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ABSTRACT In order to overcome the lack of the multispectral image (MS) and adequately preserve the
spatial information of panchromatic (PAN) image and the spectral information of MS image, this study
proposes a method which adds the spectral information of the prior MS to the prior PAN during training,
and only the posterior PAN is needed for predicting. Firstly, we introduce the autoencoder model based on
image colorization and discuss its feasibility in the field of multi-band remote sensing image pan-sharpening.
Then, the image quality evaluation functions including spatial and spectral indexes are formed as the loss
function to control the image colorization model. Because the loss function contains spatial and spectral
evaluation indexes, it could directly calculate the loss between the network output and the label considering
characteristics of remote sensing images. Besides, the training data in our model is original PAN, this
means that it is not necessary to make the simulated degraded MS and PAN data for training which is a
big difference from most existing deep learning pan-sharpening methods. The new loss function including
the spectral and spatial quality instead of the general MSE (mean square error), only the original PAN instead
of the simulated degraded MS + PAN to be inputted, only the spectral feature instead of the direct fusion
result to be learned, these three aspects change the current learning framework and optimization rule of deep
learning pan-sharpening. Finally, thousands of remote sensing images from different scenes are adopted to
make the training dataset to verify the effectiveness of the proposed method. In addition, we selected seven
representative pan-sharpening algorithms and four widely recognized objective fusion metrics to evaluate
and compare the performance on the WorldView-2 experimental data. The results show that the proposed
method achieves optimal performance in terms of both the subjective visual effect and the object assessment.

INDEX TERMS Pan-sharpening, deep learning, multispectral image, panchromatic image, image coloriza-
tion, loss function.

I. INTRODUCTION
Pan-sharpening refers to the fusion of multi-spectral (MS)
images with panchromatic (PAN) images to produce high
spectral resolution and high spatial resolution images. For
the past decades, many pan-sharpening algorithms have been
proposed and can be mainly classified into four types: the
component substitution (CS), the multi-resolution analysis
(MRA), the optimization-based (OB) approaches and the
hybrid methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

Classical pan-sharpening methods including the CS and
the MRAmethods. The CS methods first rely upon a forward
transformation applied to the MS image in order to separate
the spatial information with respect to the spectral counter-
part. Then, PAN image is adopted to substitute this spatial
component. Finally, a spatial enhanced MS can be obtained
by the inverse transformation. Some typical examples are
the intensity-hue-saturation (IHS) [1], the principal compo-
nent analysis (PCA) [2], Gram-Schmidt (GS) [3], the Brovey
transform (BT) [4], the GS adaptive (GSA) [5] approach
and the partial replacement adaptive component substitution
(PRACS) [6]. The CS methods are famous for their com-
putational efficiency and robustness to misregistration and

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 115523

https://orcid.org/0000-0002-5909-1133
https://orcid.org/0000-0001-5954-2179
https://orcid.org/0000-0003-1124-3561
https://orcid.org/0000-0002-0982-5282


Z. Xiong et al.: Pan-Sharpening Based on PAN Colorization Using WorldView-2

aliasing errors. They improve the spatial resolution very well,
but most of them usually cause the spectral distortion with
varying degrees.

The MRA methods are based on the injection of spatial
details that are obtained through a multi-resolution decom-
position of the PAN image into the resampled MS bands.
Classic MRA methods include the discrete wavelet trans-
form (DWT) [7], the beyond wavelets (e.g., contourlet [8],
curvelet [9], shearlet [10]), the Laplacian pyramid (LP) [11],
the additive wavelet luminance proportional (AWLP) [12]
and the generalized LP based onGaussian filtersmatching the
modulation transfer function (MTF_GLP) [13]. Compared
with the CS methods, the MRA methods generally have
superior spectral information preservation but are commonly
not satisfactory in terms of the spatial enhancement.

The OB pan-sharpening is posed as an optimization prob-
lem between MS and PAN that can be solved by mini-
mizing the loss function with prior constraints. Approaches
belonging to this category mainly include the sparse rep-
resentation (SR) methods and the deep learning methods.
SR methods first learn the spectral dictionary from the low
spatial resolution data, then combine the known high spatial
resolution data to predict the high spatial resolution and high
spectral resolution data. Li et al. learned the dictionaries
for PAN and MS and calculated the high spatial resolution
MS while retaining the spectral information by integrating
the obtained sparse coefficients with the dictionary learning
theory [14]. Compared to the MRA methods, the SR meth-
ods have super-resolution capability and robustness, and can
acquire fused images with less spectral distortion. But it
is a challenging problem to find an optimal transformation
basis to get the sparsest representation on the transformation
basis. Moreover, SR sometimes ignores the intrinsic geomet-
ric structure of images.

