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ABSTRACT Due to the recent technological advances in inertial measurement units (IMUs), many
applications for the measurement of human motion using multiple body-worn IMUs have been developed.
In these applications, each IMU has to be attached to a predefined body segment. A technique to identify
the body segment on which each IMU is mounted allows users to attach inertial sensors to arbitrary body
segments, which avoids having to remeasure due to incorrect attachment of the sensors. We address this
IMU-to-segment assignment problem and propose a novel end-to-end learning model that incorporates
a global feature generation module and an attention-based mechanism. The former extracts the feature
representing the motion of all attached IMUs, and the latter enables the model to learn the dependency
relationships between the IMUs. The proposedmodel thus identifies the IMUplacement based on the features
from global motion and relevant IMUs. We quantitatively evaluated the proposed method using synthetic
and real public datasets with three sensor configurations, including a full-body configuration mounting
15 sensors. The results demonstrated that our approach significantly outperformed the conventional and
baseline methods for all datasets and sensor configurations.

INDEX TERMS Inertial measurement units, IMU-to-segment assignment, attention mechanism, convolu-
tional neural network, recurrent neural network.

I. INTRODUCTION
Inertial measurement units (IMUs) are a prominent option
for analyzing human motion. IMUs measure 3D acceler-
ation, angular velocity, and magnetic field, and they cal-
culate their 3D orientation. Body-worn IMUs can be used
to estimate rotational and, sometimes, translational motion
of the attached segment, which help estimate the required
motion parameters. As the sensors operate at a high frame
rate with low latency, they can be introduced in real-time
applications for motion analysis, such as full-body motion
capture [1]–[3] and navigation [4], [5]. Furthermore, recent
technological advances have dramatically reduced the size
and price of IMUs, making them the most promising
technology for the continuous tracking of human move-
ments in daily life [6]–[8]. Due to recent improvements that
have enabled easier configuration, non-expert (but trained)
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users can collect motion data with IMUs. A clinic’s doc-
tors or their assistants can use the inertial sensors to
track patients’ motions to assist in rehabilitation or disease
diagnosis [9]–[11]. Some studies have collected data from
many participants wearing IMUs during everyday life for an
action recognition task [12]–[14].

For a detailed and robust motion analysis, many
IMU-based applications derive data from multiple sensors
mounted on multiple body segments. The conventional
approach to gait analysis attaches six IMUs to the upper
and lower legs and feet [15]. Some IMU-based full-body
motion analyses require more than 10 inertial sensors to
track one subject [2], [16], [17]. Such configurations are
prone to errors because each sensor must be attached to a
predefined body segment. If an IMU is mounted on the wrong
segment, remeasurement will be required. This problem can
be an obstacle for general users’ ability to measure motion
with IMUs. Hence, a technique to identify the segment to
which each sensor is attached based on the sensor signals is
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desired, as it would make IMU attachment easier and quicker.
This identification task is called an IMU-to-segment (I2S)
assignment [18].

In this paper, we address an I2S assignment: the task
of classifying IMU data into classes corresponding to the
body segments on which IMUs are mounted. With the
assignment framework proposed in this paper, although
only one IMU needs to be attached to the predetermined
segment, the other IMUs can be mounted on arbitrary
segments because our framework automatically assigns the
sensors to the segments to which they are attached based on
the sensors’ measurements during a few seconds of walk-
ing. The classical approaches to I2S assignments involve
manually designing features for discriminating IMU place-
ments [19]–[21]. Recent work has proposed extraction for
features using deep neural networks (DNNs) [18]. Although
these approaches achieved high assignment accuracy in
well-controlled settings (e.g., the approximate angle of the
sensor to the segment in the test set is the same as those of
the training set), their accuracy has decreased in trials that
did not meet these conditions.

To mitigate these limitations and robustly perform the I2S
assignment, we propose an approach that merges features
across all body-worn IMUs and learns the global dependen-
cies between these IMUs. Unlike conventional methods that
classify sensors one by one, our approach assigns locations to
all body-worn IMUs at once through a DNN. The proposed
model classifies each IMU based on a global feature that
represents the motions of all sensor-attached segments of a
body. Additionally, the model learns the dependency relation-
ships between IMUs, which enables it to perform assignments
based on the data from relevant IMUs (e.g., IMUs attached
to the adjacent segment). To implement this feature fusion
and dependency learning, we present a newDNN architecture
that incorporates a global feature generation module and an
attention-based mechanism.

