
IEEE RELIABILITY SOCIETY SECTION

Received July 4, 2021, accepted August 4, 2021, date of publication August 18, 2021, date of current version August 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3105910

Performability Analysis of a Redundant
Parallel Task in Network Systems
MIN TAO1, XIWEI QIU 2, AND PENG SUN2
1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
2School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Corresponding author: Xiwei Qiu (qiuxw@uestc.edu.cn)

This work was supported in part by the Sub-Project of the Independent Scientific Research Project through the University of Electronic
Science and Technology of China under Grant ZZKY-ZX-03-02-04.

ABSTRACT Recently, application of network systems (e.g., cloud computing systems) is increasingly
prevalent for achieving integration, sharing and efficient utilization of various resources. A parallel task in a
network system hasmultiple subtasks that can be executed in different servers in parallel. However, failures of
any subtask inevitably result in that the entire task cannot be complete. To avoid such a situation, the network
system can create some copies from a subtask and make them run on different servers simultaneously.
This redundant parallel execution manner is an efficient approach to improve performance and guarantee
reliability. However, it also brings complexity in modeling, evaluation and optimization. For example, link
failures inevitably lead to inaccessibility of some servers, and server failures also result in that subtasks
hosted on the server cannot be complete. This is the complicated failure correlation that cannot be ignored in
modeling and evaluation. This paper first presents a reliability-performance correlationmodel for a redundant
parallel task in the network system. The model captures precedence constraints of subtasks, multiple types
of failures and complicated failure correlations to improve fidelity. This paper also design an algorithm that
encompasses the Graph theory and the Bayesian theorem to evaluate a performability metric, which can be
used to quantify important reliability-performance correlation. Finally, a heuristic algorithm is designed to
search an optimal task execution strategy that maximizes the performability metric. Illustrative examples are
presented.

INDEX TERMS Network systems, precedence constraints, failure correlations, redundant parallel
computing.

I. INTRODUCTION
Network systems have became increasingly important for
achieving efficient use of various computing resources via
internet. Recently, the most important application of the
network system is the cloud computing system, especially,
the infrastructure-as-a-service (IaaS) system [1]. Although
the network system can integrate and share heterogeneous
resources, it also brings an important kind of failures that
cannot be ignored, i.e., network failures.
In real-world application scenarios of the network system,

many tasks have high computational complexities, e.g., big
data processing tasks. For efficiently reducing the completion
time of such a task, the task can be divided into multiple
subtasks to be executed in parallel. However, this parallel

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .

computing manner also brings a negative effect on task com-
pletion. That is, if any subtask is failed, the entire task cannot
be complete. Therefore, replication is usually adopted to
achieve fault tolerant.

In many traditional systems, redundant computing is only
triggered after a subtask is found to be fail. However, it is not
an efficient approach from the perspective of performance,
especially for some subtasks that have precedent constraints.
Therefore, to guarantee reliability and performance simulta-
neously, a more efficient redundant computing manner is that
each subtask has multiple redundant copies running simulta-
neously [2].

In principle, the network system has a centralized control
node (CN) that makes a decision on how to execute a paral-
lel task rationally. Not only performance but also reliability
should be considered together. The performability metric can
be used to quantify random performance affected by random

116356 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4657-2843
https://orcid.org/0000-0002-2673-9909

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

reliability factors [3]. However, since the network system usu-
ally has a complexity network structure, modeling, analyzing
and evaluating the performability of a redundant parallel task
in such a system is indeed difficult.

In fact, there are multiple types of failures in the network
system, including task failures, server failures, and link fail-
ures [4].More importantly, some complex failure correlations
exist among those failures. For example, failures of a link
inevitably result in that servers connecting to the CN through
the link become inaccessible, and failures of a server also
lead to subtasks hosted on the server are failed. Meanwhile,
precedence constraints of subtasks also bring failure corre-
lations among those subtasks. For instance, a data mining
task may have multiple subtasks of data checking, data clean-
ing, data processing, and result verification that are executed
in sequence. Failures of a predecessor subtask definitely
make that the successor subtasks cannot be complete. There-
fore, performance evaluation should capture random changes
caused by various kinds of failures and the corresponding
failure correlations for ensuring necessary precision.

The notion of performability is proposed for combining
reliability with performance [5]. Performability models for
traditional systems (e.g., fault-tolerant computer systems [6])
cannot be directly extended to the network system as the com-
plicated network structure is not taken into account. Many
recent researches focused on performability analysis of cloud
computing systems. Some important performability metrics,
such as expected response delay, expected waiting time, and
expected execution time of cloud services were evaluated
based on different stochastic models in reliability [7], [8].
However, those researches do not consider important failure
correlations. Although our prior research [9] investigated fail-
ure correlation between co-located virtual machines and the
host server in the proposed performability model, it cannot
be directly applied to a scenario that a task is executed in the
network system since the parallel and redundant computing
is not taken into account.

Another important research filed related to the network
system is how to design an optimal resource scheduling strat-
egy. Considerable researches have studied many optimiza-
tion techniques for satisfying various optimization objectives,
such as using a data aggregation technique to save energy
consumption of a cloud computing platform [11], achieving
load balancing of resources by adopting an optimal task
scheduling technique [12], enhancing the security of a cloud
system by using some optimal virtual machine allocation
policies [13], and minimizing the cost of a cloud system
by using a workflow scheduling approach [14]. However,
those optimization techniques were usually proposed from
the perspective of the system but not a task. Therefore, they
cannot be directly adopted to find a fine-grained task execu-
tion strategy when reliability and performance are considered
simultaneously.

There are many factors should be fully taken into account
when the CN makes a rational task execution strategy. For
example, how many redundant copies should be created for

each subtask, and how to assign those copies to servers in the
network system. In fact, excessive emphasis on redundancy
may not be necessary and even becomes irrational some-
times. The increment of the reliability of a subtask gained
by adding a redundant copy becomes increasingly slight with
the increase of the number of its redundant copies. Therefore,
for the network system where resources need to be shared
by various tasks, excessive redundancy is not an efficient
resource utilization pattern.

This paper systemically studies a theoretical performabil-
ity model for a task executed in the parallel and redundant
manner in the network system. The primary innovation of
the model is that it captures precedence constraints among
subtasks, multiple types of failures and the corresponding
failure correlations existed in the network system. An algo-
rithm based on the Bayesian theorem and the Graph theory is
presented to obtain the probability distribution of random task
completion time. The performability metric quantifying the
reliability-performance correlation is further derived. Finally,
this paper also develops a heuristics algorithm to search an
optimal task execution strategy for maximizing the performa-
bility metric.

The remainder of the paper is organized as follows.
Section 2 introduces an extended topological structure to
describe the network system and analyze the existing fail-
ure correlations. Section 3 presents an algorithm encom-
passing the Graph theory and the Bayesian theorem to
derive the performability metric of a redundant parallel task.
Section 4 develops a heuristic algorithm to find an optimal
task executing strategy maximizing the performability metric
of the task. Numerical examples are illustrated in Section 5.
Section 6 describes some related researches followed by high-
lights of new contributions made by this paper. Section 7 con-
cludes this paper.

II. ANALYSIS OF THE NETWORK SYSTEM
A. DESCRIPTION OF THE NETWORK STRUCTURE
At present, the network system in a realistic environment
is usually constructed by using cloud computing. The most
important technique of the cloud computing is virtualization.
This techniquemakes various heterogeneous resources can be
shared by multiple tasks through an uniform access interface,
i.e., a control node (CN). The CN is a critical component
of the current network system. It performs the centralized
management of a large amount of heterogeneous resources.