In addition, a large number of hybrid methods have been
proposed, such as IHS + wavelet and IHS + compressed
sensing [15] methods. Hybrid methods contain the charac-
teristics of different class methods and achieves good results.

In recent years, the deep learning algorithms have been
a hot research field in pan-sharpening. Most of these algo-
rithms learn the mapping relations between low-resolution
(LR) multispectral (LRMS) images and high-resolution (HR)
multispectral images (HRMS) that are similar to the super
resolution convolutional neural network (SRCNN) [16].
Masi et al. have proposed a pan-sharpening method by
using a three-layer CNN (PNN) [17], which is one of the
early applications of convolutional neural networks (CNN)
in the pan-sharpening field. After that, a large number of the
improved PNN methods [18]–[22] have been proposed, such
as adding the residual layer to the CNN and deepening the
convolution layer. With the continuous development of
the deep learning network, the structure is more complex,
and the deeper networks are gradually used to meet the
requirements of fusion to maintain higher spectral infor-
mation and more abundant spatial details. For example,
Yang et al. have proposed a pan-sharpening method named

PanNet that uses the domain specific knowledge to enhance
the spectral and structural properties, while training the
network in the high-pass domain rather than in the image
domain [23]. Ma et al. have proposed a pan-sharpening
method based on the generative adversarial network
(Pan-GAN). In this method, the generator separately estab-
lishes the adversarial games with the spectral discriminator
and the spatial discriminator, so as to preserve the rich
spectral information of multi-spectral images and the spatial
information of panchromatic images [24].

The common point of most of the above methods is that
they do not fuse the original MS and PAN images directly,
but train the simulated degraded data sets made by the Wald
protocol [25]. Moreover, the original MS is used as the ref-
erence image and the classical loss function such as MSE,
mean absolute error (MAE) and cross entropy are adopted to
calculate the loss between the reference and the output fusion
image. The fused results with small spectral distortion can be
obtained by these training methods, but there are still some
problems not considered. First of all, they calculate the loss
with the network output of simulated training image rather
than the original training image, which may ignore some
characteristics of the original images. Secondly, the learn-
ing relationship between the degraded data and the original
MS data may not be the true relationship required for fusion.
Thirdly, it wastes a lot of time to make the simulated training
data. Therefore, the classical loss function is not optimal for
pan-sharpening, and a variety of loss functions have been
designed to increase the fitting ability of the model. The
common practice is that the regularization term is added to
the loss function, such as l0 norm penalty, l1 norm penalty
(parameter sparsity penalty), and l2 norm penalty (weight
decay penalty). In literatures [26], [27], the weight decay-
ing term and the sparsity term are added to the MSE loss
function, respectively. In addition, Choi et al have proposed
the spectral-spatial structure (S3) loss function [28] to cal-
culate the spectral loss between the network outputs and the
MS targets, and calculate spatial loss between the network
outputs and the PAN inputs. Similar to the S3 loss function,
Xiong et al. have designed a no-reference quality evaluation
function based loss function to calculate both the spectral and
spatial losses (PLS2, pan-sharpening by using loss function
with spatial and spectral quality evaluation function) [29].
But the difference is that Xiong et al. have also designed
the label making method according to the characteristics of
remote sensing images, which can lay in the original PAN
and original MS of different spatial resolutions at the same
time, and use the real data instead of the simulated data for
training.

In view of the above-mentioned methods, there is no
method to predict HRMS without MS. Inspired by these suc-
cessful examples of the designed loss function and the great
achievements of image colorization [30], [31], we also con-
sider the pan-sharpening as PAN image colorization. Since
there is no ground-truth MS with high spatial resolution as
the fusion result reference, we consider using the spatial
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quality evaluation function and the spectral quality evaluation
function as the loss function to control the spatial and spec-
tral quality of the network output at the same time. In this
way, our proposed PAN image colorization method uses the
original PAN as the network input, and the concatenated
up-sampled MS and original PAN as labels. This method not
only solves the problem of making simulation data set, but
also solves the problem that most deep learning methods do
not have HRMS as reference image and cannot get HRMS
when MS is missing.