We experimentally evaluated our method using synthetic
and real datasets in three sensor configurations. The results
demonstrated that the proposed approach significantly out-
performed those of the conventional work and baselines in
assignment accuracy. Also, the ablation studies and attention
maps generated by the intermediate layer of the proposed
model suggested that our model captured the dependency
relationships between IMUs. The results obtained with the
real IMU dataset validated the robustness of our method. Our
contributions are summarized as follows:
• We propose a novel I2S assignment model that generates
a global feature representing the motion of all body seg-
ments to which IMUs are attached and learns pairwise
dependencies between the IMUs.

• We demonstrate that merging features extracted from
multiple body-worn IMUs can benefit the identification
of a segment where each IMU is mounted.

• We show that the proposed method outperforms the
conventional and baseline methods in three sensor con-
figurations on synthetic and real public datasets.

II. RELATED WORK
A. IMU-TO-SEGMENT ASSIGNMENT
A line of research on placement recognition of inertial sensors
has aimed to define effective feature representations based on
signals from IMUs. The early work applied hand-crafted fea-
ture descriptors, such as root mean square and amplitudes of
accelerations and classical classification algorithms, includ-
ing support vector machines and decision trees [19]–[21].
The feature descriptors of these approaches are designed
based on the intuition and experience of the researchers, with
no agreement regarding the most suitable features for I2S
assignments.

A recent study for I2S assignment proposed an approach
that combines convolutional neural networks (CNNs) and
recurrent networks [18]. This combined network was trained
in an end-to-end manner without the need to manually design
features. This approach assumes that IMUs are attached to
the lower limbs and assigns IMUs one by one, ignoring
the signals from other IMUs. The proposed method assigns
IMUsmounted on the full-body segments by using the signals
from all body-worn IMUs. Our method generates a global
feature that represents multi-segment motions, which allows
the model to assign an IMU of interest based on its relative
motion to all the IMUs. In addition, the proposed model
learns dependency relationships between the IMUs. Intu-
itively, when assigning a sensor on the left tibia, the model
should pay attention to the data from the IMUs attached
to the left femur and the left foot as well. Global feature
extraction and dependency learning are incorporated into
the proposed model using the techniques introduced in the
following Secs. II-B and II-C, respectively. To the best of our
knowledge, our work is the first deep learning approach that
assigns each IMU to a segment using the aggregated global
feature and the sensor interdependencies.

B. GLOBAL FEATURE EXTRACTION
The proposed module to generate a global feature that repre-
sents the motion of all segments to which IMUs are attached
is inspired by a technique used in point cloud semantic seg-
mentation: the task of separating a point cloud into multiple
regions according to the semantic meanings of points [22].
Because a 3D point in a point cloud, which has only positional
data, has little information, recently developed approaches
have successfully handled point clouds by aggregating local
features and obtaining global features [23]–[25]. The fea-
ture aggregation module incorporated in the proposed model
allows the model to use the global motion of the body
segments for the assignment of IMUs.

Pointnet [23] is the pioneering work in applying neural
networks to learn over general point sets. It takes raw point
clouds as an input and obtains a global feature through a
pooling layer that follows individual feature extractors com-
posed of a simple multi-layer-perceptron (MLP). The pooling
aggregator is widely used in various tasks against various
data structures [26]–[28] due to its simple implementation
and the permutation invariance of the inputs. The proposed
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FIGURE 1. An overview of the proposed framework.

assignment model generates a global feature using the pool-
ing aggregator to merge individual features from the IMU
data that are input in a random order.

C. ATTENTION MECHANISM
Attention-based neural networks have been successfully
applied to a wide variety of fields, such as natural
language [29], [30], image [31], [32], and speech process-
ing [33]. The studies report that learning the dependencies
among the intermediate features through the attention mech-
anism improves recognition accuracy. The learned atten-
tion also helps interpret the reasoning behind the machine
prediction and improves the explainability of the DNN
models [34], [35].

Transformer is one of the most promising approaches
for learning global dependencies using the attention mecha-
nism [29]. Transformer has been proposed for use in the task
of natural language processing and has been quickly adopted
for a variety of tasks, such as image classification [32] and
object detection [31]. The self-attention operator in Trans-
former explores the dependencies of input feature vectors.
We incorporate the Transformer encoder into our model
to obtain the dependency relationships between body-worn
IMUs. We expect the attention mechanism to capture the
pairwise dependencies of the sensors, which enables the
assignment of an IMU that relies on the features extracted
from the dependent IMUs.

