and deep learning (DL)
to develop advanced services in Intelligent Transportation Systems (ITS). However, AI/DL-based ITS
applications require intensive computation, both for model training and deployment. The exploitation of the
huge computational power obtained through aggregation of resources present in individual vehicles and ITS
infrastructure brings an efficient solution. In this work, oneVFC, a tangible vehicular fog computing (VFC)
platform based on oneM2M is proposed. It benefits from the oneM2M standard to facilitate interoperability
as well as hierarchical resource organization. oneVFC manages the distributed resources, orchestrates
information flows and computing tasks on vehicle fog nodes and feeds back results to the application users.
On a lab scale model consisting of Raspberry Pi modules and laptops, we demonstrate how oneVFCmanages
the AI-driven applications running on various machines and how it succeeds in significantly reducing
application processing time, especially in cases with high workload or with requests arriving at high pace.
We also show how oneVFC facilitates the deployment of AI model training in Federated Learning (FL),
an advanced privacy preserving and communication saving training approach. Our experiments deployed in
an outdoor environment with mobile fog nodes participating in the computation jobs confirm the feasibility
of oneVFC for IoV environments whenever the communication links among fog nodes are guaranteed by
V2X technology.

INDEX TERMS Artificial intelligence, deep learning, cooperative computing, interoperability, Internet of
Things, Internet of Vehicles, oneM2M.

I. INTRODUCTION
The number of vehicles used worldwide is expected to rise
from one billion in 2010 to two billion in 2030. Vehicles have
become sensor platforms able to sense, communicate, ana-
lyze, and make decision [1], [2]. Internet of Vehicles (IoV),
a network allowing data and information exchange among
vehicles, things such as roadside infrastructure, humans, and
the environment is becoming a reality thanks to Vehicle to
Everything (V2X) technology which is based on two pillars
being 5G-LTE and Dedicated Short-Range Communications
(DSRC) [3]. Those intelligent vehicles and networks give rise
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to Intelligent Transportation Systems (ITSs), providing ser-
vices like forward accident alarms, collision avoidance, traf-
fic congestion mitigation, platoon of vehicles, autonomous
driving vehicles, etc.

Advanced ITS services are Artificial Intelligence
(AI)-based applications whose efficiency is enhanced by rich
data collection in the IoV environment [4]. Vehicle-related
data obtained from sensors in vehicles, Global Positioning
Systems (GPSs), electronic toll tags, vehicle On Board Units
(OBUs) rapidly increase in volume and variety. ITS data are
also collected from other sources, like ITS infrastructures
such as loop detectors, infra-red sensors, ultrasonic sen-
sors, and closed-circuit television (CCTV) cameras, travelers
(who use web browsers, mobile apps, social networks).
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Such complex and abundant data resources help to train
AI models with better accuracy. AI-based applications
require rich data sets and intensive computation, both in
training and deployment phase.

Previously, cloud computing played amajor role in big data
analytic platforms. However, the uploading of huge amounts
of data to the cloud, together with the advent of latency sensi-
tive services make fog computing which ‘‘extends the cloud
computing to the edge’’, a welcome or mandatory exten-
sion [5]–[8]. Distributed and parallel processing at the net-
work edge can provide local view-based analytics, lower data
and service delivery latencies, and enhanced data privacy.
It can be a perfect choice for the heterogeneous, dynamic,
distributed IoV environment. However, as computing and
communication workload for ITS services varies over time
and location, capacity planning of fog nodes is a challenge.
To enhance resource utilization efficiency, vehicular fog com-
puting (VFC) is created to exploit a huge computational
power through aggregation of individual vehicles’ resources
and other devices in the ITS infrastructure [9], [10]. The feasi-
bility of leveraging computing and communication resources
of slowly moving cars in cross-section regions or of parked
cars for supporting advanced vehicular applications has been
investigated.

Various deployment scenarios of VFC have been studied.
In those scenarios, the fog nodes can be computing devices
installed in buses or taxis that process data being offloaded
from client vehicles, when those buses or taxis are travel-
ling alongside those clients [6], [11]. The fog nodes can
also be parked vehicles that take the role of static backbone
nodes for fog computing. They can also be vehicles stuck in
traffic congestion that form a cluster or computing devices
combined with V2X Road Side Units (RSUs). The mobility
of vehicles can be leveraged as an effective way of orga-
nizing computing resource migration [12]. Other research
focuses on task assignment and resource allocation, which
are essential concerns in shared resource environments. The
studies in [13]–[16], show how to assign computing tasks
to be parallelly computed by a set of vehicular fog nodes
to satisfy objectives related to quality of service such as
latency, image/video resolution under constraints related to
communication bandwidth, computation capability and
energy consumption of these nodes. In [17]–[19], a contract-
or auction-based approach is applied to stipulate or negotiate
the provided resources together with the benefits obtained in
terms of parking fee reduction when leveraging the comput-
ing units of parked cars.

In this paper, our aim is to realize the management of
parallel service computations on various computing devices
installed in vehicles. The platform, named oneVFC, adopts
the 3-layer VFC architecture in which the role of manage-
ment and orchestration is taken up by the fog layer [20].
We propose a hierarchical structure including fog manager
nodes and fog worker nodes. The manager nodes can be seen
as fixed nodes like V2X-RSUs, whereas the fog worker nodes
are vehicle OBUs. Amanager node will manage the available

computing resources of the worker nodes in its neighborhood
and will direct computing tasks to them according to a task
assignment algorithm. This algorithm will realize specified
objectives, such as minimizing the serving processing time.