The remainder of this paper is organized as follows.
Section 2 describes our proposed framework in detail.
Section 3 investigate the optimal parameters and shows both
the qualitative and the quantitative analyses through exper-
imental results. Finally, this paper draws conclusions and
discusses future work in Section 4.

II. PROPOSED PAN IMAGE COLORIZATION MODEL
A. AUTOENCODER NETWORK
Autoencoder includes two parts: encoder and decoder. The
hidden features of the input data can be learned by the encoder
part. The new learned features can be reconstructed as close
as possible to the original input data by decoder. Autoencoder
compresses the input data and extracts themost representative
information from the input data. The purpose of autoen-
coder is to reduce the dimension of input data without losing
important features. In short, autoencoder is usually used for
dimensionality reduction and feature extraction. Based on
this, this paper uses the autoencoder as the feature extractor to
extract the features of PAN and generates the new MS image
with the same spatial resolution as the PAN.

The autoencoder encodes the input x to get the new
features y, and hopes the original input can be reconstructed
from the new features. The encoding process is as follows:

y = f (wx + b) (1)

where w is the weights and b is the bias. Liking the neural
network structure, its coding is a linear combination followed
by a nonlinear activation function. With the new feature y,
the input x can be reconstructed. The decoding process is as
follows:

x ′ = g(w′y+ b′) (2)

In order to reconstruct the output as close as possible to the
original input, the loss function L(x, x ′) can be used to train
the model.

L(x, x ′) = L(x, g(f (x))) (3)

B. AUTOENCODER PAN-SHARPENING MODEL
The purpose of panchromatic colorization is to obtain the
MS image with the spatial resolution of PAN. One of the
definite characteristics of panchromatic colorization is
that the input and the output are the same spatial resolution.
In addition, the input and output are different in the color
expression, but they have the same internal structure, that is,

the same contour, edge and texture. As a result, the structures
of the input and the output are almost aligned. Therefore,
the architecture of our panchromatic colorization model is
also designed around these characteristics.

In the field of image colorization, the creation model
always adopts the autoencoder network. In such a network,
the encoder will further extract high-level features from the
input by passing through each down sampling layer. The
decoder mainly samples the extracted features through
the encoder layer by layer. Finally, the decoder restore the
features to the size of the original image.

In fact, there are a lot of underlying information shared
between the input and output. For example, the input and
output images share the location information of prominent
edges. Therefore, it is advisable to add skip connection in
the autoencoder to let the information directly reach the deep
network through the shallow network, so as to retain the
contour information to the greatest extent. The autoencoder
with skip connection is shown in Figure 1.

FIGURE 1. The structure of our autoencoder with skip connection.

In this paper, our image creation model based on the
autoencoder is shown as Figure 2, in which the autoencoder
is used as the image generator to generate the 8 bands MS.
In the training stage, the input of the model is a 1 channel
PAN image with size 16 × 16. The model mainly includes
convolution layer, activation layer and resize-convolution
layer. The encoder part is the blue part of Figure.2. The
decoder part is the green part of Figure.2. In order to solve
the problem that checkerboard artifacts often appears in the
dark area of image generated by the deconvolution layer,

FIGURE 2. The proposed image colorization model.
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the resize-convolution layer is used instead of the deconvo-
lution [32]. After convoluting the output of the upper layer
with a stride of 1, we up-sample the output of the convolution
layer. In addition, the convolution with a stride of 1 and the
down-sampling layer are used to replace the convolution with
a stride of 2. After decoding, the feature is extracted to the
same size as the original PAN image. We supplement the
feature information of the lower level by adding skip connec-
tions to the higher levels. Finally, we reconstruct the desired
HMS image by using 8 filters, where 8 is the band number
of MS. The rectified linear unit (ReLU) whose function is
max (0, x) is used as the activation function. The detailed
architecture and parameters can be found in Figure.2.

C. PAN-SHARPENING ARCHITECTURE
Our proposed architecture consists of two parts: training and
predicting. The training part is to learn the super parameters
in a supervised manner. The predicting part is to generate
the HMS through the learned super parameters during the
training stage.