III. METHODS
A. PROBLEM SETTING
We address the I2S assignment, which involves identify-
ing a segment to which each IMU is mounted, based only
on the IMU signals without relying on external sensors.
We construct a DNN-based model to learn the discriminant
features and classify the IMUs into the attached segments.
In the proposed framework, a user processes the assignment
following the three steps below:

1) The user selects a root IMU from a set of IMUs to
be mounted and attaches it to the predetermined root
segment of a subject.

2) The user mounts the remaining IMUs on the arbitrary
body segments of the subject.

3) The proposed model provides assignment predictions
using the data from all body-worn IMUs while the
subject walks for a few seconds.

In our problem setup, only one sensor is placed on the pre-
determined segment, which dramatically reduces the risk of
replacement and the effort required from the user to attach the
sensors. Unlike with the conventional methods [18], the user
can mount IMUs at any angle. The position of the sen-
sors needs to be known (e.g., an arbitrary sensor should be
mounted on the middle of a bone); however, this constraint
is satisfied in most practical situations [19]. The role of
the root IMU and the difference in assignment accuracy
depending on the selected segment as a root are men-
tioned in Secs. III-C and VI-B, respectively. When we mount
15 sensors on each segment, the I2S assignment can be
regarded as a task to classify the sequence data of 14 IMUs
into 14 classes associated with the segments, except for the
root segment.

B. METHOD OVERVIEW
The proposed I2S assignment framework, as illustrated
in Fig. 1, consists of data preprocessing, IMU-wise feature
extraction, global feature generation, and attention learning
modules. Our model takes as input the accelerations and
angular velocities of n target IMUs to be classified and one
root IMU and provides n predicted classification scores asso-
ciated with all segments except the root. Note that the data
from the root IMU are placed at the top of the input matrix;
however, the data from the n target IMUs are stored in the
input matrix in a random order to train the model for the
assignment task.
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In the data preprocessing module, accelerations and angu-
lar velocities in the sensor-local coordinates are converted
to the root sensor coordinates, and noise is added to the
accelerations for data augmentation. Then, the discriminant
features are extracted from the IMU signals in a one-by-one
manner, and these features are merged in the global feature
generation module. In the final step, global dependencies are
learned in the Transformer encoder [29], and the model then
provides classification scores through linear transformation
with softmax activation.

C. DATA PREPROCESSING
Coordinate transformation and data augmentation are per-
formed in the data preprocessing modules for better general-
ization and convergence of the proposed assignment model.
In this section and Fig. 2, the accelerations, angular velocities,
and orientations refer to the values at a specific time step t
(1 ≤ t ≤ T ), where T is the window size of the IMU
data; however, the notation of time step t is eliminated for
simplicity.

At first, the raw sensor signals w.r.t. the sensor-local coor-
dinates F iS (1 ≤ i ≤ n), where n is the number of IMUs to
be assigned, are transformed into the root sensor coordinate
frame FR. The transformation makes the inputs invariant to
the walking direction of the subject; this means the represen-
tation of the sensor signals can be the same when the subject
is walking north and south, which facilitates the training of
the model. The transformation matrix Ri

RS that maps F iS to
FR can be obtained via

Ri
RS = RWR

TRi
WS , (1)

where RWR andRi
WS represent the orientation of the root sen-

sor and the i-th sensor w.r.t. the world coordinate frame FW ,
respectively. Fig. 2 depicts an example of coordinate trans-
formation when the lower back is chosen as a root segment.
Then, 3D acceleration ai w.r.t. FR is calculated by a simple
dot product with Ri

RS and the sensor-local acceleration ali
expressed as

ai = Ri
RSa

l
i . (2)

Given Ri
RS and the sensor-local angular velocity, 3D angu-

lar velocity ωωωi w.r.t. FR is obtained by applying the classical
method [36].

Data augmentation is executed to avoid over-fitting and
to stabilize the performance of the trained model. Following
the methods of successful studies that have applied DNNs
to IMU data [18], [37], we augment the sensor signals by
adding zero-mean Gaussian noise to the accelerations. The
i-th IMU data after the above data preprocessing is referred
to as xi ∈ RT×6, which stacks T frames of ai and ωωωi.