We propose to use the oneM2M standard for creating
the oneVFC platform. oneM2M is an IoT middleware stan-
dard for realizing interoperability between heterogeneous
Machine toMachine (M2M)/Internet of Things (IoT) systems
active in different service domains, such as smart transporta-
tion, smart city, smart health etc. It is increasingly used in
commercial deployments [21]. oneM2M is a joint effort of
eight national and international standard organizations, and
has more than 200 members including national telecom com-
panies (telcos). Various big telcos have deployed oneM2M
commercial platforms [22].

The choice of oneM2M is motivated as follows.
Firstly, a oneM2M-based architecture for the VFC platform
will facilitate the integration of already existing ITS systems,
e.g., electronic toll collection systems, traffic lights, city park-
ing systems, CCTV cameras, which are often deployed using
different protocol families. Secondly, the physical nodes like
vehicle OBU, V2X-RSUs, and the information exchange
among nodes can be represented as resources accessible
through the publish/subscribe mechanism. A oneM2M node
can support more than one underlying network interface,
among which innovative technologies that allow high band-
width and low latency communication in V2X. For vehicle
OBUs, both DSRC and 5G enable parallel Vehicle to Vehicle
(V2V) and Vehicle to Infrastructure (V2I) communications.
Based on the required Quality of Service (QoS), traffic
belonging to a certain application may use DSRC network
while other traffic will use a 5G network.

We decompose the aggregated service flows of AI-based
applications into several ‘‘operation primitives’’ that can be
used to orchestrate the computing workloads distributed over
various available computing resources. Then, we propose a
communication and a computation management scheme that
can be used to optimize task assignment and resource alloca-
tion, considering the constraints of node capacity and avail-
ability since most of the computation devices are installed in
personal cars.

We evaluate the proposed oneVFC platform on a lab
scale testbed, for managing the deployment of AI-based
applications on various machines. A significant reduction of
application processing time, especially for high workloads,
or for service requests arriving at high pace is obtained.
The oneVFC platform also facilitates the deployment of
AI model training in the Federated Learning approach. The
data message structure and procedures in oneVFC allow to
monitor the operation states of each computing node and
to support adaptive task assignment and resource allocation.
Deploying oneVFC on a testbed setup in university’s out-
door parking space demonstrates its efficiency for manag-
ing computing units attached to travelling vehicles that take
computation jobs to lower overall service processing time.
The benefits brought by the oneVFC platform for distributing
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computation over various fixed and mobile fog worker nodes
are confirmed, and those benefits will be increased with the
availability of DSRC’s and 5G’s data rates.

The paper is structured as follows. Section II presents
our analysis of ITS applications and the challenges of VFC
deployment in IoV environments. Section III examines the
details of the oneVFC architecture, paying particular attention
to the reasons for choosing the oneM2M standard for the VFC
platform, and to the oneM2M based functional structure of
manager fog nodes and worker fog nodes. Section IV shows
the resources and procedures to manage information/data
flows by using service primitives of the oneM2M standard.
In section V, the model of task assignment and resource allo-
cation is proposed and the applicability of a particle swarm
optimization algorithm for task assignment to worker nodes
is discussed. Section VI presents two use cases for evaluating
oneVFC on the available testbeds. The final section draws a
conclusion and discusses future work.

II. VEHICULAR FOG COMPUTING ARCHITECTURE
FOR AI- BASED APPLICATIONS
The AI-based services process huge amounts of data gen-
erated by CCTV cameras installed along the roads in com-
bination with data from sensors, cameras on vehicles. The
service outcomes are announced to data/service users and
to on-road vehicles. Recently, Deep Learning (DL) models,
e.g., Yolo (You Only Look Once) [23], Convolutional Neural
Networks (CNN) and their variations [24], arewidely used for
object detection [25]. DL model-based programs can detect
cars, trucks, buses, people, etc., according to the defined
object classes in the model. They become the main compo-
nents for vision-based applications in many fields including
traffic congestion detection and management, autonomous
vehicle safety, etc. Deep Learning models require a large
dataset and high computational demands for training the
models, as well as high computational efforts for their
real-time execution on bundles of collected images. Note that
deep learning is a sub-set of machine learning, and machine
learning is a subset of AI.

Generally, AI/DL-based ITS applications generate two
types of computing services requests being:

1) AI-based model exploitation: this involves the real time
application of AI/DL algorithms or other techniques on
collected data from the surroundings to solve actual
problems in traffic management, road safety, etc. . .
A timely response must be extracted from the rich
dataset. It can be beneficial to split the data in smaller
pieces that each can be processed by other edge devices.
Hence, parallel data processing at various vehicular
fog nodes could shorten the service response time.

2) AImodel training: predictivemodel training, especially
with DL algorithms, requires intensive computation
and data storage, and is usually performed in the cloud
using popular tools such as Google Colab, Kaggle,
and Azure Notebooks [26], [27]. As the demand
for training has grown faster than the increase in

computing resources, distributing the computation
across multiple machines has become mandatory.
In addition to distributed learning, a new distributed
training approach, named Federated Learning (FL),
is being studied intensively [28]. In FL, the global
model can be found by aggregating the locally trained
models. Those local models are trained with local
data sets at local devices. To preserve data privacy,
only model parameters, instead of data, are exchanged.
In both distributed learning and federated learning, par-
allel model training on various machines will increase
communication efficiency and data privacy.

To satisfy the rising demands for AI-based ITS applica-
tions, VFC is created to exploit a huge computational power
through the resource aggregation of individual vehicles and
other devices in the ITS infrastructure. The architecture of
VFC follows a hierarchical 3-layer functional architecture
consisting of device layer, fog layer and cloud layer as
shown in Fig.1. The device layer includes ‘data owners’
being devices equipped with sensors/ actuators, that collect
raw data of any kind and it also includes ‘data users’ being
end-user devices that generate service requests. The cloud
layer consists of local system servers and has a connection
to the Internet cloud. The local servers are mainly used to
store large amounts of raw or processed data for further
analysis and are occasionally used to process instant services.
The middle layer or fog layer consists of mini local servers
attached to cellular-based base station (BTS) units or RSUs of
DSRC, fixed fog nodes. Another kind of nodes in the fog layer
are OBUs on vehicles which are mobile fog nodes. The fog
layer will perform computation tasks for services that need
instant response to service requests from data users.