Figure 3 shows the workflow of training and predicting of
our proposed panchromatic image colorization model. In the
training stage, the original PAN is the input of model, and the
output is a n-bands imagewhich corresponds to the number of
MS bands. Then, losses are calculated between the output and
the label. It is worth mentioning that the label is n + 1 bands
image which consists of the n-bands up-sampled MS and the
original PAN. During the training stage, the stochastic gradi-
ent descent algorithm (SGD) and the back propagation (BP)
are utilized to iteratively learn all of the parameters (w, b) in
the network for optimal allocation.

FIGURE 3. The proposed pan-sharpening architecture.

The image quality evaluation functions—the spectral
angle mapper (SAM ) [33] and the universal image quality
index (UQI ) [34] are adopted as the loss function.
SAM is defined as:

SAM (v, v̂) = arccos

( 〈
v, v̂
〉

‖v‖2 ∗
∥∥v̂∥∥2

)
(4)

SAM denotes the absolute value of the spectral angle
between two vectors. In the formula (4), v is the original
spectral pixel vector, v̂ is the distorted vector obtained by
applying fusion to the coarser resolution MS data. The zero
value of SAM denotes the absence of spectral distortion.
SAM is measured in either degree or radian, which is usually
averaged over the whole image to yield a global measurement
of the spectral distortion.
UQI is defined as:

UQI ,
σxy

σx · σy
×

2 · x̄ · ȳ
x̄2 + ȳ2

×
2 · σx · σy
σ 2
x + σ

2
y

(5)

where σxy denotes the covariance between x and y, x̄ and ȳ are
the means, σ 2

x and σ 2
y are the variance of x and y, respectively.

The first one is the correlation coefficient (CC) between x
and y, which ranges in [-1, 1]. According to Cauchy-Schwartz
inequality, the second one and the third one range in [0, 1].
Hence, the dynamic range ofUQI is [-1, 1], and the best value
UQI = 1 is achieved when x = y for all pixels. UQI is
the basis of the calculation of the spatial quality evaluation
function Ds and spectral quality evaluation function Dλ.

When calculate the losses, the n + 1 bands label is
first divided into two tensors: the n-bands up-sampled
MS named UMS, and the other one band original PAN. Then,
F̃ is utilized to represent the model output. Therefore, the loss
function L(w, b) is defined as:

sam = SAM (UMS, F̃) (6)

Q =
1
n

n∑
i=1

UQI (F̃i,PAN ) (7)

L(w, b) = α · sam+ β · (−Q) (8)

where (w, b) is the set of all involved super parameters of
the proposed pan-sharpening architecture, which are named
filter weights and biases. α and β are the weights added to
sam and −Q, respectively. Since the best values of Q and
sam are the maximum and the minimum of the value range,
respectively, in order to make its value direction tend to be
the same, we multiply Q by minus one.

D. IMPLEMENT DETAILS
The algorithm in this paper is implemented using Tensorflow.
We crop the training data set to many samples of the same size
as 16× 16. For the setting of experimental parameters, we did
a quantitative analysis experiment, and used the experimental
results to determine the best parameters within a preselected
range. According to the experimental results, we set the con-
volution kernel size to 3 × 3, the training data size is set to
16 × 16, α and β are set α = 0.7 and β = 0.3, respectively.
In addition, according to experience, the SGD optimizer is
used to reduce the randomness, the momentum is set to 0.9,
and the learning rate is set to 10−4. The number of iterations
is fixed to 4 × 103. The batch size is set to 32. The training
process of our network costs 10 h roughly.

In the predicting stage, we choose PAN that is not in the
training data from the same source satellite image as the
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test input. Finally, the fused HMS image is predicted through
the learned super parameters during the training stage.

III. EXPERIMENTATION AND ANALYSIS
A. DATASETS
In this paper, the WorldView-2 satellite images are used in
experiments. WorldView-2 satellite operates at an altitude
of 770 km and an orbit inclination of 98 degrees. Its orbit
type is the solar synchronous orbit with a repetition period
of 93.4 minutes. WorldView-2 satellite provides 1 band PAN
and 8 bands MS. Table 1 shows the band information, where
the wavelength range (in nm) and the resolution (m/pixel) are
reported.We train the networks using 40,000 PAN/label patch
pairs of size 16× 16 from datasets of WorldView-2 satellite.

TABLE 1. The band information of WorldView-2 satellite image.