When the CN receives a task with multiple subtasks,
it becomes the start and the terminal points to execute the task.
To improve the completion probability of the task, the CN
first makes a decision on how many redundant copies should
be created for each subtask (since each copy is essential a
subtask, in the following content, we also use term ‘subtask’
mean a copy sometimes). Then, all the subtasks are assigned
to a set of heterogeneous servers that are distributed in the
network systems.

Some researches [15] suggested using a star topology to
describe the system structure for simplifying analysis and

VOLUME 9, 2021 116357

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

FIGURE 1. Description of the network structure.

computation, where the center is the CN, the node is servers,
and each branch represents a link between the CN and a
server. However, different from traditional computing sys-
tems, the network system is constructed based on the compli-
cated internet environment. This makes that there aremultiple
different links between the CN and a server. If those different
links are simplified into a branch, it is actually not an accurate
approximation for the network system. Instead of using the
star topology, we apply a more realistic tree topology to
describe the network system structure, as shown in Fig. 1.

B. DEFINITION OF FAILURE CORRELATIONS
It is important to notice that reliability and performance are
correlated and should not be treated separately [16]. For
example, if any subtask becomes fail due to random failures,
the entire task cannot be complete. Therefore, various types
of failures and failure correlations should be considered com-
prehensively. Failures in the network system can be mainly
summarized as three types, i.e., link failures, server failures,
and task failures. In general, failures of different servers, and
failures of different links can be treated as independent of
one another [4]. However, there still exist complicated failure
correlations, which are described as follows.

1) Server-Subtask (S-T) failure correlation: failures of a
server inevitably result in that subtasks hosted on it
cannot operate. This can be treated as the failure cor-
relation between a server and subtasks.

2) Link-Server (L-S) failure correlation: failures of a link
also make that all servers connecting to the CN through
it become inaccessible. That is, the failure correlation
between a link and servers. Note that a L-S failure cor-
relation may lead to multiple S-T failure correlations
subsequently.

3) Subtask-Subtask (T-T) failure correlation: Another
important factor bringing about the failure correlation
is precedence constraints among subtasks (e.g., a sub-
task must take the outputs of other subtasks as its own
input). Apparently, if there does not exist any redun-
dancy of subtasks, failures of a predecessor subtask def-
initely make that the successor subtasks cannot begin.

The model and algorithms presented in the following
section capture both multiple types of failures and the

FIGURE 2. An example of precedence constraints among subtasks.

complicated failure correlations in performability evaluation
for a redundant parallel task in the network system.

III. THE PERFORMABILITY MODEL
A. FAULT-FREE TASK COMPLETION TIME
Suppose a task submitted to the CN has a work requirement
w, which can be quantified as the number of instructions or
commands needed to be executed. The task is designed to
have M (M ≥ 1) subtasks in total. The work requirement of
subtask m is wm (1 ≤ m ≤ M), and equation w =

∑M
m=1 wm

is satisfied. If subtask m is assigned to server n, the fault-free
execution time (FFET) of subtaskm is defined as the time only
consumed in its execution without considering any failures,
which can be obtained as

umn =
wm
cmn

(1)

where cmn is the computational speed of subtask m when it
runs on server n. The value of cmn depends on the resource
capacity assigned to the subtask. There are many recent
technologies can be used to perform the capability of assign-
ing a specific computational resource capacity to a subtask.
Typically, the cloud virtualization technology can not only
guarantee non-interfering execution of co-located subtasks
but also ensure each subtask exclusively occupies a CPU
core [17]. In this paper, we also assume that a CPU core is
exclusively occupied by a subtask. Suppose fn is the maximal
core frequency of multi-core processor deployed in server n.
Then, cmn can be written as cmn = fn.
We first analysis the situation that the CN does not make

any redundant copies for the task. If there does not exist
any precedence constraints among the subtasks, the subtasks
can be executed totally in parallel. The entire task is com-
plete only after the completion of all subtasks, and its fault-
free completion time (FFCT) is defined as the time interval
between its submission and its completion without consider-
ing any failures, which is written as

t = max
1≤m≤M

(umn) (2)

However, in realistic environments, precedence constraints
among subtasks are usually existed, such as data dependen-
cies, which make the subtasks cannot be executed totally in
parallel. Fig. 2 shows an example of precedence constraints
of subtasks. As shown in the figure, the task has five sub-
tasks (M = 5). The completion of subtask 4 and 5 means
that the entire task is successfully complete. The precedence

116358 VOLUME 9, 2021

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

Algorithm 1 Calculate the FFCT of Subtask m
Require: w1 . . .wM , f1 . . . fN ,H
Ensure: tm
1: function CFFCT(m)
2: tm← 0
3: um← wm/fn //FFET of subtask m
4: S ← sum [H (m, :)] //the number of predecessor

subtasks of subtask m
5: if S = 0 then //no predecessor subtask
6: tm← um
7: else if S = 1 then //one predecessor subtask
8: j← find [H (m, :) = 1]
9: tm← um + CFFCT(j)

10: else //multiple predecessor subtasks
11: [j1, . . . , jS]← find[H (m, :) = 1]
12: tm← um +max[CFFCT(j1), . . . ,CFFCT(jS)]
13: end if
14: return tm
15: end function

constraints of the subtasks can be expressed as a M × M
matrix:

H =

0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 1 0 0

 (3)

Element hij in matrix H takes values of 0 or 1.
If hij = 1, subtask i must begin after the completion of
subtask j. The fault-free waiting time (FFWT) of subtask
i is defined as the time from submitting it to a server to
beginning it without considering any failures. If hij = 0,
there does not exist a direct precedence constraint between
subtask i and j. But this does not means that subtask i does
not have a FFWT, as subtask imay have some other precedent
subtasks. In general, the subtasks can be numbered arbitrarily.
After assigning all the subtasks to specific servers, we can
let vm and um (um = umn) represent the FFWT and FFET
of subtask m, respectively. The FFCT of subtask m can be
calculated by tm = vm + um. The FFCT of subtask m can
be calculated recursively, the corresponding pseudocode is
shown in Algorithm 1. After obtaining the FFCTs of all the
subtasks, the FFCT of the entire task can be calculated as

t = max(t1, . . . , tm, . . . , tM) (4)

However, as mentioned in Section 2.2, failures of any
subtask inevitably keep the entire task from completing.
Thus, it is worth letting some servers execute replicates
of the subtasks to improve reliability. Meanwhile, random
failures also make the performance become a complex ran-
dom variable. Therefore, the performability metric captur-
ing the reliability-performance correlation is more precise
than the FFCT metric for quantifying random performance
of the task.

B. RANDOM TASK COMPLETION TIME
Fig. 3 shows a scenario of a redundant parallel task executed
in the network system. As shown in the figure, the task have
five subtasks (M = 5) with different work requirement wm.
From (1), the FFETs of the subtasks can be obtained, which
have displayed in the figure.

1) ASSUMPTION
We first make the following assumptions for performability
modeling:

1) Failures existed in the network system includes three
types, i.e., link failures, server failures, and subtask
failures. Failure times of link k , server n and subtask
m follow exponential distributions with failure rates of
µk , θn and λm, respectively.

2) For achieving resource sharing, a server can host multi-
ple subtasks. The network system have some technique
(e.g., cloud virtualization) to guarantee non-interfering
execution of co-located subtasks that are hosted on an
identical server.