D. IMU-WISE FEATURE EXTRACTION AND
FEATURE AGGREGATION
The proposed DNN-based assignment model starts with
IMU-wise feature extraction. Inspired by the conventional

FIGURE 2. The relations among the coordinate systems.

architectures applied to IMU accelerations and angular veloc-
ities [18], [37], we construct the feature extractor with CNN
layers and a recurrent network layer.

The main difference between previous work and ours is
the step-by-step change in kernel size for each CNN layer.
As shown in Fig. 3, the kernel size and strides of the first
convolution along the height are three. This operator explic-
itly extracts features from accelerations and angular veloc-
ities separately, and the next convolution layer with kernel
height kh = 2 fuses both features. Another convolution
layer follows to acquire deeper merged features. This feature
extraction architecture is inspired by those in the previous lit-
erature that report high recognition accuracy in multi-modal
fusion tasks using multi-stream feature extraction and fusion
modules [38], [39]. In our model, batch normalization and
non-linear activation follow each convolution operation. We
use ReLU activation ρ(·) for the activation function that
computes ρ(x) = max(0, x).

We incorporate the recurrent units after the convolution
layers. We adopt gated recurrent units (GRU) [40] following
the results presented in the previous work that performed I2S
assignments [18]. The feature map from the last CNN layer
m ∈ RTL×dL is divided into TL one-dimensional features
mj ∈ RdL , where (1 ≤ j ≤ TL). The feature mj is
recurrently processed by GRU, and the output at the last time
step TL is returned. Finally, we obtain the IMU-wise feature
representation ui, which is extracted from xi.
The IMU-wise features individually extracted by the CNNs

and the recurrent layer are aggregated to generate a global
feature that represents the global motion of the segments to
which the IMUs are attached. The architecture chosen for
feature merging follows the recent success of the pooling
aggregator proposed in [23]. The aggregated feature g is
described as

g(p, q) = max(ur (p, q),u1(p, q), · · · ,un(p, q)), (3)
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FIGURE 3. Illustration of the proposed convolution operator. The orange boxes in the blue blocks represent the convolution
kernels. The kernel size changes for each operation. (ax , ay , az ) and (ωx , ωy , ωz ) represent the accelerations ai and angular
velocities ωωωi , respectively.

FIGURE 4. The architecture of the transformer encoder layer. The differences from the original are the position of the normalization
operator and the lack of position embeddings.

where g(p, q) and ui(p, q) denote the values of g and ui at
position (p, q), respectively, and ur represents the feature
extracted from the root IMU data. The global feature g forms
the same shape as ui. The features g and ui are concatenated
to describe the feature of the i-th IMU, which contains the
global feature extracted from all the body-mounted IMUs.

E. ATTENTION-BASED ARCHITECTURE
Transformer learns the dependency relationships between the
feature vectors and obtain discriminant feature representa-
tions [29]. The IMU-wise features concatenated with the
global feature (ui, g) are projected to d-dimensional vectors
through the MLP with d nodes. The (n + 1) d-dimensional
features form a matrix U ∈ R(n+1)×d , which is input to the
Transformer layer, as shown in Fig. 4.
The architecture within the attention learning layer is

designed to be similar to that of the original Transformer
encoder [29]; however, there are two differences between
the original and ours. One is the position at which layer
normalizations (LNs) are applied. LNs are applied before the
multi-head attention module and before MLP, following the
method used by recent works that modified the Transformer
and improved its recognition accuracy [32], [41]. Another
difference is the lack of position embeddings because our
model solves an assignment problem that assumes the order
of the input is unknown.

A given input U to the attention learning module is nor-
malized by LN. The normalized U is projected H times
into queries Qh ∈ R(n+1)×dk , keys Kh ∈ R(n+1)×dk ,
and values Vh ∈ R(n+1)×dv by three learnable matrices

Wq
h,W

k
h ∈ Rd×dk , and Wv

h ∈ Rd×dv , where 1 ≤ h ≤ H .
Using Qh and Kh, the attention matrix Ah is calculated by

Ah = softmax
(
QhKh
√
d

)
. (4)

The H outputs from the multi-head attention, AhVh are
concatenated, linearly projected, and undergo LN. Then,
the layer produces an output of the same shape as the
input through the IMU-wise MLP. The residual connections
are applied before the second LN operator and after the
IMU-wise MLP. The attention-based module is composed
of a stack of N identical attention learning layers. From the
output of the last layer, n feature vectors (except that of the
root IMU) are linearly projected with softmax activation,
resulting in n probabilities ŷi ∈ Rn.
In the training phase, we use the cross-entropy loss

between ŷi and the one-hot true label yi ∈ Rn which is
associated with the input xi as an objective function. The
proposed model is trained in an end-to-end manner.

