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ABSTRACT Various kinds of noise will be produced during the process of ultrasonic logging in high
temperature and high-pressure environment under oil wells, which is blurring the logging image. This paper
presents a novel end-to-end denoising model (ULNet) based on CNN and feature attention to address this
problem and remove the noise from ultrasonic logging images. Our method mainly includes feature attention,
feature enhancement based on residual model and reconstruction for ultrasonic logging image. Feature
enhancement based on a residual model integrates global and local features to increase the expressive ability
of the denoising model. Feature attention is used to distinguish the channel feature weights, and effective for
blind denoising of actual images. Kernel dilation and skip-connection is used to reduce the computational
cost during training. The Noise mapping results are used to reconstruct a clean image. Comprehensive
quantitative and qualitative evaluations of results for selected study datasets collected at six oil wells in
China show that this model is a feasible and effective means for denoising ultrasonic logging images. Overall,

ULNet shows potential for practical ultrasonic logging images denoising.

INDEX TERMS Ultrasonic logging image denoising, CNN, feature attention, residual learning.

I. INTRODUCTION

As the world is most important source of energy, oil
is the lifeblood of the industrialized nations, petroleum
oil hydrocarbons are brought to the surface through oil
wells bored in the Earth. We need to test the oil well
after we finished it [1]. The well logging methods include
radioactivity logs [2], resistivity logs [3], and ultrasonic
logs [4]. Ultrasonic logging is widely used in the field of
exploration and development of oil and gas resources for
its low cost, high sensitivity, high penetrating power, and
real-time detection capabilities [5], [6]. It utilizes a rotating
transducer to transmit a high frequency ultrasonic pulse
to the borehole wall and the information of the borehole
is captured by receiving echo reflected from the borehole.
The non-ideal logging instruments and the complexity of
well logging operating environment, however, disturb the
echo signal with different types of noise, downgrading the
image quality considerably. These problems produce many
difficulties when interpreting the borehole well information.
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Removing noise from an acquired image is a necessary step
in ultrasonic logging image analysis. Therefore, an efficient,
flexible and practical ultrasonic logging image denoising
algorithm is an active area of research.

Nowadays, ultrasonic logging image denoising has
attracted the attention of many researchers and quite a
few approaches for ultrasonic logging image denoising
have been proposed. These methods can be classified as
hardware-based and software-based. Hardware-based image
denoising methods include those employing composite
transducers [7], [8] and or phased arc array transmitters
with azimuthal detection capability [9]. This method can
improve the acquisition of transducers accuracy and the
sensitivity. But the logging image is inevitably by noise
due to the influence of downhole environment. Software-
based image denoising methods, include techniques such
as the Gaussian filter (GSF) [10]-[13] and total variation
(TV) [14]-[18] method. A Gaussian filter is a straightforward
sliding window spatial filter that replaces the center value of
the window with the mean values of all the adjacent pixels
values together with the center value itself. A Gaussian filter
effectively removes Gaussian noise and is computationally
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efficient. The edges of logging images however will be
blurred and the feature information of logging images will
be corrupted with the filter method. Total variation model
denoising relies on reducing the high the integrate value of
the image, while keeping it very close to the original image,
takes out unnecessary detail whereas conserving significant
features of boundaries. But there are a lot of manually
selected parameters, and selecting these suitable parameters
is subjective and empirical. Recently, convolutional neutral
network (CNN) has made great progress in computer vision
tasks. In improving the efficiency of denoising task, deep
CNN can be regard as modular part to plug into some
classical optimized methods for recovering the latent clean
image, which was very effective to cope with the noisy
image. Inspired by image denoising based on deep learning
discussed in [19]-[21] we can see that deep CNN are very
competing to both performance and efficiency in image
denoising, so we use a deep CNN for ultrasound logging
images denoising.