3) A subtask can have multiple copies for improving its
reliability. The system assigns a subtask and its copies
to different servers to reduce the negative affect caused
by server failures. As for a subtask executed in several
servers redundantly, it is complete when the first server
finishes it. The entire task is complete when all of the
subtasks are complete.

4) When the CNmakes a task execution strategy, it assigns
all the subtasks (including their copies) to servers
simultaneously. It also monitors the states of all sub-
tasks real time. Once a predecessor subtask is complete,
the CN can notify the corresponding successor subtasks
immediately.

5) When a server hosts subtasks, not only itself but also
the links connecting it with the CN must be available
for completing the subtasks. This is because data, noti-
fication information and monitoring information must
be translated through those links.

6) For a server in the waiting mode (i.e., the subtasks
hosted on it are waiting for the completion of their
predecessor subtasks), it remains as hot-standby for
avoiding time-consuming cold start.

Denote the link set connecting server n and the CN as ϕn.
When subtask m is assigned to server n, its FFET umn can
be obtained from (1). However, random failures make the
realistic execution time become a random variable, denoted
by Umn. It can take two possible values:

Umn = umn =
wm
fn

(5)

if subtask m, server n and all links belonging to set ϕn do not
fail until the subtask completion, and Umn = ∞ otherwise.
The probability that subtask m hosted on server n is success-
fully executed (denoted by πmn) can be calculated as

πmn = exp

−(λm + θn +∑
k∈ϕn

µk) · umn

 (6)

VOLUME 9, 2021 116359

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

FIGURE 3. A scenario of redundant parallel task executed in the network system.

These given the probability distribution of random execu-
tion time Umn:{

Pr(Umn = umn) = πmn
Pr(Umn = ∞) = 1− πmn

(7)

According to assumption 3, subtask m may be redun-
dantly executed in different servers. Since those heteroge-
neous servers have different computational capabilities (e.g.,
maximal core frequencies), the FFETs of the redundant sub-
tasks are also different. Suppose the servers executing subtask
m compose a set φm (φm 6= ∅). The random time for com-
pleting subtask m is the shortest time when one of the servers
completes the subtask. Denote it as Um, which can be written
as

Um = min
n∈φm

(Umn) (8)

Let T represent the random completion time of the entire
task. If no precedence constraints exist among the subtasks,
it can be written as

T = max
1≤m≤M

(Um) (9)

Although our prior research has proposed an algorithm to
calculate T from (8) and (9) for the network system with the
star topological structure [18], it did not consider precedence
constraints among the subtasks and cannot be directly applied
to the tree topological structure. To remedy this lack, this
paper presents an algorithm based on the Graph theory and
the Bayesian theorem to derive task completion time distri-
bution for a more realistic scenario.

2) MINIMAL TASK EXECUTION TREE
A Minimal Task Execution Tree (MTET) is a minimal possi-
ble combination of necessary elements for guaranteeing the
execution of the entire task. The elements in a MTET include
subtasks, servers and links. Each MTET exactly contains M

FIGURE 4. The spanning tree of a MTET.

different subtasks. It also contains the servers hosting those
subtasks and the links connecting the servers with the CN.

All MTETs can be found by solving the corresponding
graph traversal problem, such as the graph shown in Fig. 3.
For an arbitrary graph, several classical algorithms such as
Depth-First search and Breadth-First search can be applied
to found all MTETs. Given a concrete redundancy strategy
of all subtasks (i.e., φ1, φ2, . . . , φM), the total number of all
possible MTETs is

Z =
M∏
m=1

|φm| (10)

The element in a MTET can be expressed as a two-filed
record - (identifier, FFCT). The identifier has three forms:
1) Amn means that subtask m is assigned to server n;
2) Sn represents server n; 3) Lk is link k . Another field, i.e.,
the FFCT can be interpreted as the minimal time that the cor-
responding element should keep available for guaranteeing
the completion of the corresponding MTET.

116360 VOLUME 9, 2021

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

For example, in Fig. 3, subtasks 1, 2 and 5 hosted in server 3
(A13,A23,A53) and subtasks 3 and 4 hosted in server 1
(A31,A41) constitute a MTET. The corresponding spanning
tree is shown in Fig. 4. Let t(ed) represent the FFCT of an
element, where ed ∈ {Amn, Sn,Lk} is the identifier of the
element. First, the FFCTs of the subtasks can be derived
from algorithm 1 presented in Section 3.1. Then, the FFCT
of a server can be obtained as the maximum value of the
FFCTs of the co-located subtasks hosted on the server, e.g.,
t(S1) = max(t(A31), t(A41)) = 57 s. Similarly, the FFCT
of a link is calculated as the maximum value of the FFCTs
of all servers that connect to the CN through it, such as
t(L1) = max(t(S1), t(S3)) = 61 s. Finally, the MTET can
be expressed as

ψ = {(A13, 45), (A23, 15), (A31, 31), (A41, 57), (A53, 61)|

(S1, 57), (S3, 61)|(L1, 61), (L4, 61), (L8, 61), (L3, 57)}

(11)

where ψ is the set of all element expressed as the two-field
record. As seen in (11), we use ’|’ to separate different types
of elements.

Suppose the zth MTET (1 ≤ z ≤ Z) has Dz = |ψz|
elements, and the d th element (d = 1, 2, . . . ,Dz) has failure
rate ζd (ζd ∈ {λm, θn, µk}). We can use Fz represent the event
that the zth MTET finish the task, and its probability can be
derived as

Pr(Fz)=Pr(ψz)=
Dz∏
d=1

Pr(ed)=
Dz∏
d=1

exp
(
− ζd ·t(ed)

)
(12)

where Pr(ed) is the probability that element ed does not fail
during its FFCT t(ed), and Pr(ψz) is the probability that all
elements in set ψz do not fail during their FFCTs.

3) EVALUATION ALGORITHM
In this section, we will present an evaluation algorithm to
derive the probability distribution of random task completion
time.

Note that a MTET can be treated as a parallel task without
redundancy. Since we have discussed the FFCT of a par-
allel task in section 3.1, the FFCT of the zth MTET (z =
1, 2, . . . ,Z), denoted as xz, can be derived from (4). Let
Xz represent the random completion time of the zth MTET.
From (12), the probability mass function (pmf) of Xz can be
obtained as {

Pr(Xz = xz) = Pr(Fz)
Pr(Xz = ∞) = 1− Pr(Fz)

(13)

After finding all MTETs, the pmf of random completion
time of the entire task (i.e., T) can be derived by:
1) Sort Z MTETs in an increasing order of their FFCTs

(i.e., xz), and makeMTETs that have an identical FFCT
constitute a group. Without loss generality, supposer
there are C groups in total (1 ≤ C ≤ Z). Let xc
represent the FFCT of group c. After grouping the

MTETs, the FFCTs of the groups are strictly increasing
in c, i.e., 0 < x1 < . . . < xc < . . . < xC . Denote Ec as
the event that at least one of the MTETs in group c is
available.