In the test phase, we found that defining an objective
function from the probability distribution ŷi and assigning the
IMUs to maximize the function improves the accuracy, rather
than classifying them directly into the segment indicated by
the maximum value of ŷi. Specifically, the prediction matrix
Y ∈ Rn×n is defined by

YT
= (ŷ1, ŷ2, · · · , ŷn). (5)

Let B ∈ Rn×n be a boolean matrix, where B(i, j) = 1 if
row i is assigned to column j. Only one of the elements in a
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FIGURE 5. The architecture and the hyperparameters of the networks. The three blocks on the left show the proposed method, and the two on the right
depict the implemented baselines.

row has 1, and the others must have 0. Then, the assignment
algorithm seeks B̂ by solving the following optimization:

B̂ = argmax
B

n∑
i=1

n∑
j=1

B(i, j)Y(i, j). (6)

We solved the optimization using the 2D rectangle assign-
ment algorithm [42] implemented in the SciPy library [43].
In the experiments, this optimization was applied to the
proposed method and all comparison approaches, which con-
tributed to the improved accuracy of all methods, including
the conventional method.

IV. EXPERIMENTAL SETUP
A. IMPLEMENTATION DETAILS
The left three blocks in Fig. 5 illustrate the architecture and
hyperparameters of the proposed model. The architecture of
each block is detailed in Sec. III. The algorithm based on the
Tree-structured Parzen Estimator was used to seek the hyper-
parameter values, such as the learning rate, the batch size,
and the number of kernels and GRU nodes. We divided the
dataset into training, validation, and test set (see Appendix A
for details); the validation set was then used for parameter
tuning, and the values found are described in Appendix B.
The parameters are fixed through all the experiments.

B. BASELINES
The assignment accuracy of the proposed model was com-
pared to that of the conventional method [18], referred to
as one-by-one, which applied DNN to identify IMU place-
ment and infer the I2S orientation alignment of the IMU in
a one-by-one manner. Since our work focuses on the I2S
assignment, the branch layers for the alignment in one-by-one
were pruned.

To validate the contribution of the feature aggregation
module and the attention-based mechanism, we implemented
the two baseline methods. The two models, Global and
Attention, are depicted as the right two blocks in Fig. 5.
Global is composed of IMU-wise feature extraction and
global feature aggregation by the max-pooling layer. Global
is a model made by removing the attention-based learning

FIGURE 6. Sensor placement in the full-body configuration.

module from the proposed architecture. In contrast, Attention
handles the features extracted from each IMUdata to learn the
dependency relationships without aggregating the IMU-wise
features. The hyperparameters, the dataset division, and the
coordinate frame of the input are consistent for the proposed,
conventional, and baseline models across all the experiments.

C. DATASET
We quantitatively evaluate the performance of our approach
on the synthetic and real IMU datasets: CMU-MoCap [44]
and TotalCapture [45]. The sensor arrangement of the
CMU-MoCap is shown in Fig. 6. Assuming that the proposed
framework is utilized not only for full-body motion analysis
but also for the measurement of body parts, we evaluated the
model on lower-, upper-, and full-body configurations. The
sensor placements are defined as follows:

• lower body (7): lower back, l-femur, r-femur, l-tibia,
r-tibia, l-foot, and r-foot

• upper body (9): head, thorax, lower back, l-humerus,
r-humerus, l-radius, r-radius, l-wrist, and r-wrist
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• full body (15): segments on both lower and upper body
(lower back is duplicated),

where l- and r- represent left and right body segments, and the
figures in (·) denote the number of the segments. Then, since
the root segment is determined a priori, the I2S assignment in
lower-, upper-, and full-body configurations can be regarded
as the task of classifying the time-series signals of the IMUs
into 6, 8, and 14 classes, respectively. We selected lower
back as a root segment through all experiments, excluding
Sec. VI-B.