In this paper, motivated by the practical observations
of ultrasound logging images denoising, we focus on four
challenges: (1) the low-resolution. (2) blind denoising. (3)
self-adaption parameters. (4) computational cost. Firstly,
since ultrasonic logging images are low-resolution and
unclear boundaries, it makes denoising tasks more difficult.
Feature enhancement based on a residual model integrates
global and local features to increase the expressive ability
of the denoising model, which can achieve satisfactory
performance. Secondly, in the real world, images are easily
corrupted and noise is complex, we cannot generally obtain
the noise standard deviation. The attention mechanism [22]
uses the current stage to guide the previous stage for learning
the noise information, which is very useful for unknown noisy
images, such as blind noisy and real noisy images [23], [24].
Thirdly, previous denoising methods of ultrasound logging
images may require manual intervention to improve results
since there are a lot of manually selected parameters, which
limits their application in practical denoising. The end-
to-end architecture for ultrasound logging images trains
the denoising model without requiring manual intervention.
Finally, in image recognition or classification, residual
model [25]-[28] have two ways to enlarge the receptive filed,
such as increasing the depth and width of the deep networks,
which results in higher computational costs and more
memory consumption. To solve this problem, the proposed
network has small depth, but provides a wide receptive field
through kernel dilation. Unfortunately, the current denoising
models based on deep learning are far from achieving all of
these aims, so we present a fast and flexible ultrasonic logging
image denoising method as well as ULNet, which is based on
CNN and feature attention.

The main contribution of our work is summarized as
follows:

e A fast and flexible denoising network based on CNN and
feature attention, namely ULNet, is proposed for ultrasonic
logging image denoising, which is the first paper that use deep
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learning model for ultrasound logging images denoising.
We present ULNet model that provides state-of-the-art results
using end-to-end framework, which can deal with noise on
different levels, as well as spatially variant noise.

e We utilize attention mechanism to enhance the weights
of important features from the maps, which enhancing the
expressive ability of the denoising model. It is very useful
for unknown noisy images, such as blind noisy and real noisy
images.

e The sparse representation of the noise base on kernel
dilation and skip connections are used to reduce the network
depth, which improves the denoising performance and the
efficiency.

The rest of the paper is organized as follows. Section II
discusses the principle of ultrasonic logging. Section III
presents our proposed a method to denoise ultrasonic logging
images by using CNN and feature attention. Section IV shows
the extensive experiments and results of the proposed method
for image denoising. Section V presents the conclusion.

Il. PRINCIPLES OF ULTRASONIC WELL LOGGING
Ultrasonic well logging records the amplitude and the travel
time of the sound wave to create a 360° image of the borehole
wall [29], [30]. The principles of Ultrasonic well logging are
shown in Figure 1. Figure 1 (a) shows a schematic diagram
of the logging process, and an amplitude and time diagram of
ultrasonic logging is shown in Figure 1 (b).

As shown in Figure 1, a rotating transducer [31], [32]
transmits ultrasonic pulses vertical to the borehole wall, and
receives the echoes reflected from the borehole wall at the
same time. A depth point is raised upward once a week as
the transducer rotates, the ultrasonic echo amplitude is used
to generate a coefficient reflection image of the borehole
wall, documenting the acoustic impedance information of the
borehole wall [33]. The time of the ultrasonic echo is used as
the reflection time of the borehole wall, and used to calculate
the diameter of the borehole.

A captured ultrasound logging image however, is a
degraded latent observation, the noise from the degradation
process can be caused by two types of factors: ultrasonic
signals are sensitive to high-temperature and high-pressure
environments under oil wells, creating noise. In addition,
a reflected echo signal of ultrasonic cannot be received
because of the logging instrument eccentricity, resulting in
data loss. In the latter case, noise can be removed using
an amplitude eccentricity estimate [34] and ellipse fitting
based on Least Squares [35] In this paper, we only consider
the former case, noise generated during the processing of
ultrasonic logging imaging.

lil. PROPOSED METHOD

In this section, we introduce the proposed denoising net-
work, ULNet, composed of feature extraction and feature
enhancement units (FEU) based on residual model and
reconstruction, as shown in Figure 2. Our ULNet is an
end-to-end architecture that performs denoising by using a
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FIGURE 1. The principles of ultrasonic logging well. (a) is the structure of ultrasonic logging; (b) is the amplitude and time
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FIGURE 2. The architecture of the proposed ULNet for ultrasonic logging image denoising.

single model and handling both spatially variant and invariant
noise. Firstly, “Conv(Convolution) + ReLU(Rectified Linear
Units)” is adopted for the first convolution layer, which is
used to obtain initial features from the input image. Secondly,
feature enhancement units (FEU) based on residual model
are cascaded together for the main feature learning. Finally,
the output features of the last layer are feedback to reconstruct
the clean image.