2) Let p(xc) = Pr(T = xc) represent the probability
that random task completion time equals to the FFCT
of group c. Since the task completion time T is the
minimal completion time among the groups, we can
first derive that

p(x1) = Pr(T = x1) = Pr(E1) (14)

3) The other probability for T = xc (c = 2, 3, . . . ,C) can
be calculated by

p(xc) = Pr(T = xc) = Pr(EcEc−1Ec−2 . . .E1) (15)

4) Finally, the probability that the task cannot be complete
can be calculated by

p(∞) = Pr(T = ∞) = 1−
C∑
c=1

p(xc) (16)

For calculating (14) and (15), we need further analyze the
MTETs in the groups. Suppose there are Zc MTETs in group
c (1 ≤ Zc ≤ Z ,

∑C
c=1 Zc = Z), and those MTETs are

numbered in an arbitrary order 1, . . . , i, . . . ,Zc. Now, event
Ec can be expressed as

Ec =
Zc⋃
i=1

Fi, c = 1, 2, . . . ,C (17)

Submit (17) into (14) and (15), we can obtain

p(x1) = Pr(
Z1⋃
i=1

Fi)

p(xc) = Pr(
Zc⋃
i=1

FiEc−1Ec−2 · · ·E1), c = 2, . . . ,C (18)

Using the Bayesian theorem on conditional probability,
(18) can be written as

p(x1) = Pr(F1)+
Z1∑
i=2

Pr(Fi) · Pr(F i−1 · · ·F1|Fi)

p(xc) =
Zc∑
i=1

Pr(Fi)

·Pr(F i−1 · · ·F1Ec−1 · · ·E1|Fi), c = 2, 3, . . . ,C

(19)

Note thatEc is that allMTETs in group c are failed simulta-
neously. Therefore, event F i−1 · · ·F1Ec−1 · · ·E1 in (19) can
be finally translated to the event that multiple MTETs are
failed simultaneously. For simplification, let s = (i − 1) +
Zc−1 + · · · + Z1. Then, Pr(F i−1 · · ·F1Ec−1 · · ·E1|Fi) can
be written as Pr(F s · · ·F1|Fi), which has a same form with
Pr(F i−1 · · ·F1|Fi) essentially.

VOLUME 9, 2021 116361

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

Now, two critical forms of probability in (19) need to be
calculated, i.e., Pr(Fi) and Pr(F s · · ·F1|Fi). Pr(Fi) can be
derived from (12). However, another important probability,
i.e., Pr(F s · · ·F1|Fi) is hard to calculated directly, as some
elements (including subtasks, servers and links) may belong
to multiple MTETs. For calculating Pr(F s · · ·F1|Fi), we can
use

Pr(F s · · ·F1|Fi)

= 1− Pr(Fs
⋃

Fs−1
⋃
· · ·

⋃
F1|Fi)

= 1−
s∑
j=1

Pr(Fj|Fi)+
j6=k∑
j,k

Pr(FjFk |Fi)

−

j6=k 6=l∑
j,k,l

Pr(FjFkFl |Fi)+ · · · + (−1)sPr(Fs · · ·F1|Fi)

(20)

As seen in (20), the calculation of probabilities Pr(Fj|Fi),
Pr(FjFk |Fi), Pr(FjFkFl |Fi), . . ., Pr(Fs · · ·F1|Fi) is more eas-
ily than the direct calculation of Pr(F s · · ·F1|Fi). If we
can find the critical element sets resulting in events
Fj|Fi, FjFk |Fi, . . ., Fs · · ·F1|Fi, those probabilities can be
easily derived from (12).

SupposeMTET i and j have element setsψi andψj, respec-
tively. Let ψj|i represent the critical element set that does not
affect the run of MTET i, but decides if MTET j is complete.
The pseudocode for deriving ψj|i from ψj and ψi is shown
in Algorithm 2. As seen in line 6-11 of algorithm 2, when
element ed belongs to ψj and ψi, it cannot be failed during
the first time interval ti for guaranteeing the completion of
MTET i, but it may be failed during the following time
interval tj − ti. Therefore, (ed , tj − ti) is a critical element
of ψj|i.

Suppose ψjk|i is the set of the critical elements that do
not affect the run of MTET i, but decide if event FjFk |Fi
happens. Let ’∨’ represent the operation that derive ψjk|i
from ψj|i and ψk|i (i.e., ψjk|i = ψj|i ∨ ψk|i). The pseudocode
for deriving ψjk|i is shown in Algorithm 3. Now, the criti-
cal element set ψj···k|i resulting in event Fj · · ·Fk |Fi can be
obtained as ψj···k|i = ψj|i ∨ · · · ∨ ψk|i by using algorithm 3
iteratively.

Note that ψj···k|i is an element set essentially. Therefore,
probability Pr(Fj · · · k|i) can be obtained as all elements in
ψj···k|i do not failed during their FFCTs, i.e.,

Pr(Fj···k|i) = Pr(ψj···k|i) =
|ψj···k|i|∏
d=1

Pr(ed)

=

|ψj···k|i|∏
d=1

exp
(
− ζd · t(ed)

)
(21)

Finally, from (19),(20),(21) and (16), the pmf of random
task completion time (i.e., p(xc) = Pr(T = xc)) can be
derived.

Algorithm 2 Derive the Critical Elements Belong to ψj|i
Require: ψj, ψi
Ensure: ψj|i
1: ψj|i← ∅

2: for d = 1 to |ψj| do
3: get element (ed , t(ed)) from ψj, tj← t(ed)
4: if ed cannot be found in ψi then
5: let (ed , tj) ∈ ψj|i
6: else
7: get element (ed , t(ed)) from ψi, ti← t(ed)
8: if tj > ti then
9: let (ed , tj − ti) ∈ ψj|i
10: end if
11: end if
12: end for
13: return ψj|i

Algorithm 3 Derive the Critical Elements Belong to ψjk|i
Require: ψj|i, ψk|i
Ensure: ψjk|i
1: ψjk|i← ∅

2: for d = 1 to |ψj|i| do
3: get element (ed , t(ed)) from ψj|i, tj|i← t(ed)
4: if ed can be found in ψk|i then
5: get element (ed , t(ed)) from ψk|i, tk|i← t(ed)
6: let (ed ,max(tj|i, tk|i)) ∈ ψjk|i
7: delete (ed , tk|i) from ψk|i
8: else
9: let (ed , tj|i) ∈ ψjk|i
10: end if
11: end for
12: for d = 1 to |ψk|i| do
13: let (ed , t(ed)) ∈ ψjk|i
14: end for
15: return ψjk|i

4) PERFORMABILITY METRIC
Having the pmf of T , we can further evaluate the per-
formability metric for executing the entire task. The per-
formability metric can be treated as a precise evaluation
of random performance with considering the important
reliability-performance correlation [5]. The reliability of the
entire task can be defined as the probability that it is complete,
that is,

R = 1− Pr(T = ∞) (22)

Apparently, the completion time is of critical important to
a parallel task. However, since there exists the special case
that the task is failed (i.e., T = ∞), we cannot directly derive
the expected completion time as the performability metric.
In this paper, we use the inverse of the task completion time to
quantify random performance (denoted by V). That is, V =
1/T , and V = 0 if T = ∞. This is rational since there no
performance can be gained if the task cannot be complete.

116362 VOLUME 9, 2021

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

Now, the performability metric, denoted by I , can be defined
as the expected value of random variable V , which is written
as

I = E(V) =
∑
x 6=∞

1
xc
· p(xc) (23)

IV. OPTIMIZATION TECHNIQUE
A. OPTIMIZATION MODEL
Definitely, adding a copy of any subtask has a positive effect
on improving the reliability of completing the task, which
also implies that it can improve the performability of the task.
However, an excessive number of redundant copies may not
be rational. This is because that, with the increase of the num-
ber of redundant copies, the increment in the performability
metric caused by adding a copy becomes increasingly slight.
Those excessive copies occupy a large amount of resources,
which results in an inefficient resource utilization manner,
especially for the network system of which resources need
to be shared by a large amount of tasks. LetMr represent the
number of redundant copies created for executing the task.
It can be obtained as

Mr =

M∑
m=1

|φm| −M (24)

where φm (m = 1, 2, . . . ,M) is assignment strategy of sub-
task m. For example, in Fig. 3, φ4 = {1, 5} means subtask 4
is assigned to server 1 and 5.