CMU-MoCap is the public human motion dataset cap-
tured with the marker-based optical motion capture sys-
tem (MoCap) [44]. We generated the synthetic IMU data
assuming that the IMU was attached to the segments of the
body measured in CMU-MoCap. The generation algorithm
is described in Appendix C. We selected the same scene used
in [18] (42 subjects performing different walking styles). The
models were trained with IMU signals from 26 subjects in
the training set and 7 subjects in the validation set, and they
were tested with the remaining 9 subjects’ data (detailed in
Appendix A).
TotalCapture is a public dataset providing 60 frame-

per-second (fps) of all-synchronized IMU data, HD videos,
and ground-truth human poses measured by optical
MoCap [45]. Since our approach uses only IMU signals
for the I2S assignment, real IMU data were utilized for the
training and evaluation of the models. The number of IMUs
was 13, and the sensor arrangement was the same as with
CMU-MoCap, with the l-wrist and r-wrist sensors removed.
TotalCapture has five subjects with a variety of motions
measured. We selected the walking scenes and used three
subjects’ data for training, one subject’s data for validation,
and the rest for testing. The period during which the subjects
took a calibration pose (the first and last two seconds) and
walked backward were manually removed from the dataset.
TotalCapture is a challenging dataset in three aspects. First,
the number of subjects in the training data is small, which
easily causes over-fitting. Second, it contains a variety of
walking styles, including many twists and turns and slow
and fast walking. Finally, the positions and angles of the
sensors attached to the body change slightly depending on
the subject because TotalCapture is not a dataset intended for
evaluating I2S assignment but for pose estimation. Through
the experiments on TotalCapture, we evaluated the versatility
of the proposed method.

The window size of the input IMU data was two sec-
onds (i.e., the number of frames T = 120 in 60 fps input
data), and the windows were always shifted by 0.25 seconds.
CMU-MoCap and TotalCapture provide 120 fps and 60 fps
IMU signals, respectively, and we used them at the original
frame rate.

V. RESULTS
A. ASSIGNMENT ACCURACY
The experimental results obtained using the setup described
in Sec. IV are shown in Table 1. As seen in this table,

TABLE 1. Assignment accuracy on the two datasets in the three
configurations. All figures represent percentages.

the proposedmethod outperformed the other methods on both
datasets for three configurations of sensor attachment, show-
ing that I2S assignment training in the proposed approach
yields better feature representations to discriminate the seg-
ment to which each IMU is attached.

The assignment results on the CMU-MoCap [44] are visu-
alized using confusion matrices in Fig. 7. The matrices show
that the assignment errors are caused by two main types of
mistakes: left/right switch (l/r switch) and intra-limb mis-
assignment (intra-misassignment). The l/r switch indicates
an incorrect assignment to the opposite side of the actually
attached segments (e.g., the IMU mounted on the l-wrist
is classified into the r-wrist class). The intra-misassignment
denotes that the IMU attached to a part of the limb is mis-
classified to another part of the same limb (e.g., the IMU
mounted on the l-wrist is assigned to the l-radius or the
l-humerus class). We highlighted some of the l/r switches and
intra-misassignments in the confusion matrix at the lower left
part of Fig. 7 with red and blue squares, respectively. The
figure shows that the proposed method reduced both mistakes
and significantly improved the assignment accuracy.

B. ABLATION STUDIES
To analyze the contribution of each module in our model
to mitigate the l/r switch and intra-misassignment problems,
we visualized the confusion matrices ofGlobal and Attention
in Fig. 8 and computed the error rate caused by each mistake.
On the CMU-MoCap dataset, the average l/r switch rates
(the number of l/r switches divided by the total number of
assignments) and the intra-misassignment rates for all three
configurations were 2.2% and 5.5%, respectively, for Global
and 3.1% and 2.4% for Attention. The lower l/r switch rates
ofGlobal and the lower intra-misassignment rate of Attention
can be observed in the confusion matrices shown in Fig. 8 as
well.