B. METHODS FOR COMPARISON AND OBJECTIVE
EVALUATION METRICS
In this paper, seven representative pan-sharpening algorithms
are selected for comparison, which are GSA [5], PRACS [6],
MTF_GLP [13], PNN [17], PanNet [23], TACNN [22] and
PLS2 [29]. Considering that the comparison method should
be comprehensive, therefore, in these comparison methods,
the GSA and the PRACS methods belong to the category
of CS, theMTF_GLPmethod belong to the category ofMRA,
and the PNN, PanNet, TACNN and PLS2 methods belong to
the category of OB. For the objective quantitative evaluation
in the experiments, four widely recognized objective fusion
metrics are adopted, which are erreur relative globale adi-
mensionnelle de synthèse (ERGAS) [35], spectral distortion
index Dλ [36], [37], structural similarity index (SSIM) [38]
and spatial distortion index Ds [36], [37]. More details are
given as follows:

ERGAS expresses the error between the up-sampled MS
and the fused image, which is defined as:

ERGAS = 100 ·
h
l

√√√√1
k

k∑
i=1

[
RMSE(i)
µ(i)

]2
(9)

RMSE(F,MS) =

√√√√ 1
M ∗ N

M∑
u=1

N∑
v=1

[F(u, v)−MS(u, v)]2

(10)

where h and l are the spatial resolutions of the PAN and
MS images, respectively. k is the number of bands of the

fused image. RMSE is the root mean squared error. RMSE
gives the standard measure of difference between F and MS.
µ(i) denotes the mean of ith band of referenceMS image. The
smaller the ERGAS is, the closer the fused image is to the
up-sampled MS. The best ERGAS value is 0.
Dλ is used to measure the degree of spectral distortion, and

Ds is used to measure the degree of spatial distortion. They
are defined as (11) and (12), as shown at the bottom of the
next page, where UQI is defined in the above formula (5).
UQI (fusedl, fusedr ) is the quality index values between
the lth band and the rth band of fused image, UQI (MSl,MSr )
calculates the quality index values between the lth band and
the rth band of MS image, UQI (fusedl,P) is the quality
index values between the fused image lth band and PAN,
UQI (MSl, P̃) is the quality index values between the MS
image lth band and the degraded PAN image. L is the number
of MS bands. p and q are typically set to 1. Dλ and Ds are
always lower than or equal to 1. The closer Dλ and Ds are
to 0, the better the evaluation index is.

SSIM reflects the structural similarity of two image. It is
defined as:

SSIM (F,MS) =
(2 · µF · µMS + c1) ∗ (2 · σFMS + c2)

(µ2
F + µ

2
MS + c1) ∗ (σ

2
F + σ

2
MS + c2)

(13)

where µF and µMS denote the mean values of the fused
image F and the MS image, respectively. σ 2

F and σ 2
MS rep-

resent the variances of the fused image F and the MS
image, respectively. The covariance of images is represented
by σFMS , and c is a constant. The bigger the SSIM, the more
similarities between the images. The best value of SSIM is 1.

C. NETWORK PARAMETER SETTING
In the training stage, there are some parameters affecting
the performance of our proposed architecture output. Some
primary parameters will be learned. The other parameters,
such as the convolution kernel size and the input training data
size, are set unchanged when one parameter is evaluated and
investigated. The details of selecting the optimal parameters
are as follows.

1) SELECTION OF CONVOLUTION KERNEL SIZE
As mentioned in Section 2.2, in the decoding part, we use
the resize-convolution layer to replace the deconvolution
layer with the stride of 2 to avoid checkerboard artifacts.
In the selection of the convolution kernel size, we choose
the odd number for the convolution kernel size, because
the odd number has center point which is convenient for
padding. Moreover, compared with the even number of the
kernel size, the odd kernel size is more sensitive to edges
and lines, that can extract the edge information more effec-
tively. Therefore, it is set to 3 × 3, 5 × 5, . . . , 11 × 11
in our implementation. The effect of the convolution kernel
size in SSIM, ERGAS, Ds and Dλ is summarized in Fig-
ure 4. From Figure 4, we can find that with the increas-
ing of the kernel size, the four evaluation indexes have no
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FIGURE 4. Quality evaluation of the fused image with different convolution kernel sizes.

obvious change. In particular, ERGAS and Dλ are almost
stable at 2.33 and 0.09, respectively, while SSIM and
Ds have little fluctuation range. This shows that the con-
volution kernel size has little effect on our model, but the
computational complexity will increase with the increasing
of kernel size. Therefore, in order to maintain the high com-
puting performance of our model, the convolution kernel size
should be as small as possible. As shown in Figure 4, we set
the convolution kernel size to 3 × 3.