For avoiding the situation that a task occupies excessive
resources, the system can give a threshold value ofMr , which
represents the maximal number of redundant copies that can
be created for executing the task. Denote the threshold asM r .
Inequality Mr ≤ M r should be held when the network
system executes the parallel task. For finding a task execution
strategy that maximizes the performability metric, we also
need to make decision on how to distribute the redundant
copies to the subtasks and how to assign those subtasks and
copies to servers, which can be described by the following
optimization model:

Decision Variable : φ1, φ2, . . . , φM

Objective : max I =
∑
x 6=∞

1
xc
· p(xc)

s.t. φm 6= ∅, φm ⊆ 2 (m = 1, 2, . . . ,M)

Mr =

M∑
m=1

|φm| −M ≤ M r

un ≤ 1− un (n = 1, 2, . . . ,N) (25)

where 2 = {1, 2, . . . ,N } is the set of all available servers in
the network system. un and un are the resource utilization of
nth server before and after hosting the subtasks, respectively.

5) Crossover operator : Since a chromosome consists of
M binary substrings, a uniform crossover operator [20] is
used to make each substring have a chance to be covered
by the crossover operator. As shown in Fig. 5, a binary

FIGURE 5. Uniform crossover operator.

template having the same length with the chromosome is first
randomly generated. Then, materials of parents at same bit
positions are swapped according to information of template at
the corresponding positions. For example, in Fig. 5, ’1’ means
swap, and materials in parents remain unchange otherwise.

6)Mutation operator : It randomly selectsM bits to change
from ’1(0)’ to ’0(1)’, which has a positive effect on keeping
population diversity. 7) Elitism strategy: The best chromo-
some of the population may fail to produce offspring in the
next generation. The elitism strategy that copies the best
chromosome into the succeeding generation can effectively
solve this problem.

The GA randomly generates K chromosomes forming the
initial population. The crossover rate andmutation rate can be
set within the ranges of 0.85-0.95 and 0.01-0.05. respectively.
The GA is terminated when the best chromosome remains
unchanged for a certain number of generations, or when the
number of generations reaches the maximum.

V. EXAMPLES
To begin with experiments, the parameters need to be esti-
mated first. The processing speed of a server can be measured
by mapping the CPU frequency onto the million instructions
per second (MIPS) rating. The reliability parameters (i.e.,
the failure rates of subtasks, servers and links) can be obtained
by letting the CN accumulates two indices: the total running
time (τ) and the number of failures (σ) of individual subtasks,
servers and links. Then, according to the maximum likeli-
hood estimation (MLE), the CN can estimate the individuals’
failure rates by calculating σ/τ [4]. The network structure
of our experimental scenario is shown in Fig. 3, which also
gives the work requirements of the subtasks (wn), the com-
putational abilities of the servers (fn), and the failure rates of
the subtasks, servers and links (λm, θn, µk). The precedence
constraints of the subtasks are shown in Fig. 2.

A. EVALUATION OF THE PERFORMABILITY METRIC
From (1), we can first derive the FFET of each subtask. For
example, the FFET of subtask 3 hosted on server 1 is u31 =
16 s. The FFETs of all subtasks are shown in Fig. 3. But note
that, if a subtask has predecessor subtasks, its FFCT is the
sum of the FFET and FFWT, i.e., tm = um + vm.
According to the task execution strategy shown in Fig. 3

(i.e., φ1 = {2, 3}, φ2 = {3}, φ3 = {1, 4}, φ4 = {1, 5}, φ5 =
{3}), we can found that there are eight MTETs in total
(Z = 8). The information of all possible MTETs are listed
in TABLE 1. As for any one MTET, it must and only have
subtask 1, 2, 3, 4 and 5. Therefore, the FFCTs of all subtasks
in the MTET can be derived by using algorithm 1, which

VOLUME 9, 2021 116363

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

TABLE 1. Information of all possible MTETs.

also takes the precedence constraints into account. Then we
can get the element set of the MTET of which elements are
extended to the two-field record form, i.e., the third column in
TABLE 1. The FFCTs of all the MTETs can be derived from
(4), which are listed in the second column in TABLE 1.Mean-
while, the completion probability of the MTET (i.e.,Pr(Fz))
can be calculated from (12). For instance, for the METE
5 shown in TABLE 1, its completion probability is

Pr(F5)= Pr(ψ5) = e−λ1·45e−λ2·15e−λ3·31e−λ4·57e−λ5·61

e−θ3·61e−θ1·57e−η1·61e−η4·61e−θ8·61e−η3·57=0.6036

(26)

According to the FFCTs of eightMTETs, we can divide the
MTETs into four groups with the increasing order of identical
FFCTs, that is,

G1 = {ψ7, ψ8} with x1 = 55
G2 = {ψ5, ψ6} with x2 = 61
G3 = {ψ3, ψ4} with x3 = 71
G4 = {ψ1, ψ2} with x4 = 77

(27)

For deriving the pmf of random task completion time T ,
we first calculate p(x1) = Pr(T = x1) = Pr(E1). Since E1 =
F7 + F8, from (19), Pr(E1) can be written as

Pr(E1) = Pr(F7)+ Pr(F7F8)

= Pr(F7)+ Pr(F8)Pr(F7|F8)
(28)

where Pr(F7) and Pr(F8) can be obtained from (12). To cal-
culate Pr(F7|F8) = 1 − Pr(F7|F8) = 1 − Pr(ψ7|8), we need
identify the critical elements that belong to ψ7|8. According
to algorithm 2, the critical elements in ψ7|8 are (A41, 51),
(S1, 51) and (L3, 51). From (21), probability Pr(ψ7|8) can be
obtained as

Pr(ψ7|8) = e−λ4×51 · e−θ1×51 · e−µ3×51 = 0.8494 (29)

Substituting (29) into (28), Pr(E1) is calculated as 0.7070.
Then, from (17), p(x2) = Pr(T = x2) = Pr(E2E1) can be
further calculated by

Pr(E2E1) = Pr(F5E1)+ Pr(F6E1F5)

= Pr(F5)Pr(E1|F5)+ Pr(F6)Pr(E1F5|F6)

= Pr(F5)Pr(F8F7|F5)+ Pr(F6)Pr(F8F7F5|F6)

(30)

In (30), Pr(F8F7|F5) and Pr(F8F7F5|F6) are hard to be
calculated directly. Therefore, we can apply the method given
by (20). For example, Pr(F8F7F5|F6) can be derived by

Pr(F8F7F5|F6)

= 1− Pr(F8
⋃

F7
⋃

F5|F6)

= 1− Pr(F8|F6)− Pr(F7|F6)− Pr(F5|F6)

+Pr(F8F7|F6)+ Pr(F8F5|F6)+ Pr(F7F5|F6)

−Pr(F8F7F5|F6) (31)

For calculating the conditional probabilities in (30),
the corresponding critical element sets need to be found first.
Take the calculation of Pr(F8F7F5|F6) as an example. The
critical element set that results in event F8F7F5|F6 is ψ875|6.
Using algorithm 2, we can first obtain ψ8|6, ψ7|6 and ψ5|6 as