Specifically, the design of network architecture of ULNet
follows between the performance and efficiency for ultra-
sonic logging image denoising. We used three strategies
to remove the noise from the ultrasonic logging images
to improve performance. Dilated and standard convolutions
are used to enlarge the receptive field size for improving
denoising performance. The FEU uses the global and local
features of ULNet to enhance the expressive ability in image
denoising. The attention mechanism can enhance the weights
of important features from the maps, which is very effective
for unknown noisy images, such as blind noisy and real noisy
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images. Further, we will introduce these techniques in later
subsections.

A. FEATURE EXTRACTION

Assume that IN denotes the input noisy image and IO is the
denoised output image. The first convolution layer extracts
initial feature from the noise image as

Fy = Co(IN) (1)

where Fy is the initial feature of the noise image, Cq(.)
represents the convolution function on the noise image.
Fo is input to the residual layers for the feature learning,
the implementations of this model can be transformed as in
the following formula

F, = Cp(Fo) 2

where F; are the trained features and Cg(.) is the main feature
leaning based on the residual model, which is composed of
FEU (feature enhancement unit) that are linked together.
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B. ATTENTION MECHANISM
An attention mechanism extracts features suitable for image
processing applications. If the weights of channel features in
denoising model are equal, it is not suitable for many cases
and cannot process unknown noisy images. The attention
mechanism guides the CNN when training a denoising model,
generating attention differently for each channel wise feature.
In frequency domain, an image generally includes two
parts: high-frequency (edges and texture area) and low-
frequency regions (smooth or flat area). A CNN model
only uses local information instead of global contextual
information, so global average pooling is employed to
represent the statistics of the whole image, Let F. denote
the output features of the final convolution layer and c is
the number of channels, the size of feature maps is h x w,
the size of global average pooling K, will be reduced from
hxwxctol x1 xcas:

h w
1 .
Ko=—— ZZFc(l,J) 3)
i=1 j=1
where F¢ (i, j) is the feature value at position (i, j) in the feature

maps.

Inspired by attention mechanism discussed in [22], we use
a self-gating mechanism to obtain the channel correlation
from the descriptor retrieved by global average pooling.
The self-gating mechanism learns the nonlinear synergies
between channels as well as mutually exclusive of each other.
Therefore, sigmoid operators and soft shrinkage are utilized
to realize the gating mechanism. We assume that S(.) and ¢(.)
denote the sigmoid operators and soft shrinkage, respectively.
The gating mechanism is transformed as in the following
formula

R. = ®(Ly(S(Lp(Ka))) “

where Ly is the channel reduction operator and Lp are the
channel up sampling operators. When the global pooling
layer K is outputting, it is convolved with a down sampling
convolution layer, then is activated by the soft-shrinkage
function. To distinguish the channel features, the output layer
is then feedback into an upsampling convolution layer that
followed by sigmoid activation. In addition, for statistical
in-formation, the output of the sigmoid (R.) is adaptively
rescaled by the input F. of the channel features. The
implementation of this process can be formulated as

A

F. =R, xF, )

C. FEATURE ENHANCEMENT UNIT BASED ON

RESIDUAL MODEL

In this section, feature enhancement based on residual model
with short skip connections and local skip is introduced
in detail. It is known that very deep network night suffers
from weaken influences from the shallow layers on the deep
layers as the growth of depth. For solving this problem,
the feature enhancement is proposed in ULNet for image
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denoising. Our Feature enhancement unit is called FEU.
The feature enhancement unit (FEU) is composed of three
parts as following. Firstly, the input features are divided
into two branches and transited to two dilated convolutions,
then concatenated and passed through another convolution.
Secondly, when the features are compressed by an enhanced
residual unit of three convolution layers, features employ
a residual block of two convolutions to learn. The feature
compression is able to improve the speed of processing. The
final layer of residual block flattens the features by using a
1 x 1 kernel. Thirdly, the output of the feature attention unit
is transited to the input of next unit. Therefore, we use FEU as
a basic module to construct our denoising network. The n-th
module of the FEU is given as

F, = FEU(FEU(....(Co(Fp))...)) ©6)

where F, is the output feature of the FEU,,. The direct cas-
cading the residual modules cannot finish better performance.
Hence the input of the feature training module is transited to
the last output of the stacked modules as

F, = Fy + Cy(W,b) @)

where, W and b are the weights and biases trained in the
model. F, is transmitted to reconstruction layer to output the
same number of channels as the input of the network.