FIGURE 1. 3-layer architecture of Vehicle Fog Computing in Internet of
Vehicles environment.

VFC must deal with sophisticated orchestration of hetero-
geneous resources considering their availability fluctuation
due to resource mobility. Fog nodes may arbitrarily join
or leave and offer variable communication quality in terms
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of bandwidth and reliability. Moreover, the interconnections
among fog nodes, data owners and data users are based
on heterogeneous transmission technologies and protocols.
As such, VFC’s architectural design must meet the following
requirements:

- Connect, interoperate, and monitor heterogeneous
resources,

- Manage the availability of distributed resources for effi-
cient usage,

- Orchestrate the information flows from data owners,
the computing tasks on fog nodes as well as the feedback
to data users.

In the following sections, we will analyze the suitability
of oneM2M for realizing the VFC platform. We will provide
the detailed design of oneM2M functions and services to
build VFC functions, including the management of devices,
resources, services, and data.

III. ONEM2M BASED ARCHITECTURE FOR VFC
A. WHY IS oneM2M SUITED FOR VFC IN
IoV ENVIRONMENTS?
oneM2M is an IoT middleware standard for interoperabil-
ity of heterogeneous M2M/IoT systems in different IoT
service domains, such as smart transportation, smart city,
and it is increasingly used in commercial deployments [21].
It supports a rich set of Application Programming Inter-
faces (APIs) for data exchange among things, machines,
humans. The role of a middleware in IoT/IoV networking
system is to provide storage and information processing ser-
vices. A oneM2M-based architecture for VFC platform will
facilitate the integration of already existing ITS systems, and
leverage various authentication and authorization schemes,
an important asset for providing a secure system [29].

oneM2M has classified five types of nodes, including
infrastructure nodes (INs), middle nodes (MNs), application
service nodes (ASNs), application dedicated nodes (ADNs)
and non-oneM2M device nodes (NoDNs). A node’s func-
tions are classified into three layers, namely, the applica-
tion layer, common service layer and network service layer;
but not every node has all layers. Each layer has its own
entities:

- application entities (AEs) stand for the applications in
devices, gateways, or servers, containing the business
logic of service applications,

- common service entity (CSE) is a set of common service
functions for M2M/IoT services, allowing messages to
be communicated coherently, regardless of the underly-
ing network layer,

- network service entities (NSEs) are the underlying net-
work services that are available for the CSE.

It defines two domains being the infrastructure and field
domain. INs reside in the infrastructure domain while the
field domain contains the other types. INs correspond
to cloud platforms or servers of the application system,
MNs can be field gateways which usually have sufficient

resources and support both field protocols and IoT protocols.
ASNs or ADNs can be smart objects or on-vehicle devices,
both supporting general IoT protocols. ASNs are differ-
ent from ADNs in two aspects. ASNs should have suffi-
ciently rich resources, but ADNs have constrained resources.
ASNs can relay information to other ASNs or ADNs, but
ADNs cannot. Due to that, an ASN contains all AE and CSE
layers whereas an ADN has only an AE layer. NoDNs cor-
respond to sensors and actuators attached devices for which
protocol conversion via gateway (MN) is required to join a
oneM2M-based IoV.

oneM2M adopts the Resource Oriented Architec-
ture (ROA) model, where all devices and related infor-
mation can be handled as resources using a hierarchical
structure. A resource, a uniquely addressed entity, can be
transferred and manipulated using create, read, update and
delete (CRUD), basic operations of RESTful architecture.
Access to a resource is allowed by using different types
of Common Service Functions (CSF), like Subscription
and Notification, Discovery (probably with some predefined
criteria for filtering). Any function/service in oneM2M is
implemented as resource and procedure. A resource can be
the data themselves, e.g., text files, images, energy level
of a physical device, as well as the monitored states of an
executed process/task, like execution time, completion time,
etc. It enables a flexible representation for a wide range of
data or information.

A oneM2M-based system has a tree-based architec-
ture rooted at the infrastructure node.Information exchange
between two M2M nodes will use the transport and con-
nectivity services of the underlying networks. The routing
information of a CSE, CSE-Point of Access (PoA), will
depend on the characteristics of the underlying networks and
will be provided by the CSE at the registration phase. The
CSE-PoA is considered equivalent to the routable addresses
of the targeted CSE. Besides, a oneM2M node can have
more than one underlying network such as a low latency
DSRC or 5G for outdoor environments, or a mmWAVE for
indoors. For example, on vehicle OBUs, both DSRC, 5G are
used to enable parallel V2V and V2I communications [30].
Multiple transportation networks can be used simultaneously
to route QoS-differentiated traffic. The multiple differenti-
ated CSE-PoAs will be defined during the development and
implementation process.

IoT middleware platforms are classified into several inter-
operability, technical, syntactic and semantic levels [31].
Whereas oneM2M’s focus is on technical and protocol inter-
operability with some efforts to tackle semantic interoper-
ability, FIWARE, Oracle Fusion, Azure IoT, Amazon Web
Services (AWS) [22], [32] are more focused on data mod-
els providing a semantic interoperability framework so that
applications and services may easily consume information
and/or trigger actions in various systems, including oneM2M-
based IoT systems [31]. They are cloud-based platforms
which do not fit into VFC in which data processing services
are performed at edge nodes. However, they can be seen
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FIGURE 2. oneM2M based architecture for Vehicular Fog Computing in Internet of Vehicles environment.

as layers above the oneM2M-based systems to provide pro-
cessed data results for use in a wide range of applications.