2) SELECTION OF TRAINING DATA SIZE
Our model coding part contains three down-sampling layers,
which means that the size of the encoding result is one eighth
of the input image. In order to make it meaningful, the size of
the model training data must be a positive integer multiple
of 8. To evaluate the effect of the training data size on our
proposed model, it is set in our implementation to 8 × 8,
16 × 16, 24 × 24 , . . . , 64 × 64. The effect of the
convolution kernel size in SSIM, ERGAS, Ds and Dλ is

summarized in Figure 5. As can be seen from Figure 5,
when the size of the training data increases from 8 × 8
to 16 × 16, the four evaluation indexes all change obvi-
ously, among which ERGAS, Ds and Dλ are decreased
and SSIM is increased. However, when the training data
size increases from 16 × 16 to 64 × 64, ERGAS and
Ds show an upward trend with small fluctuation range,
Dλ changes not obviously, SSIM begins to fluctuate but
remains stable around 0.92. Overall, when the input image
size is 8× 8, it will result in the incomplete feature extraction.
When the training data size is increased to 16× 16, the quality
evaluation result is obviously improved. When the training
data size is increased again, the quality evaluation result will
not be significantly improved. Therefore, in this experiment,
the training data size is set to 16× 16, which also can reduce
the computational complexity of the model.

3) ROLE OF α AND β IN LOSS FUNCTION
During the training stages, the setting of α and β is the key
in our research. When α is set to 1, the loss function is sam

Dλ ,
p

√√√√√√√
1

L(L − 1)

L∑
l=1

L∑
r = 1︸ ︷︷ ︸
r 6=l

|UQI (fusedl, fusedr )− UQI (MSl,MSr )|p (11)

Ds ,
q

√√√√ 1
L

L∑
l=1

∣∣∣UQI (fusedl,P)− UQI (MSl, P̃)∣∣∣q (12)
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FIGURE 5. Quality evaluation of the fused image with different training data sizes.

FIGURE 6. Quality evaluation of fused image with different weight.

which will cause the network output to be infinitely close to
the up-sampled MS. When α is set to 0, the loss function
is −Q which will cause each band of the network output to
be infinitely close to the PAN. In order to make the network
output keep both the spectral characteristics of MS and the
spatial resolution of PAN as much as possible, it is necessary
to balance the values of α and β. Therefore, a comparative
experiment is used to determine the optimal values of α and
β in our loss function. In the experiment, α is set to 0.9,
0.8, . . . , 0.1, the corresponding β is set to 0.1, 0.2, . . . , 0.9.
The spatial distortion index Ds and the spectral distortion
index Dλ are adopted to measure the network output to
determine the optimal values of α and β. Figure 6 shows the
performance fluctuation in Ds and Dλ. In order to observe

the influence of different α on the experimental results,
Figure 7 displays the part of network output. From Figure 6,
we can find that with the increasing of α, the value of
Dλ tends to decrease, but when α is greater than or equal
to 0.7, the decreasing trend of Dλ slows obviously down,
and the value of Dλ is less than 0.1. At the same time,
Ds increases with the increasing of α, and the increasing trend
increases obviously when α is greater than 0.6, even when
α is equal to 0.7, Ds does not exceed 0.1. This shows that
the loss function Q has an excellent ability to control the
spatial loss, even if Q is given a small weight. Combined
with the effect in Figure 7, the weight α of sam in this
experiment is taken as 0.7, and the corresponding β is taken
as 0.3.
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FIGURE 7. The network output with different weights.

TABLE 2. The objective evaluation of fused images.

D. EXPERIMENTAL RESULTS AND ANALYSIS
In order to prove the spectral retention performance of our
proposed model, two groups band combination of the fused
image are displayed. One group is natural color composition
including the red, green and blue bands, and the other is
pseudo color synthesis including the near infrared 2, near
infrared 1 and red edge bands. The size of the displayed image
is 400× 400.