D. LOSS FUNCTION

The proposed ULNet is trained by the degradation equation
y = X + n, y is noise image, x is the original image, n is
the noise. It is known that the ULNet is used to predict the
residual image, n vian =y — x. Then, we employ the given
pair and the mean square error (MSE) to train the denoising
network model, where is the noisy input and the ground-truth.
The implementations of this process can be formulated as

N
1 1 i \2
L(w,b) = v 21: (ULNet(Ty) — I%) (®)
=
where ULNet is our network, w and b represent the set of
all the network parameters learned, IN is noise image, I is
ground-truth.

E. NETWORK RECONSTRUCTION

The output features of the last layer are feedback to the
reconstruction module, which is also comprised of one
convolution layer.

10 = G (F,) )

where Cr(.) denote the reconstruction layer, 10 is the denoised
output image, Fr are the trained features.

F. IMPLEMENTATION OF ULNET

Our ULNet model includes five FEU blocks. The convolution
filters size of each layeris 3 x 3, but the size of last layer is set
to 1 x 1. In order to realize the same size out-puts of feature
maps, we use zero-padding to fill the maps. The number of
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TABLE 1. Experimental system environment.

PC Server
Intel(R) Xeon(R)
cry  Mmer® Core M cpUES-2650 va@
SO 2.20GHz
Memory 8G 40G
Ge Force RTX
GPU Ge Force GTX 1070 2080Ti
System Windows 7 Cent OS Linux 7
Language VS2010+python3.6 Python 3.6
Library TensorFlow 2.4.1 Tensoerl(;leersmn

channels is fixed at 64 for each convolution layer, except for
feature attention down scaling. The whole network has only
four feature maps since there are 16 time for reducing these
convolution layers. The final convolution layer might output
three or one feature maps because of the input feature maps.

IV. EXPERIMENTS

A. THE ULTRASONIC LOGGING IMSGE DATASETS

We selected 4000 ultrasonic logging images 256 x 256 pixels
in size from the six oil wells as the test datasets. The all
models are trained on Gaussian noise levels set to 15, 25,
40 and 50. Noise signals and the original signal were added
to produce a corrupted signal following the model:

w(x,y) = s(x,y) + n(x, y) (10)

In these equations, s (X, y) is the original signal or image, n
(X, y) denotes the noise introduced into the image to produce
the corrupted image w (X, y), and (x, y) represents the pixel
location.

Different areas of an image contain different kinds of
detailed information. Hence, we divided the noisy training
images into 158000 patches of 40 x 40 pixels in size. A patch
facilitates more robust features and improves the efficiency
when training a denoising model. Noise varies and is complex
in the real world, so we used 1000 real noisy images with
256 x 256 pixels in size from the datasets to train a real
noise denoising model. To accelerate the speed of training,
the 1000 real noise images were divided into 111600 patches
of 50 x 50 pixels in size. Additionally, each training image
was randomly rotated by one of eight ways: original image,
90°, 180°, 270°: original image flopped by itself horizontally,
90° flopped by itself horizontally, 180° flopped by itself
horizontally, and 270° flopped by itself horizontally.

B. EXPERIMENTAL ENVIRONMENT

The ULNet model was trained on the server, but the
actual operation is done on a Personal Computer. Therefore,
the experimental environment in our paper is divided into two
parts (see Table 1): the server and personal computer.
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C. EXPERIMENTAL RESULTS AND ANALYSIS

We conducted qualitative and quantitative experiments to
evaluate and demonstrate the performance of the proposed
ULNet model for removing noise. The experimental results
produced by Gaussian filtering (GSF), TV algorithm, non-
local mean filtering (NLM) [36] and DnCNN [20] were
compared with our proposed method. A visual inspection
of recovered clean images subjectively reveals signs of
clarity and completeness. An objective, empirical evaluation
used peak signal to noise ratio (PSNR), structural similarity
index (SSIM) values and the runtime of denoising of an
image to test the denoising effects of the proposed model
in relation to other denoisers. In addition, real noisy images
were used to further assess the practicability of ULNet.