Previously, oneM2M has been studied to set up a fog
channel for data exchange between two fixed fog nodes. The
data channel is based on another protocol that can help to
deliver datamore quickly [33]. In our work, several data chan-
nels between the data owner and several worker nodes are
established in parallel and are coordinated to obtain service
results which are submitted to the fog manager.

B. oneVFC – oneM2M BASED ARCHITECTURE
The 3-layer VFC architecture is hierarchical. Various com-
puting resource nodes probably in multi-hop communica-
tion fashion, are rooted to an access gateway (cellular-based
BTS unit or DSRC RSU) as shown in Fig. 1. The hier-
archical architecture of the proposed oneVFC is a scal-
able structure, and appropriate for local view-based data
analytics in ITS systems. The access gateways are called

fog manager nodes, and computing devices on vehicles are
called fog worker nodes. A fog manager node is responsible
for managing worker nodes in a given geographical area. The
management of computation and communication resources,
the task assignment and resource allocation are performed
by the fog manager nodes. The worker nodes perform the
computation jobs which are assigned by the manager nodes.
Some worker nodes can relay information back and forth
between the manager and the worker nodes. However, task
deployment on far-away worker nodes is only suitable for
delay tolerant services.

The VFC structure shows similarities with the architec-
ture of oneM2M in which a middle node (MN) can manage
many end-devices (ASNs or ADNs) under its responsibil-
ity, while the system server at cloud layer can act as IN.
As shown in Fig. 2, we present a oneM2M-based architecture
for the VFC platform. In this architecture, a fog manager
node takes the role of MN. Vehicular computing nodes, fog
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worker nodes, can be set up as ASNs. Since an ASN has a
CSE layer, containing service functions for messages being
exchanged among oneM2M nodes, a fog worker node can
communicate control and data messages. Hence, a computing
device attached to a bus can take the role of ASN since it
travels regularly along some specified routes helping to fill
the connectivity gap (by relaying information/data) in vehicle
networks as well as to execute computation jobs.

Other end devices like cameras, traffic lights or IoT-based
data collection systems are connected to the gateway-MN
as ADNs or NoDNs to provide data for AI-based big data
analytic applications. Fig. 2 presents the oneM2M-based
functional structures of roadside gateways, computing
devices on vehicles, data users like smartphone users, and
data owners/generators like cameras, sensors, actuators in
ITS applications.

Maintaining the communication links between any pair
of nodes is the responsibility of the underlying networks
which can be DSRC or 5G networks. To reduce the
transmission latency, a fog manager node should be attached
to a DSRC-RSU or a 5G BTS.

IV. RESOURCES AND PROCEDURES FOR DISTRIBUTED
TASK COMPUTATION MANAGEMENT
In general, compute service requests can come from any node
but only the manager node is able to process the service
request to assign subtasks to a number of fog worker nodes
and to return the aggregated results to the data user who
requested the service. From now on, the term ‘‘service’’ and
‘‘task’’ are used interchangeably. A service request process-
ing procedure is composed of 4 steps:

- Step 1: a data user requests a service to the manager.
- Step 2: the manager processes the service request by

◦ Assigning subtasks to worker nodes: the manager
will find the list of suitable computing nodes for
doing the requested job. Note that this sub-step
is optional if the computing service needs to be
efficiently divided into subtasks for various worker
nodes. In some applications, the group of worker
nodes is known from the business logic of the appli-
cation, e.g. in distributed learning or FL approach
for AI-model training.

◦ Sending notification to workers: the manager sends
notifications to worker nodes about the data and the
execution program.

- Step 3: the workers download the data, execute the com-
putation task, and send back the results to the manager
node. The data can be images, sensor-based measure-
ments, or text files representing the AI model parame-
ters, which are all considered input parameters for the
computation task.

- Step 4: the manager aggregates the results and sends this
aggregation to the data user who requested the service.

We design an AE-MANAGE, located at the manager node,
to perform service allocation and coordination of multiple

subtasks. We design an AE-COMPUTE at every worker node
to call the specified service application programs whenever
the information about the service is received at the worker
node. The flow of control and data messages between man-
ager and workers will be supported by the CSE layer in these
nodes. Fig. 3 depicts the AEs and containers inside each
manager’s CSE and worker’s CSE. We propose the following
containers in the CSE layer:

FIGURE 3. Resource trees in a manager node (left) and a worker node
(right) consist of the essential containers for task execution and
management, and for worker node resource monitoring.

- CNT-SERVICE: It is responsible for service-related
information exchange. It receives the service requests
from and feedback results to end users requesting
services.

- CNT-MONITOR: It is responsible for updating the
worker states to the manager, e.g., CPU, RAM, energy
available or a kind of their representation in terms of
time processing.

- CNT-EXECUTION: It is responsible for sending com-
mands and data to the application programs at theworker
nodes and sending back the obtained sub-results from
the worker to the manager.

- CNT-DATA: It is used for data storage.
The operation of a worker node contains two phases: the

initial (registration) phase and the computation phase. In the
initial phase, the workers-CSE must successfully register to
the manager-CSE to notify the manager about the work-
ers’ states. After registration, the manager AE-MANAGE
will subscribe to all needed containers in the worker-CSEs
(SERVICE, MONITOR, EXECUTION) through the pub-
lish/subscribe mechanism. Hence, whenever a container’s
content changes (e.g., service requests/responses, execution
requests/responses, worker node states), notifications are sent
to the AE-MANAGE for the purpose of task allocation
and subtasks coordination. The worker AE-COMPUTE will
subscribe to the CNT-EXECUTION at its CSE that it will
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FIGURE 4. The procedures of manager node and worker nodes exchanging control/data messages to divide the computation job of a service request in
subtasks and to execute the sub-service programs at worker nodes to minimize the service processing time.

be notified about the subtask data and subtask application
program.