For the quantitative analysis, Table 2 shows the average
objective evaluation values. The best values are marked in
bold font and the second best is underlined. In Table 2,
the proposed PAN image colorization method outperforms
other comparison methods with values in ERGAS, SSIM, Ds
and Dλ of 2.3029, 0.9347, 0.1022 and 0.0816 on average,
respectively. The PLS2 method performs the second best

TABLE 3. List of the main acronyms.

ERGAS (2.3671),Ds (0.1104) andDλ (0.1033). The TACNN
method performs the second best SSIM which is 0.9336.
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FIGURE 8. The fused images by different methods in the natural color composition.

It can be seen from Table 2 that PLS2 method and the pro-
posed method perform better than other methods. The reason
may be that these twomethods design loss function according
to the characteristics of remote sensing images to control
the spatial and spectral losses of the network output at the
same time. Compared with PLS2 method, our loss function
calculation is simpler, which means less distortion points will
be produced in complex calculation. In addition, a group
of comparative experiments are conducted to determine the
optimal weight of the loss function, while PLS2 method
is only a simple comparison, and this may be the reason
that the proposed method performs a little better than the
PLS2 method. The GSA method has the worst performance
in the spectral quantitative evaluation metric ERGAS and
Dλ, probably because it belongs to the category of CS, and
some information may be lost in the process of component
substitution. The PRACS and MTF_GLP methods are close
to the PNN and PanNet methods in some quantitative evalua-
tion metrics. From this above, we could find that although
the neural network has strong fitting ability, in order to
give full play to the potential of neural network, we need

to have a deeper understanding of the problem itself and
be sensitive enough to the characteristics of remote sensing
images so as to design a network structure suitable for this
problem.

Figure. 8 and Figure. 9 show the visual comparisons
among different methods with the natural color composition
and the pseudo color synthesis, respectively. In Figure. 8,
from a visual point of view, the fused images of GSA
(Figure. 8(c)) method happens a very serious spectral distor-
tion. In Figure 8(c), the trees in the up-left corner of the image
look darker than that in the up-sampled MS. The spectral
information of Figure 8(d) is maintained well, but compared
with PAN, the local enlarged image of PRACS result looks a
little blurred, and the spatial detail is not rich. In the local
enlarged images of MTF_GLP, PanNet and PNN results,
the capital character A is surrounded by some black areas,
which show the three methods have partial spectral distortion.
The results of the TACNN method, PLS2 method and the
proposedmethod seem to improve the spatial resolutionwhile
maintaining the spectral information of MS. In Figure 9,
compared with the up-sampled MS, it is obvious that the
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FIGURE 9. The fused images by different methods in the pseudo color synthesis.

fused images of GSA andMTF_GLPmethods look a bit more
yellow. For the PNN result, the trees in the middle do not look
as bright as the up-sampled MS. Although the spatial resolu-
tion of PanNet results has been greatly improved, it seems
the fused images are added random noise. The PRACS and
the proposed methods maintain good spectra quality, but
in the aspect of the spatial detail improvement, the fused
image of PRACS method is not as good as the proposed
method.

IV. CONCLUSION
In this paper, a novel pan-sharpening structure which is a
variation of the normal gray image colorization model is
proposed. The proposed idea learns the spatial and spectral
feature of fusion, not the direct fusion result, while based on
the original image to be fused, not the simulated degraded
image. Compared with the traditional gray image coloriza-
tion, the biggest difference is that both the spectral and
the spatial quality evaluation functions are simultaneously
introduced as the loss function, which changes the learning
target and the learning framework based on the original data.

Specifically, SAM and UQI are adopted to calculate the
spectral and spatial loss, respectively. This makes the network
output fusion result has high spectral similarity with MS and
high spatial similarity with PAN. In addition, we discuss and
test the influence of different weights and model parameters
on the fusion results. By using the proposed model with the
designed loss function, the production of the training data
and labels becomes simple, and there is no need to make
the simulated degraded MS+PAN data, which is the biggest
difference from the most deep learning remote sensing image
fusion algorithms. After the training, the high spatial resolu-
tion MS can be obtained only by inputting PAN. This means
that pan-sharpening can also be done when MS is miss-
ing. Seven representative fusion methods and four evaluation
metrics are applied for comparison and evaluation, respec-
tively. The results demonstrate that the proposed method
achieves the state-of-art performance in terms of both the
visual perception and the objective assessment. The proposed
panchromatic image colorization model with the designed
loss function is probably a new promising starting point in
the remote sensing image fusion field.
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