In this paper, peak signal to noise ratio (PSNR) and
structural similarity index (SSIM) values were employed
for in the objective empirical evaluation. The PSNR and
SSIM were calculated as the error metric and compared
against other competitive state-of-art algorithms. For a fair
comparison, we used the default settings of the comparative
methods provided by the corresponding authors. Assuming
that the size of the original image X is M x N, and Y is the
denoising image. PSNR is then defined as:

N x Mf2,.

PSNR = 101log ]
> > XA ) = YA PP
i=1j=1

(11)

where fin,x is the maximum intensity of the input image, for
the common 8-bit gray level image with 256 possible gray
level values, since fiax = 255. PSNR is used to measure the
denoising effect, but we also can employ other quantitative
indexes to evaluate the structural similarity between original
and the denoised images. SSIM is a quality assessment that
measures the similarity between two images. Suppose x and y
are two non-negative image signals for calculating the SSIM.

(Zﬂxﬂy + Cl)(zaxy +c2)
(12 4 uk +c) (af +o? + cz)

SSIM(x, y) = (12)

where the terms px and juy, are the mean intensity of x and y,
while, ox and oy are their standard deviations. The term oy
is the covariance of images x and y, and ci, ¢, are constant
values. The local parameters ux, [y, Ox, Oy and oxy are
calculated within a local 8 x 8 square window, and the square
window slides from pixel to pixel over the whole image.

1) QUALITATIVE EVALUATION

In order to verify the denoising effect, Gaussian white
noise (GWN) was added to the borehole wall image,
the denoising effect of the method model was measured by
the visual image after denoising. The performance of the
proposed ULNet is illustrated through the testing results
of the model well and the ultrasonic logging image as an
example. Figure 3 shows examples of the denoising results
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FIGURE 3. Denoising results of different methods on one image with different noise levels. The first row
of the I, 11, 111, and VI images are the original image and the second through the fifth row is the noise
image. The noise level is: 15, 25, 40 and 50. (a) noise images; (b) denoised images by gaussian filter;

(c) denoised images by TV filter; (d) denoised images by Non-local mean filter; (e) denoised images by
DnCNN; (f) denoised images by ULNet(our).

by using the proposed method and four comparative methods The I and II images of Figure 3 are the model well images,
when the noise level is 15, 25, 40 and 50. acquired by an ultrasonic logging instrument CBIL that uses
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(d
FIGURE 3. (Continued.) Denoising results of different methods on one image with different noise levels. The first row of
the I, 11, 111, and VI images are the original image and the second through the fifth row is the noise image. The noise level

is: 15, 25, 40 and 50. (a) noise images; (b) denoised images by gaussian filter; (c) denoised images by TV filter;
(d) denoised images by Non-local mean filter; (e) denoised images by DnCNN; (f) denoised images by ULNet(our).

transducers. The IIT and IV images of Figure 3 are ultrasonic imaging logging instrument BHTV from Changqingyi well.
logging images, acquired by the piezoceramic ultrasonic From Figure 3, the experimental results show that our method
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TABLE 2. Denoising results comparison of different dataset at different noise levels (PSNR).

Dataset ) Gauss filter vV NLM DnCNN ULNet(ours)
15 23.99 28.90 34.83 35.54 37.23
No.l 25 21.75 24.04 31.51 33.76 35.02
40 18.65 20.05 27.24 28.99 32.88
50 17.79 18.77 25.43 27.32 30.43
15 20.79 24.95 28.34 30.41 31.89
No2 25 18.58 20.98 25.13 27.29 29.97
' 40 17.15 18.20 20.68 24.87 27.67
50 16.87 17.37 18.89 23.13 26.77
15 20.98 23.92 26.46 28.41 30.79
25 17.85 20.33 23.30 27.29 29.12
No3 40 15.54 18.88 21.00 24.87 27.89
50 14.62 16.42 19.83 22.54 25.79
15 23.22 26.80 31.25 33.15 35.97
25 20.00 22.78 27.81 29.92 31.35
No4 40 19.76 20.34 2445 27.67 29.45
50 17.86 18.62 23.22 26.43 27.92
15 24.08 28.47 32.25 3541 37.32
No.s 25 23.73 27.46 27.38 32.29 34.76
o 40 21.46 23.57 25.43 27.87 29.53
50 19.71 21.33 24.12 25.32 28.11
15 24.79 29.12 32.37 34.41 36.23
25 2248 28.84 30.53 31.29 33.87
No.6 40 19.14 23.68 25.26 27.87 28.71
50 17.04 2022 23.51 25.77 27.62

TABLE 3. Denoising results comparison of different dataset at different noise levels (SSIM).