In the computation phase, a 4-step procedure is acti-
vated whenever a service request arrives. In this procedure,
the manager and worker nodes exchange control and data
messages and execute the sub-service programs at worker
nodes. As shown in Fig. 4, the four steps are the following:

- the manager AE-MANAGE receives the notification
about a service request from a data user AE. Based on
that, it will either extract the payload or execute the task
assignment and resource allocation (TARA) module to
find the list of candidate computing nodes to process
the subtasks and the corresponding subtask workloads.
This information is sent to the data owner for data
preparation.

- the manager AE-MANAGE sends to such a group
of worker nodes the notifications including the data
resources and the execution program resources.

- the worker AE-COMPUTE receives notifications and
reads the information on the required resources for its
part of the application program execution and calls the
service program. The worker node can download the
data from the data owner if needed.

- the worker-AE-COMPUTE executes the applica-
tion program. After completion of computation job,
the worker nodes notify the results to the manager-
AE-MANAGE through the CNT-EXECUTION-response.

Multiple types of services addressed by pairs of serv_ID
and source_ID can be processed at the AE-MANAGE.

To load data for a computation job, a worker AE-COMPUTE
can use a discovery mechanism with the universal resource
indicator (URI) link being provided by the manager-AE-
MANAGE. Our platform supports two different kinds of data
transfer: i) data can be piggybacked in oneM2M packets,
ii) data link resources are posted in oneM2M packets, and
the receivers download the data through other protocols.

The CNT-MONITOR regularly monitors the worker
node’s state and will communicate updates to the manager-
AE-MANAGE through the publish/subscribe mechanism.
Node state includes RAM, CPU, energy level, current pro-
cessing workload, service processing time, etc. Each worker
node has its own policies for sharing its resources when
joining the oneVFC platform. TheMONITOR containers will
make the resource capability information available to the task
assignment and resource allocation (TARA) algorithm.

The TARA algorithm is executed every time the manager
node receives a new service request. The TARA execution
results in the subtask assignments to a group of the worker
nodes. The assignments are adapted to the status of worker
nodes, e.g., the availability of nodes for a group of speci-
fied services, the workload being processed, the node con-
figuration (such as CPU speed, RAM) etc., as well as to
the target being pursued with regard to service processing
latency, energy consumption, etc. Different resource allo-
cation approaches proposed in literature can be adopted in
the TARA algorithm. In the following section, we propose
a system model of task assignment and resource allocation
to minimize service processing latency subject to the limited
computing resources.
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V. TASK ASSIGNMENT AND RESOURCE
ALLOCATION (TARA)
A. SYSTEM MODEL FOR TASK ASSIGNMENT AND
RESOURCE ALLOCATION (TARA)
A fog manager node will ‘‘manage’’ a set of comput-
ing resources called worker nodes, denoted by R. Those
worker nodes have previously registered to the fog man-
ager. The number of available worker nodes in R can vary
because the manager must filter out worker nodes which
are no longer available. The manager node will know that
through regular updates on the status of worker nodes
in R. The manager will try to use the available computa-
tion resources of the worker nodes under its supervision
(nodes in R) to minimize the requested service processing
time.

A data user k can request to the fog manager node to
execute an aggregated task defined as a bundle of data Wk
and a specified job to work on that data. Note that the service
requesting node can be one of the worker nodes. The bundle
of data can be subdivided to be processed in parallel at several
nodes. Alternatively, the task can be divided into smaller
subtasks {wki = pkiWk} to be handled by the set of worker
nodes R = {ni} managed by the manager node, and then the
result will be aggregated by the manager and returned to
the original requesting node k . Hence, the set {pki} rep-
resents the partitions of the bundle of data requested by
node k , which will be processed by the set of worker
nodes {ni}.
The subservice completion time at node i, called tki, will

consist of three components,

tki = tkitrans + t
ki
proc + t

ki
result , (1)

in which,
- tkitrans, denotes the workload transmission delay, is the
time to relay data from the data owner k to the worker
node i.

- tkiproc, denotes the subtask processing delay, is the time to
process the task at the worker node i.

- tkiresult , denotes the result response transmission delay,
is the time to transfer the output analysis results to the
manager or the node that requested the service.

The system performance will depend on the system config-
urations, e.g., bandwidth of transmission link for data/result
transmission, the CPU speed, RAM storage, etc. of the com-
puting resource. These relationships are formulated in the
following analysis.
(1) The subtask workload transmission time

tkitrans =
pkiWk

Bki
(2)

The time needed for data of a subtask to be transferred from
data owner k to worker node i is the ratio of the amount of
data of the subtask and the transmission rate between the two
nodes. The node k can also perform the entire task, then i = k ,
Bki = ∞ so tkitrans = 0.