ψ8|6 = {(A34, 25), (S4, 25), (L5, 25)}

ψ7|6 = {(A34, 25), (A41, 51), (S4, 25),

(S1, 20), (L5, 25), (L3, 20)}

ψ5|6 = {(A41, 57), (S1, 26), (L3, 26)} (32)

Then, ψ875|6 can be further derived by using algorithm
3 iteratively, that is,

ψ875|6

=ψ8|6 ∨ ψ7|6 ∨ ψ5|6

= {(A34, 25), (A41, 57), (S4, 25), (S1, 26), (L5, 25), (L3, 26)}

(33)

From (21), Pr(F8F7F5|F6) = Pr(ψ875|6) = 0.8237. After
obtaining Pr(F8F7|F6), Pr(F8F5|F6) and Pr(F7F5|F6) in a
similar way, those values can be substituted into (31), and
Pr(F8F7F5|F6) is calculated as 0.0069.
Adopting the method given by (31), (32) and (33), all con-

ditional probabilities in (30) can be obtained, and probability
Pr(T = 61) = Pr(E2E1) is evaluated as 0.0420. Similarly,
Pr(T = 71) and Pr(T = 77) are derived as 0.0299 and 0.0020,
respectively. Finally, from (16), Pr(T = ∞) is calculated
as 0.2191. The pmf of random task completion time T is
illustrated in TABEL 2.

For verifying the correction of the proposed theoretical
model, we also design a simulation experiment based on
the Monte Carlo method, which simulates the entire exe-
cution process of the task. Fig. 6 shows that the compar-
ison between the theoretical results and statistical results

116364 VOLUME 9, 2021

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

TABLE 2. The PMF of random task completion time.

FIGURE 6. Statistical results vs. theoretical results at different times of
simulation.

FIGURE 7. RMSEs of simulation results at different simulation times.

derived by running the simulation program 1000, 2000,
4000 and 8000 times. Fig. 7 illustrates root-mean-square
errors (RMSE) of simulation results derived by running the
simulation program at different times. As shown in the fig-
ures, the statistical results of the pmf of random task comple-
tion time are very close to the theoretical results evaluated by
the proposed model, which witness that our theoretical model
is justified.

Now, from (23), the performability metric of the entire task
executed by the given resource assignment strategy can be
obtained as

I =
1
55
× 0.7070+

1
61
× 0.0420+

1
71
× 0.0299

+
1
77
× 0.0020 = 13.9902× 10−3 (s−1) (34)

The statistical results of the performability metric gained
by 300 experiments are shown in Fig. 8. Each experiment
runs the simulation program 1000 times and then estimates
the performance metric. It can be observed that the sta-
tistical results only fluctuate around the theoretical result

FIGURE 8. Statistical results of the performability metric derived by
300 experiments.

(i.e., the line shown in Fig. 8), which also verifies the pro-
posed correlation model.

B. OPTIMIZATION OF THE PERFORMABILITY METRIC
TABLE 3 lists some representative task execution strategies
to demonstrate how the performability metric is affected by
various factors. Those factors mainly include:

1) Distribution of redundant copies to subtasks
Strategies 1, 2, 3 and 4 listed in TABLE 3 assign five

redundant copies in total for executing the task (i.e.,M r = 5),
but make those copies distribute to different subtasks. There
are two, three, four and five subtasks have redundant copies
in strategies 1, 2, 3 and 4, respectively. It can be found that
even though those strategies assign the identical number of
redundant copies to the subtasks in total, but their performa-
bility metrics are totally different, i.e., I4 > I3 > I2 > I1.
In general, if the distribution of redundant copies is more
’balance’ (i.e., make all subtasks have redundant copies as far
as possible), the performability may be better. This is because
that failures of each subtask inevitably results in that the entire
task cannot be complete. Thus, enhancing the reliability of all
subtasks is superior to emphasizing the reliability of partial
subtasks.

2) Precedence Constraint and Computational Speed
We also list the strategy described in Section 5.1 in

TABLE 3 (i.e., strategy 5). It can be found that, although there
just are three subtasks have redundant copies in strategy 5, its
performability metric are superior to strategy 3 in which four
subtasks have redundant copies. This is mainly because that
important precedent subtasks including subtask 1, 2 and 3 are
assigned to server 3 and 4 of which processors have relatively
high core frequencies. Compare to the other servers, server 3
and 4 have higher computational speeds. Therefore, if the
network system assigns precedent subtasks to faster server,
those subtasks can have shorter FFETs, which also implies
that they can have lower probabilities to be failed. Since the
execution of precedent subtasks directly affect the execution
of successor subtasks, assigning precedent subtasks to faster
and more reliable servers may have more significant effect on
improving the performability metric.

VOLUME 9, 2021 116365

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

TABLE 3. Comparison of the performability metric of different task execution strategies.

FIGURE 9. Runs of the genetic algorithm.

Due to those complicated factors, the design of a rational
task execution strategy is usually a NP-hard problem. The
optimization technique presented in Section 4 can be adopted
to find an optimal task execution strategy.

Suppose the maximal number of allowed redundant copies
isM r . According to our experiment situation, the parameters
of the genetic algorithm described in Section 4.2 is set as:
population size 20, generation 50, crossover rate 0.95, and
mutation rate 0.05. Fig. 9 shows the run of the genetic algo-
rithm. The maximal fitness, mean fitness, minimal fitness of
each generation are shown in the graph. The minimal fitness
shows that the genetic algorithm can keep the diversity of the
population. Given threshold M r = 4, the best performability
metric is obtained as 15.7041 × 10−3 s−1, and the corre-
sponding task execution strategy is φ1 = {4}, φ2 = {3, 5},
φ3 = {1, 4}, φ4 = {3, 5} and φ5 = {3, 5} (i.e., strategy
6 shown in TABLE 3). It can be found that server 2 does not
host any subtasks in the optimal task execution strategy. This
is mainly because that it has the worst computational speed
among five servers. Meanwhile, the distribution of redundant
copies to the subtasks are balance and the precedent subtasks
(i.e., subtask 1, 2 and 3) have been assigned to servers that
have high core frequencies (i.e., server 3 and 4). This proves
our discussion mentioned in Section 5.2.

VI. LITERATURE REVIEW AND DISCUSSION
In this paper, we first proposed a theoretical model for evalu-
ating the performability metric of a redundant parallel task

in the network. Theoretical modeling is always a critical
research field that can further contribute to designing a ratio-
nal resource assignment strategy. There are many studies
focused on building theoretical models for analyzing relia-
bility or performance of the network system. For example,
Jung et al. applied a performance model emphasizing net-
work delay for a parallelized task [21]. Ke et al. also proposed
a performance model considering network topology, network
traffic, and data size for a parallelized task processed by the
MapReduce mechanism [22]. Mo et al. proposed a reliability
model for analyzing dependent propagated failures existed in
the network system [23]. Bahaga and Madisetti presented a
reliability model capturing numerous failures of a Hadoop
systemwith a large number of machines [24]. However, those
models only focus on a single metric and do not consider the
complicated reliability-performance (R-P) correlation.