DataSet 1) Gauss filter TV NLMF DnCNN ULNet(ours)
15 0.7561 0.8429 0.8629 0.9157 0.9523
25 0.6219 0.7248 0.7322 0.8279 0.8886
No.d 40 0.5389 0.6167 0.6187 0.7887 0.8139
50 0.4969 0.5841 0.6023 0.7312 0.7992
15 0.6624 0.7829 0.8129 0.8755 0.9123
No2 25 0.6139 0.7342 0.7753 0.7971 0.8386
40 0.5213 0.6167 0.6345 0.7024 0.7339
50 0.4971 0.5922 0.6027 0.6849 0.7012
15 0.7125 0.7929 0.7987 0.8905 0.9343
25 0.6336 0.7248 0.7451 0.8041 0.8486
No.3 40 0.5247 0.6167 0.6350 0.6931 0.7246
50 0.5012 0.5989 0.6012 0.6733 0.7053
15 0.7539 0.8329 0.8412 0.8719 0.9123
25 0.6428 0.7248 0.7433 0.8086 0.8586
No 40 0.5347 0.6037 0.6375 0.7339 0.7639
50 0.5244 0.5879 0.6011 0.7112 0.7561
15 0.6622 0.7747 0.7961 0.8957 0.9323
25 0.6034 0.7048 0.7347 0.8071 0.8563
No:3 40 0.5456 0.6321 0.6435 0.6987 0.7339
50 0.5218 0.6123 0.287 0.6712 0.7021
15 0.7134 0.8029 0.8221 0.9123 0.9413
25 0.6219 0.7348 0.7566 0.8012 0.8586
No.6 40 0.5489 0.6467 0.6688 0.7339 0.7989
50 0.5212 0.6217 0.6519 0.7129 0.7766
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TABLE 4. The running time (s) of test images denoising with different size, which gives GSF, TV, NLM, DnCNN, ULNet (ours) and the time when the method

runs on the CPU/GPU. (o = 25).

Method Device 3000%256 3000%512
P 124.671 209.831

GsF CPU 67 09.83
GPU 10.564 20.396

CPU 184.72 368.92

NLM GPU 11.198 12.437
TV CPU 74.575 10.184
CPU 19.34 3931

DnCNN GPU 2.186 3302
CPU 16.123 30.562

ULNet(ours) GPU 1.068 2373

is visually superior to the other methods, yielding satisfactory
denoising results. A closer inspection on the ultrasonic
logging imaging reveals that our model generates textures
closest to the ground-truth with fewer artifacts and more
details.

From the second column of figure 3, although the tra-
ditional Gaussian filtering denoising methods can complete
the denoising, it is clear that the image is over-smoothed.
From the third and fourth column of figure 3, the non-local
mean filtering and TV algorithm retain the image details
while denoising, but the local detail features are lost. It is
worth noting that, the perforated borehole wall (the IV image
in figure 3) was processed by TV algorithm filtering when
the noise level was set 40 and 50. As a result, part of the
perforated on the right has been lost and the whole image is
distorted.

Compared with other algorithms, the proposed method
in our paper and DnCNN can remove the noise while
preserving the finer details and structures. As an effective
denoising model, it can protect the texture features of the
image and retain the line features of ultrasonic logging
image, which can be used in actual ultrasonic logging image
denoising. Therefore, our method was more effective than
others, quantitative evaluation will be provided in the next
subsection.

2) QUANTITATIVE EVALUATION

We evaluated the denoising performance of ULNet via
600 images, there are 100 images in each group. The size of
each image is 256 x 256 pixels, and each dataset was from
one of six test oil wells. The average PSNR and SSIM results
of different methods on the dataset are shown in Table 2 and
Table 3.