The results suggest that the global feature aggregation
alleviates the l/r switch problem. This could be because the
aggregation allows the network to model the motion of all
body segments and capture the motion of each IMU rela-
tive to the global body motion, thus enabling the model to
discriminate between left and right. The results also suggest
that the attention module reduces intra-misassignment errors.
This could be because the model with the attention learn-
ing architecture classifies the IMU data with consideration
of the information from the relevant IMUs, such as IMUs
attached to adjacent and opposite segments. For example,
as can be seen in Fig. 10(b) (see Sec. II-C for an explanation
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FIGURE 7. Some results on CMU-MoCap [44] in terms of confusion matrices. The left column represents the assignment results of
the conventional work [18], and the right column represents the results of the proposed method. The red and blue rectangles on the
lower-left confusion matrix highlight the left/right switches and intra-limb misassignments, respectively.
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FIGURE 8. Comparison between the two baselines on the CMU-MoCap [44] in the full-body configuration. The major cause of
incorrect assignment was intra-limb misassignments in (a) Global. On the other hand, (b) Attention suffered from left/right
switches.

FIGURE 9. The assignment accuracy of the proposed method on the TotalCapture dataset [45] in terms of confusion matrices.

of the figure), when assigning an IMU mounted on l-tibia,
the self-attention architecture devotes much attention to
l-femur, l-foot, and r-tibia. The assignment prediction relying
on the IMUs on the segments in the same limb should prevent
intra-misassignment.

C. RESULTS ON A CHALLENGING DATASET
The results on the TotalCapture dataset [45], as presented
in Table 1 and Fig. 9, revealed that the proposed approach

is robust to different walking styles and slight changes in the
IMU positions depending on the subjects. Our model took
the same period of data as an input regardless of the change
in walking speed, but the method achieved high accuracy in
all the sensor configurations.

The accuracy in assigning the arm segments was lower
than that of the other segments for two main reasons. One
is a variety of movements not found in a normal gait in the
training dataset, such as touching a head or face and raising
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FIGURE 10. Visualization of the self-attention matrices of the proposed model. The figures on the lines denote the attention scores. The higher
the score, the darker the color of the line. The training and test were performed on the CMU-MoCap [44] in the lower-body configuration.

clenched fists. The other is that the subject in the test set
walked without moving his arms for a few seconds. The
trained model could not distinguish between the IMU move-
ment on the arms, head, and chest in the scene. Specifically,
the mean assignment accuracy in the three seconds of the test
scene in which the subject walked slowly without waving his
arms (from 55 to 58 seconds in S5-W2 in TotalCapture [45])
was 61.1% in the full-body setting.

VI. DISCUSSION
A. ATTENTION MAPS VISUALIZATION
An attention mechanism can be used to improve the explain-
ability of deep learning models [35], [46], [47]. Explainabil-
ity, in this context, refers to a better understanding for humans
of why the models behave as they do. The explainability of
a model helps users make decisions based on the model and
allows researchers to understand what input and intermediate
features affect the results of the model. The attention learning
architecture used in our model can capture the pairwise rela-
tionships between the IMUs and explain what dependencies
the predicted assignments rely highly on.

To visualize the dependencies between the IMUs, we cal-
culated the mean attention matrix, representing the average
of the self-attention matrix (calculated by Eq. (4)) from
all the H heads and all the N Transformer encoder layers.
Each row of the attention matrix represents the dependencies
between the IMUs associated with the columns. The pairwise

FIGURE 11. Assignment accuracy depending on the root segment on
CMU-MoCap [44] in full-body configuration. The graphs in lighter blue
represent the right side of the segment (e.g., r-humerus and r-radius).

dependencies are separately visualized for each body segment
in Fig. 10. A high attention score suggests high dependency.
For example, Fig. 10(a) describes the degree of dependence
on the IMU attached to each segment when the model per-
formed the assignment for the IMU mounted on l-foot. For
all the segments from (a) to (f) in Fig. 10, it can be seen that
much attention is devoted to the adjacent segments and the
opposite segments even in the test phase, during which the
model has no prior knowledge of which segment each IMU
is mounted on.

B. ROOT SEGMENT SELECTION
The accuracy of the I2S assignment according to the root
segment is shown in Fig. 11. The results suggest that the seg-
ments that stably and faithfully follow the body orientation
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TABLE 2. Dataset division. The figures represent the ID of the subjects.

(e.g., lower back, thorax, head, and femur) are suitable for
the root. In contrast, when we chose the segments on the
arms that have great freedom of movement during walking,
the assignment accuracy decreased significantly.