Considerable recent studies have gradually concerned on
joint modeling for correlating performance and reliability.
For example, Tudoran et al. investigated the R-P correlation
of a network system for achieving fast response of data
transmission and alleviating adverse effects caused by low
reliability and reusability [25]. Ghosh et al. quantified the
R-P correlation as performability metrics, including expected
response time, expected execution time, and expected delay
time, for a cloud service [7]. Kwiatkowska et al. proved that
probabilistic models, such as continuous-timeMarkov chains
and Markov reward models, can be used to study the R-P
correlation of different stochastic systems [26].Machida et al.
adopted a Markov regenerative process to analysis the per-
formability of a distributed RAID storage system [27]. Those
researches propose a flexible approach that integrates inter-
acting reliability and performance sub-models to reduce
the complexity of correlation modeling. In general, such a
method first needs to extract some interaction factors not only
decided by reliability but also affecting performance as criti-
cal conditional variables to build reliability and performance
sub-models, such as our prior researches [9], [28]. However,
this method is not suitable for a redundant parallel task in the
network system since it is hard to exactly find interaction fac-
tors due to the complicated network structure [29]. One of our
recent work presented a fine-grained R-P correlation model
that quantifies random change of performance caused by
hardware/software failures for a single task, but it did not con-
sider parallel and redundant computing pattern [30]. Another

116366 VOLUME 9, 2021

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

our recent work has also investigated resource optimization
for a big data task with considering the R-P correlation [18],
but it does not consider important failure correlations existed
among multiple types of failures. In this work, we present a
new R-P correlation model for a redundant parallel task in the
network system, which systemically analyzes not only task
failures, server failures, and link failures but also complicated
failure correlations.

Another important research filed related to this paper is
resource optimization. Many optimization techniques such
as online optimization techniques [31] and forecast tech-
niques [10] are usually applied for a dynamic application
environment, but not for a redundant parallel task in the
network system. As for the situation that finding an optimal
resource optimization strategy from a specific optimization
model, using heuristics algorithms to search optimal solu-
tions is an efficient approach. Our prior work presented a
novel resource scheduling mechanism based on the bionic
nervous system to solve a R-P correlation optimization
model for maximizing the net profit of a cloud system [32],
which is designed from the system perspective but not the
task perspective. Therefore, it cannot be directly applied
for the redundant parallel task. There are many researches
focus on improving performance of tasks, such as reduc-
ing average task completion time [33], minimizing service
delay [34]. Meanwhile, considerable researches have adopted
various heuristic algorithms (such as the ant colony algo-
rithm [35], the immune algorithm [36], the genetic algo-
rithm [37], and the particle swarm algorithm [38]) to search
optimal redundancy strategies to maximize reliability. Those
researches prove that the heuristic algorithm is a feasible
and effective approach to solve the complicated optimiza-
tion problem about redundancy assignment and allocation.
However, those existed optimal techniques does not address
the important R-P correlation. Therefore, they cannot meet
reliability and performance requirements simultaneously.
The optimization techniques described in this paper are on
the proposed R-P correlation model, and can effectively solve
the issue.

VII. CONCLUSION
Over the last few years, the network system has been widely
deployed in multiple application fields, such as scientific
computing, large-scale data analysis, and distributed service.
To efficiently and successfully execute a redundant paral-
lel task in the network system, performance and reliability
should be considered simultaneously.

The work presented in this paper is original in that it
systemically studies the complicated R-P correlation for a
redundant parallel task in the network system. We present
a pertinence modeling approach to build the R-P correlation
model for the network system. Different from some existed
models, our model captures representative features of the
network system, typically, multiple types of failures including
task failures, server failures, link failures and complicated
failure correlations. Taking those comprehensive reliability

factors into account can indeed improve the fidelity of the
model, but it also increases the complexity of calculating
the performability metric. Therefore, we also propose an
algorithm encompassing the extended tree topology, minimal
task execution trees, and the Bayesian approach to eval-
uate the performability metric. Finally, we also study the
corresponding optimization techniques for maximizing the
performability metric. A genetic algorithm is implemented
to obtain an optimal strategy that maximizes the expected
performance of a task executed in the parallel and redundant
manner.

The numerical examples in this work illustrate that the pro-
cess of deriving the performability metric from the proposed
R-P correlation model. The examples also show that there
are many important factors seriously affect the performability
metric, such as precedence constraints existed in subtasks,
distribution of redundant subtasks, and computational speeds
of host servers. However, our optimization technique can
effectively find an optimal resource assignment strategymax-
imizing the performability metric.

Due to various application environments, the application
demands the network system may become more compli-
cated. For example, not only reliability and performance,
but also energy consumption may be considered simul-
taneously. Extending the proposed model to more com-
plicated R-P-E (reliability-performance-energy) correlation
model and developing new optimization techniques to bal-
ance the reliability-energy and performance-energy tradeoffs
will be studied in our future work.

REFERENCES
[1] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, ‘‘Cloud

migration: A case study of migrating an enterprise IT system to
IaaS,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput., Jul. 2010,
pp. 450–457.

[2] Y. Jiang, ‘‘A survey of task allocation and load balancing in distributed
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 585–599,
Feb. 2016.

[3] R. Entezari-Maleki, K. S. Trivedi, and A. Movaghar, ‘‘Performability
evaluation of grid environments using stochastic reward nets,’’ IEEE Trans.
Depend. Sec. Comput., vol. 12, no. 2, pp. 204–216, Mar. 2015.

[4] M. Xie, Y. Dai and K. L. Poh, Computing Systems Reliability: Models and
Anaysis. New York, NY, USA: Kluwer, 2004.

[5] J. F. Meyer, ‘‘On evaluating the performability of degradable comput-
ing systems,’’ IEEE Trans. Comput., vols. C–29, no. 8, pp. 720–731,
Aug. 1980.

[6] K. R. Pattipati, Y. Li, and H. A. P. Blom, ‘‘A unified framework for
the performability evaluation of fault-tolerant computer systems,’’ IEEE
Trans. Comput., vol. 42, no. 3, pp. 312–326, Mar. 1993.

[7] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, ‘‘End-to-end per-
formability analysis for infrastructure-as-a-service cloud: An interacting
stochastic models approach,’’ in Proc. IEEE 16th Pacific Rim Int. Symp.
Dependable Comput., Dec. 2010, pp. 125–132.

[8] B. Yang, F. Tan, and Y.-S. Dai, ‘‘Performance evaluation of cloud service
considering fault recovery,’’ J. Supercomput., vol. 65, no. 1, pp. 426–444,
Jul. 2013.

[9] X.Qiu, Y. Dai, Y. Xiang, and L. Xing, ‘‘A hierarchical correlationmodel for
evaluating reliability, performance, and power consumption of a cloud ser-
vice,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 46, no. 3, pp. 401–412,
Mar. 2016.

[10] J. Subirats and J. Guitart, ‘‘Assessing and forecasting energy efficiency
on cloud computing platforms,’’ Future Gener. Comput. Syst., vol. 45,
pp. 70–94, Apr. 2015.

VOLUME 9, 2021 116367

M. Tao et al.: Performability Analysis of Redundant Parallel Task in Network Systems

[11] M. A. Rahman, M. H. Manshaei, E. Al-Shaer, and M. Shehab, ‘‘Secure
and private data aggregation for energy consumption scheduling in smart
grids,’’ IEEE Trans. Depend. Sec. Comput., vol. 14, no. 2, pp. 221–234,
Mar./Apr. 2017.

[12] F. Ramezani, J. Lu, and F. K. Hussain, ‘‘Task-based system load balancing
in cloud computing using particle swarm optimization,’’ Int. J. Parallel
Program., vol. 42, no. 5, pp. 739–754, 2013.

[13] Y. Han, J. Chan, T. Alpcan, and C. Leckie, ‘‘Using virtual machine
allocation policies to defend against co-resident attacks in cloud com-
puting,’’ IEEE Trans. Depend. Sec. Comput., vol. 14, no. 1, pp. 95–108,
Jan./Feb. 2017.