(2) The subtask computation time

tkiproc =
pkiWk

fi
+ τki

Ni
fi

(3)

Here, piWk
fi

represents the processing time of wki (which

equals piWk ) data at node iwith fi being the processing speed.
At any given time, node i may still be processing a certain
amount of data of the previously assigned task, denoted byNi,
for that the processing time is calculated by τki

Ni
fi
, where

τki can be 0 or 1. If τki = 1, there is a task previously
scheduled and currently executed on node i. Then, the subtask
computation time will include both the processing time of the
newly assigned task and the task being processed. τki = 0
means there is no previous task. Hence the newly assigned
task from node k can be processed immediately.
(3) The sub result transmission time

tkiresult =
Rik
Bik

(4)

After the subtask is completed, nodes iwill send the results
back to node k which is the node that originally executed the
service request. This delay is calculated by the ratio of the
message size Rik and the transmission rate Bik between two
nodes.
(4) The subtask completion time

Therefore, the completion time of a subtask requested by
node k to be performed by node i can be analytically pre-
sented as follows:

tki =
pkiWk

Bki
+

(
pkiWk

fi
+ τi

Ni
fi

)
+
Rki
Bik

(5)

Whenever the manager node receives the service request
with an amount of Wk workload, the TARA module is exe-
cuted to find out the number of subtasks, the subtasks’ work-
load, and the list of suitable worker nodes. The subtasks are
performed independently, mostly in parallel, the completion
time of the service requested by node k is determined as
follows:

tk = max (tk1, tk2, . . . , tkn) (6)

TARA, which has an objective the minimization of service
processing time yields the following min-max optimization
problem:

min (max (t1, t2, . . . , tn)) , (7)

Under the following constraints:∑n

i=1
pki = 1 (8)

pkiWk ≤
Wk +

∑n
j=1 Nj

n
(9)

pkiWk ≥ αWk (10)

Constraint (8) is needed to ensure that the whole data bun-
dle will be processed. The constraint in (9) is to avoid sending
too much workload to a certain node leading to overload or

VOLUME 9, 2021 117463



K.-H. Phung et al.: oneVFC—VFC Platform for AI in IoV

unbalance.We recommend the size of a subtask to be less than
or equal to the average size of all tasks in the network. Note
that, the fog manager node regularly monitors the currently
executed workload

{
Nj
}
of the computing resources.

The constraint in (10) is required to avoid that the size of a
subtask is too small and needs a processing time much lower
than the transmission time. This would make the task alloca-
tion ineffective, with large communication overhead and no
gain in request completion time. To address that, theworkload
sent to a node needs to be no less than αW in which α is
the parameter showing the relative order between processing
time and transmission time which could be experimentally
found.

Hence, the output result is set of {pki} indicating the data
bundle {Wki} assigned to the set of fog nodes managed by the
manager.

B. TARA IMPLEMENTATION IN oneVFC
In the current version of oneVFC, we apply the particle
swarm optimization algorithm [34] on the above definedmin-
max optimization problem and obtain the task assignments
for the worker nodes. However, various approaches for the
TARA model and algorithms can be implemented in the
manager node as well.

The transmission rate B between any two nodes and the
processing speed f (in Equation (5)) of a specified hardware
have been provided by using the nominal values which in
general do not reflect reality. Therefore, to estimate these
parameters which are combined with specified hardware
(e.g. processors, network switch, cables), we run several
preliminary tests using the oneVFC platform. In these tests,
the task with the requested workloadWk will be deployed on
one worker node, and the transmission and the computation
delays are measured. The approximation functions showing
the relationship of the transmission and computation delay
with the workload are obtained statistically. Based on the
approximation functions resulting from the preliminary eval-
uations, the transmission rate B and the processing speed f in
Equation (5) are experimentally estimated.

VI. TESTBED EVALUATION AND RESULTS
For demonstrating the well-functioning of our oneVFC,
we deploy two use cases and analyze their performance.

- AI/DL-based model exploitation: object detection appli-
cation based on CNN model,

- AI/DL model training: CNN model training process in
FL approach.

The used CNNmodel is m-AlexNet model [35]. mAlexNet
is a compact version of AlexNet [36] which is an early
well-known DL model for object detection and object recog-
nition purposes. mAlexNet has fewer convolutional layers
and fewer parameters than AlexNet to trade off accuracy
against computation cost. Then it is more suitable for
binary object detection, two-class detection. We have chosen
mAlexNet because of its reasonable computation load on
Raspberry Pi hardware in our testbed.

Both computing services require two types of input compo-
nents: i) data sets, i.e., the collections of images, videos; and
ii) the model, generally represented in text files containing
weight values and model parameters. The computing services
can be distributed to various machines of the VFC platform to
be processed in parallel. Afterwards, the results are collected
and combined.

A. TEST-BED SETUP AND PRELIMINARY TESTS
To verify the proposed architecture and design, a testbed was
built as a scale model of the reality. The testbed includes
a fog manager node and five fog worker nodes. Due to the
unavailability of 5G or DSRC communication, the underly-
ing network supporting the communication among nodes is
Wifi-based. The hardware and software configurations are
described in Table 1. The deployment inside our laboratory
room is shown in Fig.5. We also deploy several experiments
in an outdoor environment (a university parking space) with
WifiMESH solution.

TABLE 1. Lab-scale testbed configurations.

FIGURE 5. The testbed setup in laboratory room.

The value of the transmission rateB between any two nodes
and the processing speed f (in Equation (5)) of specified
hardware has been provided by the nominal values which in
general do not reflect the real operation. Therefore, to better
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estimate these hardware dependant parameters (e.g. proces-
sors, network switch, cables), we run several preliminary tests
on our oneVFC platform. A specific workload is requested to
a given worker node (Raspberry Pi kit), and transmission and
computation delays are measured. The final results are the
average over 30 identical and independent service requests.
The service interarrival interval is chosen large enough to
allow the completion of the image processing before a new
service is requested.

Fig. 6 shows the computation time on the worker nodes
and the data preparation and transmission time in function of
the number of images processed by the miniAlexNet-based
detection application (varying from 100 images to 500 images
of about 200Kbytes). Estimates for average transmission and
computation delay in function of workload are obtained.
Based on those, the transmission rate B and the processing
speed f in Equation (5) are experimentally estimated.

FIGURE 6. The computation time and transmission time (in seconds)
versus the number of images processed by a CNN-based object detection
program. The dotted lines depict the approximations for the computation
time, data preparation time and data transmission time in function of the
number of processed images.