VII. CONCLUSION
We have presented an approach that identifies the segment
on which each IMU is mounted by merging the features of
all the body-worn IMUs and by learning the dependency
relationships between the sensors. A pooling aggregator was
incorporated to obtain a feature that represents the global
motion of the body. In addition, a self-attention learning
architecture was implemented to allow the model to perform
an IMU assignment relying on the signals from the relevant
IMUs. The proposed model was quantitatively evaluated on
simulated and real IMUdatasets, which validated ourmethod,
showing that it accurately and robustly performed the I2S
assignment. Ablation studies suggested that the global feature
fusion and attention mechanism reduced left/right switches
and intra-limb misassignments.

Our I2S assignment framework assumes that the sensor
configuration is known a priori and that one of the sensors
is placed on the predetermined segment. These limitations do
not significantly impair practicality; however, further studies
to relax them are needed.

APPENDIX A
DIVISION OF THE DATASET
The data in a dataset are divided into training, valida-
tion, and test sets. In this paper, both the synthetic dataset
CMU-MoCap [44] and the real dataset TotalCapture [45] are
divided into the three sets on the basis of the subject (i.e., all
the trials (scenes) of a subject are put into one of the three
sets). The specific division of each dataset is summarized
in Table 2. In CMU-MoCap [44], we selected subjects per-
forming simple ‘‘walking’’ and had at least 600 frames in
every scene as a test set.

APPENDIX B
HYPERPARAMETERS FOR MODEL TRAINING
We adopted the hyperparameters described in this section.
Fig. 5 also visualizes the architecture and parameters of the
network.

In IMU-wise feature extraction, three CNNs with different
kernel sizes (3, kw), (2, kw), and (1, kw), where kw represents
the kernel width, were utilized in this order. The strides
of these kernels were (3,1), (1,1), and (1,1), respectively:
kw varies to scale the size of the convolution operator,

depending on the input frame T . Specifically, kw was set to
[T/15 + 1] in the experiments. The number of nodes in
GRU following the CNNs was 128. After the max pooling
and the concatenations of the vectors, MLP with the number
of nodes d = 256 mapped each feature to be the input of
the Transformer encoder layer [29]. The hyperparameters in
the Transformer encoder were as follows: The embedding
dimensions of the query dk , key dk , and value dv were 256.
The number of the MLP nodes after the second LN operator
was set to 768. The number of the attention heads H and of
encoder layers N was fixed to 4.

Our network was implemented in TensorFlow [48] and
trained for 1000 epochs with a batch size 128. Early stop-
ping with patience 400 was performed, and the model that
achieved the lowest loss on the validation set was utilized
for the test. RMSProp with a fixed learning rate 0.001 was
applied to optimize the model.

APPENDIX C
SIMULATED DATA GENERATION
The public human motion dataset named CMU-MoCap [44]
provides much 3D kinematics data which are measured using
the opticalMoCap.We used the human joint position ptWJ and
orientationRt

WJ w.r.t. the world coordinatesFW at time step t .
We virtually attached an IMU to a bone by defining a rotation
matrix RJS and translation vector tJS , which represent the
orientation and position of the virtual sensor w.r.t. the joint
coordinate frame FJ . They are kept fixed in FJ during move-
ment, assuming that the IMU is attached to a rigid human
body and its motion is perfectly linked to the associated
joint motion. In the experiments, the IMU was placed at
the midpoint of the bone, and the joint position data was
preprocessed with a zero lag Butterworth filter [49] of order
8 and a cutoff frequency of 10 Hz, following the previous
work [18]. Then, the IMU position ptWS and orientation Rt

WS
w.r.t. FW at time step t were obtained via

ptWS = ptWJ + Rt
WJ tJS (7)

Rt
WS = Rt

WJRJS . (8)

The angular velocity of the IMU w.r.t. FW is computed
by [36] using the sensor orientation in the current frame RtWS
and the next frame R(t+1)WS . The IMU acceleration at t time
step atWS w.r.t. FW is calculated by

atWS =
p(t+1)WS − 2ptWS + p(t−1)WS

1t2
, (9)

where 1t denotes the period of the time step. Since all the
IMU accelerations and angular velocities are transformed
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to the root sensor coordinate before they are input to the
assignment model, these values are invariant to the IMU ori-
entations w.r.t. FJ . Therefore, unlike the previous work [18],
we did not generate IMU data with various orientations
relative to FJ .
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