Compared to the traditional denoising method (Gaussian
filter), the methods TV and NLM have a notable PSNR and
SSIM gain. According to [21], deep learning techniques have
received much attention in the area of image denoising and
achieve better performance than previous method for optical
images. We used DnCNN and ULNet (our method) to remove
the noise of the ultrasonic logging imaging. The experiment

VOLUME 9, 2021

results from Table 2 and Table 3 show that the denoising
method based on deep learning further improves the capacity
of removing the noise of the ultrasonic logging imaging.
As one can see, the proposed approach can achieve the best
PSNR and SSIM results than the competing methods. Our
method outperforms all the competitive methods on datasets
for all noise levels since our method has the better expressive
and generalization ability of denoising. Not only that, in the
next section we will discuss the advances of our method in
terms of operational efficiency.

3) OPERATING EFFICIENCY

In addition to visual quality, another important aspect for an
image restoration method is the testing speed. Table 4 shows
the run times of different methods for denoised images of
sizes 3000 x 256 and 300 x 512 with Gaussian noise level
25. Since GSF, NLM, DnCNN and our ULNet methods are
well suited for parallel computation on GPU, we also give the
corresponding run times on GPU. As in [37], we do not count
the memory transfer time between CPU and GPU.

As illustrated in Table 4, we can see that the proposed
ULNet can have a relatively high speed on CPU and GPU, its
running time is very competing in contrast to other popular
methods. Further, the ULNet has the smaller complexity than
that of state-of-the-arts, such as DnCNN. Taking denoising
performance and flexibility into consideration, ULNet is
very competitive for practical applications. The next section
describes how this works in a real-world situation.

4) REAL NOISY IMAGES

In the real-world noise is complex, there are many noise
sources and images are easily corrupted. An evaluation of real
noisy images could indicate the effectiveness of algorithms
in real-world applications. However, such an evaluation is
difficult to conduct due to the following reasons. (I) Both
the ground-truth clean image and noise level are unknown
in real noisy images. (II) The real noise comes from various
sources, and the noise is spatially variant (non-Gaussian) and
signal dependent, hence, the assumption that noise is spatially
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(b) Gaussian

(d) Non-local mean (e) DnCNN (f) ULNet Cour)
FIGURE 4. Denoising results of different methods on real logging images denoising. (a) real noise images; (b) denoised images by

Gaussian filter; (c) denoised images by TV filter; (d) denoised images by Non-local mean filter; (e) denoised images by DnCNN;
(f) denoised images by ULNet.

invariant, employed by many methods do not hold for real Since there is no ground-truth image for a real noisy image,
noisy images. a visual comparison is employed to evaluate the performance
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of ULNet. As shown in Figure 4, we visually compared the
result of our method with the other methods on the real noise
images collected at the Changqingyi oil well.

It is clear that the methods of GSF, TV and NLM perform
poorly in removing the noise from local area (no.l and
no.2) as shown in Figure 4. From Figure 4 (b), although
the denoising results of GSF remove the noise, the image
is over smoothed. From Figure 4 (c) and 4 (d), TV and
NLM fail to remove the noise since they are efficient and
capable of handling synthetic instead of real noisy images
of ultrasonic logging. In contrast, DnCNN and our proposed
ULNet obtain the better visual results than the methods of
GSEF, TV and NLM with removing the noise and detail
preservation, but a few noises still exist from the magnified
area by the method of DnCNN. Therefore, the results indicate
the feasibility of employing our method for practical image
denoising applications.

V. CONCLUSION

In this paper, we proposed a new CNN model, ULNet, for
synthetic noise and real noisy images of ultrasonic logging.
Our model is an end-to-end architecture without requiring
separate sub-nets or manual intervention. Our solution
includes three modules: feature extraction, the enhancement
attention modules based on residual network and image
reconstruction. The results on synthetic images with GWN
demonstrated that ULNet can not only produce state-of-the-
art results when input noise level matches the ground-truth
noise level, but also has the ability to robustly control the
trade off between noise reduction and detail preservation.
The running time comparisons showed the faster speed of
ULNet over other competing methods. The results on real
noisy images further demonstrate that ULNet can deliver
perceptually appealing denoising results. Considering its
flexibility, efficiency and effectiveness, ULNet provides a
practical solution for ultrasonic logging image denoising.
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