B. CNN-BASED IMAGE PROCESSING APPLICATION
DEPLOYMENT ON VFC
Weevaluate the performance of the vision-based object detec-
tion application on the lab-scale testbed. The image data set
of a thousand ∼2MBytes images is located at the worker
node #1 depicted in Fig. 4. This data owner node sends its
request to the manager node and the manager node runs the
TARAmodule to divide the requested task into subtasks to be
co-performed by several other worker nodes. The flowchart
of request processing is depicted in Fig. 4. The procedures
in a computing worker node are like the ones executed in
worker #2 in Fig. 4.

The simulation scenarios are set up with the following
parameters:

- The workload volume of a service request, represented
as the number of processed images, varies from 100 to
500 images.

- The service request interarrival times are modelled
through a uniform or exponential distribution with mean
going from 5 to 20 seconds.

- The total number of worker nodes taking up the com-
putation jobs created by a data owner (a worker node as
well) varies from 1 to 5 nodes.

The performance parameter under study is the service com-
pletion time, calculated as the time between the moment the
service request arrives at the manager and the moment of task
completion at which the manager is receiving the results. The
performance measures are averaged over 30 sequential ser-
vice requests. The service completion time consists of several
components being task assignment, data preparation control
message transmission to worker node delay, as well as data
transmission to worker node, service computation on worker
node, and result message transmission tomanager node delay.
These delay components are monitored and investigated in
detail thanks to oneVFC’s functionalities.

Fig. 7 clearly shows the reduction of the service comple-
tion time when service requests arrive at high pace. Indeed,
when the service request interarrival times are exponentially
distributed with a mean of 5s and 10s, the reduction is
around 84% and 60%, respectively.When the service requests
arrive at low pace, with mean interarrival time of 20s,
the reduction of the service completion time is only 20%.

FIGURE 7. The comparison of service completion time when a CNN-based
object detection program is running on 3 worker nodes and on 1 worker
node versus the service request arrival rates. The results are averaged
over 30 sequential service requests for processing 300 images.

The delay components of the service completion time in
function of service request interarrival time, and in func-
tion of service workload (number of images processed) are
depicted in Fig.8. The service execution delay at the worker
nodes has the largest impact, whereas the control information
transmission among the manager and worker nodes can be
neglected. The other two delay components are the data
transmission time from the data owner to the worker nodes
and the time spent for data preparation (e.g., data compression
before transmission). These two delay components are the
so called oneVFC overhead delays, for a requested service
to be deployed in parallel on various computing devices.
Fig. 9 shows the delay components of the service completion
time for a series of 50 requests arriving at high pace. Each
service request demands an object detection for 300 images.

Fig. 8(a) shows that when the service requests arrive at
high pace, the data processing and the overhead time increase,
resulting in a high response delay for the requested services.
Besides, if the workload of each service request is increased
gradually from 100 to 500 images per request, the com-
ponent delays all show an increasing trend, see Fig. 8(b).
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FIGURE 8. Service completion time and its components in function of
(a) service request interarrival time and (b) service workload (the number
of images to be processed) with service request interarrival time equal to
10 seconds. Tests are performed on a network with 1 fog manager node
and 3 fog worker nodes, the underlying network in the lab is Wifi.

FIGURE 9. Service completion time and its delay components of each
service request. The experiments are performed in two scenarios: (a) high
pace, mean service request interarrival time of 5 seconds and (b) low
pace, mean service request interarrival time of 20 seconds.

However, we observe that, at rather high workload (requests
of 400-500 images arriving at high pace), the data preparation
time has a rather sudden increment. The worker node which

owns the data must do both jobs, data preparation to be sent
for other worker nodes and service program execution for the
subtask that is assigned to itself. Hence, the data prepara-
tion time gets higher quickly when service request workload
gets higher. This effect is clear since vehicular computing
devices usually have lower capability than server machines,
hence this effect should be considered in the task assignment
algorithms.

In our implementation, the transmission rate B and the
processing speed f in (5) are experimentally estimated.
Fig. 6 shows the preliminary tests to obtain these parameters,
and these estimations do not consider service request arrival
pace. These parameters might change when service request
workload gets higher, or service requests arrive very densely.
They should be estimated online to be adaptive with the
current situation. This issue should be considered in task
assignment and resource allocation when processing delay
minimization is targeted (see section IV). Formulating the
minimization problem under the assumed constant value of
bandwidth and processing speed may cause non optimal
results. The ability to monitor and report the states of comput-
ing nodes as well as the delay components in oneVFC should
be exploited to determine the relationship between overhead
cost and service workload and service request arrival rate.

When more nodes are willing to share their computation
capabilities, the service completion time is clearly reduced as
shown in Fig. 10(a). Every delay component that contributes
to the service completion time is lower. However, when there
are 5 computing nodes performing the subtasks, the service
completion time slightly increases because data preparation
and data transmission times are slightly higher. The fact is that
when more computing nodes join the service computation,
the data owner (worker #1) must put more effort in data
preparation and transmission to other workers, resulting in a
higher delay. Also, the service deployment time on worker #1
is higher, as can be seen in Fig. 10(b). It does again confirm
that the interplay between transmission bandwidth, hardware
processing speed and processed workload should be well
investigated for achieving successful task assignment and
resource allocation.

We also performed the simulation in an outdoor environ-
ment, in which two worker nodes are set up at fixed location
and one is attached on a car travelling with average velocity
of 20km/h in the limited area in our university campus. The
underlying network is provided by Wifi MESH solution,
including 4 access points operating in the 5GHz band. When
a node is in the communication range of at least one access
point, the communication to the other nodes connected with
other access points is ensured. The outdoor measurements
are confronted with the indoor Wifi ones in Fig. 11. The
data transmission times to the mobile worker node increase
largely, nearly 3 times in comparison to the measured values
in the indoor environment. Indeed, the service completion
time becomes larger than the one in the indoor setup, however,
it is still much lower than the case of computing on one
device. The outdoor setup is a proof of concept demonstrating
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FIGURE 10. The service completion time and its delay components
(a) and the subtask processing time on each worker node (b) in function
of the number of worker nodes participating in computation jobs.