[14] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, ‘‘Cost-aware challenges for
workflow scheduling approaches in cloud computing environments: Tax-
onomy and opportunities,’’ Future Gener. Comput. Syst., vol. 50, pp. 3–21,
Sep. 2015.

[15] M. S. Chang, D. J. Chen, and M. S. Lin, ‘‘The distributed program
reliability analysis on a star topology,’’ Comput. Oper. Res., vol. 27, no. 2,
pp. 129–142, 2000.

[16] R. A. Sahner and K. S. Trivedi, ‘‘Performance and reliability analysis using
directed acyclic graphs,’’ IEEE Trans. Softw. Eng., vol. SE-13, no. 10,
pp. 1105–1114, Oct. 1987.

[17] E. Ramraj andA. S. Rajan, ‘‘Usingmulti-core processor to support network
parallel image processing applications,’’ in Proc. Int. Conf. Signal Process.
Syst., May 2009, pp. 232–235.

[18] X. Qiu, L. Luo, and Y. Dai, ‘‘Reliability-performance-energy joint model-
ing and optimization for a big data task,’’ in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur. Companion (QRS-C), Aug. 2016, pp. 334–338.

[19] D. Whitley, ‘‘A genetic algorithm tutorial,’’ Statist. Comput., vol. 4, no. 2,
pp. 65–85, Jun. 1994.

[20] G. Syswerda, ‘‘Uniform crossover in genetic algorithm,’’ Proc. 3rd Int.
Conf. Genetic Algorithms, 1989, pp. 61–69.

[21] G. Jung, N. Gnanasambandam, and T. Mukherjee, ‘‘Synchronous parallel
processing of big-data analytics services to optimize performance in fed-
erated clouds,’’ in Proc. IEEE 5th Int. Conf. Cloud Comput., Jun. 2012,
pp. 811–818.

[22] H. Ke, P. Li, S. Guo, and M. Guo, ‘‘On traffic-aware partition and aggrega-
tion in mapreduce for big data applications,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 3, pp. 818–828, 2016.

[23] Y.Mo, L. Xing, F. Zhong, and Z. Zhang, ‘‘Reliability evaluation of network
systems with dependent propagated failures using decision diagrams,’’
IEEE Trans. Depend. Sec. Comput., vol. 13, no. 6, pp. 672–683, Nov. 2016.

[24] A. Bahga and V. K. Madisetti, ‘‘Analyzing massive machine maintenance
data in a computing cloud,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23,
no. 10, pp. 1831–1843, Oct. 2012.

[25] R. Tudoran, A. Costan, and G. Antoniu, ‘‘OverFlow: Multi-site aware big
data management for scientific workflows on clouds,’’ IEEE Trans. Cloud
Comput., vol. 4, no. 1, pp. 76–89, Jan. 2016.

[26] M.Kwiatkowska, G.Norman, andD. Parker, ‘‘PRISM: Probabilisticmodel
checking for performance and reliability analysis,’’ ACM SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp. 40–45, Mar. 2009.

[27] F. Machida, R. Xia, and K. S. Trivedi, ‘‘Performability modeling for RAID
storage systems by Markov regenerative process,’’ IEEE Trans. Depend.
Sec. Comput., vol. 15, no. 1, pp. 138–150, Jan. 2018.

[28] X. Qiu, P. Sun, X. Guo, and Y. Xiang, ‘‘Performability analysis of a
cloud system,’’ in Proc. IEEE 34th Int. Perform. Comput. Commun. Conf.
(IPCCC), Dec. 2015, pp. 1–6.

[29] F. Robledo and P. Sartor, ‘‘A simulation method for network performabil-
ity estimation using heuristically computed pathsets and cutsets,’’ Int. J.
Metaheuristics, vol. 2, no. 4, pp. 370–391, 2013.

[30] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, ‘‘Correlation modeling and resource
optimization for cloud service with fault recovery,’’ IEEE Trans. Cloud
Comput., vol. 7, no. 3, pp. 693–704, Jul./Sep. 2017.

[31] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, ‘‘Dynamic
resource allocation and power management in virtualized data centers,’’ in
Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), Apr. 2010, pp. 479–486.

[32] P. Sun, Y. Dai, and X. Qiu, ‘‘Optimal scheduling and management on cor-
relating reliability, performance, and energy consumption for multiagent
cloud systems,’’ IEEE Trans. Rel., vol. 66, no. 2, pp. 547–558, Jun. 2017.

[33] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li,
and S. Wang, ‘‘Rapier: Integrating routing and scheduling for coflow-
aware data center networks,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 424–432.

[34] C. Q.Wu, X. Lin, D. Yu,W.Xu, and L. Li, ‘‘End-to-end delayminimization
for scientific workflows in clouds under budget constraint,’’ IEEE Trans.
Cloud Comput., vol. 3, no. 2, pp. 169–181, Apr./Jun. 2015.

[35] Y.-C. Liang andA. E. Smith, ‘‘An ant colony optimization algorithm for the
redundancy allocation problem (RAP),’’ IEEE Trans. Rel., vol. 53, no. 3,
pp. 417–423, Sep. 2004.

[36] T.-C. Chen and P.-S. You, ‘‘Immune algorithms-based approach for redun-
dant reliability problems with multiple component choices,’’Comput. Ind.,
vol. 56, no. 2, pp. 195–205, Feb. 2005.

[37] D. W. Coit and A. E. Smith, ‘‘Reliability optimization of series-parallel
systems using a genetic algorithm,’’ IEEE Trans. Rel., vol. 45, no. 2,
pp. 254–260, Jun. 1996.

[38] N. Beji, B. Jarboui, M. Eddaly, and H. Chabchoub, ‘‘A hybrid particle
swarm optimization algorithm for the redundancy allocation problem,’’
J. Comput. Sci., vol. 1, no. 3, pp. 159–167, Aug. 2010.

MIN TAO received the B.S. degree in software
engineering and the M.S. degree in information
and communication engineering from the Uni-
versity of Electronic Science and Technology of
China (UESTC), where he is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering. He is also a Researcher
with the Next Generation Internet and Data Pro-
cessing Technology of National Local Joint Engi-
neering Laboratory, UESTC. His current research

interests include cloud computing, performance modeling, and optimization.

XIWEI QIU received the B.S. degree in electronic
and information engineering from Jilin Univer-
sity, and the M.S. degree in software engineering
and the Ph.D. degree in computer science from
UESTC.

He is currently an Assistant Professor with
the Department of Computer Science, UESTC.
He has published more than 20 articles, includ-
ing several SCI journal articles published in IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS:

SYSTEMS, IEEE TRANSACTIONS ON CLOUD COMPUTING, and IEEE TRANSACTIONS

ONRELIABILITY. His current research interests include reliability modeling and
analysis of complex systems and networks. He was a recipient of the Science
and Technology Progress Award in Henan province, in 2019. He is also the
Program Chair of the 6th International Symposium on System and Software
Reliability. He also serves as a Reviewer of several SCI journals, including
European Journal of Operational Research and Reliability Engineering &
System Safety.

PENG SUN received the Ph.D. degree from
UESTC. He is currently a Faculty Member with
the Next Generation Internet and Data Processing
Technology of National Local Joint Engineering
Laboratory, UESTC. In the recent three years,
he participated in or studied two state-level key
laboratory construction projects, and published
three articles in SCI journals and five articles
in international high-level academic conferences.
His research interests include cloud computing,
reliability modeling, and optimization.

116368 VOLUME 9, 2021