FIGURE 11. Service completion time and its delay components are
measured in two scenarios, laboratory room environment and a Wifi
access point to provide connections among fog nodes versus outdoor
university parking space environment and a Wifi-MESH solution to
provide connections for fog nodes including one mobile node.

that the oneVFC platform can support mobile computing
nodes in outdoor environments whenever the network con-
nections among fog nodes are guaranteed by the underlying
network.

C. DEEP LEARNING MODEL TRAINING IN FEDERATED
LEARNING APPROACH
Training a deep learning model can take a long time and
usually requires a high end, or cloud-based server, espe-
cially when large training datasets are involved. In an
FL approach, a so-called training round, depicted in Fig. 12(a),
goes as follows: any edge node will train the model with
its locally collected data to obtain the local model and send
the local model parameters to the server node, the server
aggregates the received local models to improve the global

FIGURE 12. A training round of the Federated Learning approach in Deep
Learning model training (a) and the learning curves of the trained global
model at the server and the local models at the local devices progress
through each training round (b).

model, and the server updates the global model to the local
devices [28], [37], [38]. Those training rounds are repeated
till the required model accuracy is achieved or till the maxi-
mum number of training rounds is reached.

A FL training approach does not require to trans-
fer local data to the server, only model parameters are
exchanged, preserving user data privacy which is a big con-
cern in IoT/IoV environments. Model aggregation can follow
different approaches, e.g. Federated Averaging [28], selec-
tive model aggregation depending on the data quality
collected by travelling vehicles [39], [40]. These issues
belonging to the business logic of each FL-based training
process will be embedded in the application execution pro-
gram, while the management of communication of model
parameters among edge nodes and server will be performed
by oneVFC. Possible application scenarios can involve sev-
eral vehicle-worker nodes, taking the roles of edge nodes and
collecting images/videos by means of their cameras while
travelling on roads, and a gateway-manager working as server
node.

We evaluate a mAlexNet model training with FL in which
3 worker nodes (Raspberry Pi kits) operate as local devices
which store local dataset of images and have the DL model
program installed. The mAlexNet model parameter file is
exchanged between manager and workers. The manager node
directs the FL based learning process and aggregates the
feedback of the local devices to build the global model.
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The request for FL training service will contain the list of
worker nodes’ addresses joining the training process and the
dataset addresses in each node. At every training round,
the execution of Python code for model training is called at
the workers’ AE-COMPUTE, and the Python code for model
aggregation is called at the manager’s AE-MANAGE. The
model parameter file is exchanged among the manager-CSE
andworker-CSEs through the EXECUTION containers as the
procedures described in Fig.4. The parameters related to the
simulation setup are shown in Table 2.

TABLE 2. Setup of federated-learning based training.

The experimental measurements of the workers and the
manager operations are shown in Table 3. The computation
time at the worker nodes is the largest in a training round,
whereas the data transmission among the worker nodes and
the manager is small. The learning curves shown in Fig. 12(b)
present the model accuracies of the local models and the
global model aggregated at the manager node. One can see
the accuracies gradually improve with increased number of
training rounds.

TABLE 3. Time analysis of federated learning on various edge nodes.

VII. CONCLUSION AND FUTURE WORK
In this work, we propose a vehicular fog computing (VFC)
platform, in which the computation nodes, vehicle OBUs, are
exploited to support ITS services. V2X technology, with the
two standards- DSRC and cellular-V2X, which facilitate the
real-time information exchange among cars and everything,
is the main communication infrastructure for VFC. The pro-
posed oneVFC platform is based on the oneM2M standard
and has been designed to support AI/DL-based applications
in ITS as well as to support AI/DL model training. oneVFC
can manage the availability of distributed resources, orches-
trate the information flows from data sources, control the
computing tasks on vehicular nodes as well as feedback
results to the application users. oneVFC can do real-time
monitoring and overhead cost assessment which will help the
task assignment algorithm to adapt to the current state of the
computing machines.

In lab scale testbeds, we have demonstrated that oneVFC
is able to manage the deployment of the AI-based appli-
cations on various machines resulting in high reduction of
application processing time, especially when the workload is
high, or when service requests arrive at high pace. Moreover,
the oneVFC platform facilitates the deployment of the AI/DL
model training in the Federated Learning approach. Concern-
ing VFC, this work is the first attempt to apply the oneM2M
standard to design and implement a platform to realize coor-
dination of various computation resources on vehicles to
support AI-based applications.
oneVFC has also been tested for a mobile node participat-

ing in the computation jobs in an outdoor environment. The
results show that the computation job shared with the mobile
worker node gets accomplished, however, the reduction of the
service completion time is lower due to the larger data trans-
mission times in the new environment and network setup. The
underlying network is provided by an outdoor Wifi MESH
solution due to the unavailability of DSRC or 5G-LTE. DSRC
and 5G networks will soon be deployed offering data rates
of about 20-30Mbps and over 100Mbps, respectively, which
means that the issue of large data transmission times will
be solved. Hence, the efficiency of distributed computing
on various worker nodes under the support of our proposed
oneVFC platform is confirmed.

For future work, several issues need further investigation.
First, different schemes for task assignment and resource
allocation should be integrated in oneVFC. Second, oneVFC
should be evaluated in a professional vehicular network
environment to assess the influence of variable commu-
nication conditions. Finally, the required security mecha-
nisms to ensure data authentication and user privacy should
be included and their corresponding impact needs to be
evaluated.
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