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ABSTRACT Microgrids in smart grid development create a new era towards resilient energy supply.
In turn, They also render complicated cyber-physical system development towards high scalability
and comprehensiveness. Heterogeneous Small Cell based Networks (HSCNs) endow a suitable cyber
infrastructure for microgrid based cyber-physical systems. To tackle this emerging research area, this
paper proposes a Spatiotemporal Device-to-device communication based HSCN Deployment scheme for
Microgrid based Smart grid Development (3xSD), to achieve high energy efficiency with high quality-
of-service, chronically and dynamically. Concretely, a joint optimization for long-term energy efficiency
and achievable data rate maximization with interference mitigation is formulated for spatial small cell
positioning, which models both cyber and physical characteristics of Smart Grid User Equipment (SGUE).
A Temporal On-demand Small cell Powering and work-Offloading scheme (TOSPO) is proposed on top of
the determined small cell positioning. TOSPO considers the real-time heterogeneous features and demands
of SGUEs to maximize energy and cost efficiency, for both communication and computation perspectives.
To evaluate the performance of 3xSD, spatial analysis, temporal analysis, and selected case study are
simulated. Numerical results showcase that 3xSD is capable of providing both long-term and on-demand
optimal energy efficiency and quality-of-service solution for microgrids, outperforming existing benchmarks
in the literature.

INDEX TERMS Small cells, smart grid, on-demand, energy efficiency, cyber-physical systems.

I. INTRODUCTION
Gaining an annual growing rate as 14% with more than
27 power capacity worldwide [1], microgrids have been
playing an important role on the advanced smart grid
development, capable of managing local energy resources
and distributed power systems resiliently for critical com-
munities [2]. As a typical cyber-physical system (CPS),
prospective exceptional performance of microgrids is con-
structed upon the optimal deployment of communication
technologies [3]–[5]. Heterogeneous Small Cell Networks
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(HSCNs) potentially manage the densification of Smart
Grid User Equipment (SGUE) [6], [7] highly demanded
by microgrids. Besides, Mobile Edge Computing embedded
Small Cells (MEC-SCs) realize the distributed computation
capacity for microgrid management [8]–[10], which will
dominate the cyber system deployment [11]–[13].

Optimal HSCNs lead to high energy efficiency and high
Quality-of-Service (QoS) at low costs, which are leading
concerns to service providers for microgrids [1], [14];
however, MEC-SC based HSCN deployment for micro-
grids embraces a plethora of challenges. Firstly, with the
popularization of microgrids, the scalability of HSCNs
should be improved [15]. SGUEs are located in multiple
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microgrids and gain more diverse operation modes, e.g.,
periodic vs. non-periodic, large data rate demand vs. high
reliability, etc., which complicates the cyber modeling of
HSCN deployment. In particular, the popularity of Device-to-
device (D2D) communications in HSCN deployment enable
direct data transmission between two SGUEs, without going
through SCs, which occurs due to the requirement of either
direct communication between SGUEs (e.g., inner-mirogrid),
or offloading among SGUEs for data relay, not necessarily at
cell boundaries. Therefore, D2D modeling at the cyber layer
might encounter unique features, brought by the cluster-based
microgrids at the physical layer, requiring research efforts
fusing cross-layer modeling [3], [16].

Besides, HSCN deployment should be optimized in
both spatial and temporal ways, by achieving chronic and
dynamic optimum, respectively. For instance, stochastic
geometry based algorithms are considered recently as the
backbone of spatial HSCN deployment [17]. However,
previous works either build based on the assumption of
full buffer [15] or statistic-based estimation [18], which
fails to handle the real-time QoS optimization. It even
deteriorates, when these previous works tackle real-time
resource allocation for mirogrid based MEC-SC deployment.
In contrast, some other cluster of researches perform real-
time resource allocation, assuming optimal spatial HSCN
allocation predetermined [19]. Therefore, spatiotemporal
HSCN deployment is extremely necessary for comprehensive
optimization in network automation in future communication
networks (e.g., 6G) [20], [21], for microgrid based smart
grid. Comprehensive spatiotemporal optimization of HSCN
deployment also prevents potential cascading failure caused
by deploying spatial and temporal HSCNs, separately.
To the best of our knowledge, there is a lack of compre-
hensive studies on spatiotemporal HSCN deployment for
microgrids.

In this paper, we tackle the aforementioned challenges
by proposing a Spatiotemporal D2D Small-cell Deployment
for microgrid based Smart-grid Development, named as
Triple-SD (3xSD). Concretely, the spatial Small Cell (SC)
positioning scheme is proposed with VIKOR-based joint
optimization of long-term energy efficiency optimization,
achievable data-rate maximization and interference mini-
mization. Extending the work in [3], the proposed spatial SC
positioning scheme further models the SGUEs’ physical and
cyber functionalities, with the formulation of model-driven
communication and computation processes. On top of the SC
positioning scheme, a Temporal On-demand SC Powering
and work-Offloading scheme, named TOSPO, achieves data-
driven energy and cost efficiency management dynamically,
by k-means clustering SC powering and gradient descent
based MEC-SC work offloading. The contributions of this
paper are summarized, as follows:

1. We propose a spatiotemporal D2D HSCN for microgrid
based smart grid development (3xSD) with long-term and
real-time energy efficiency and Quality-of-Service (QoS)
optimized, simultaneously.

2. We develop a VIKOR-based SC positioning for long-
term energy efficiency and achievable data rate maximization
with interference mitigation, considering the model-driven
SGUE formulation.

3. We propose a Temporal on-demand MEC-SC Powering
and work Offloading scheme (TOSPO) for real-time overall
latency minimization and energy efficiency maximization,
based on k-means clustering and gradient descent algorithm,
respectively.

The rest of the paper is organized as follows: Section II
reviews the related works. Section III overviews the proposed
3xSD infrastructure. Section IV derives the spatial SC
positioning scheme with network modeling and optimiza-
tion formulation. Section V proposes the on-demand SC
deployment scheme (TOSPO), with k-means clustering
based SC powering and gradient descent MEC-SC work
offloading. Section VI analyzes the performance of 3xSD
using simulations. Section VII concludes.

II. RELATED WORK
Microgrid based smart grid, regarded as a typical CPS,
gains great research attention for the deployment of both
physical (power systems) and cyber (communication net-
works) layers, as well as the harmonization between them,
aiming to improve resilience and cost efficiency simultane-
ously [22]–[25]. Distributed energy management schemes,
e.g., optimal power flow [23], were proposed regarding the
physical requirements from power systems. However, objec-
tives, such as cost efficiency in this research cluster, were
modeled based on the physical layer of microgrids [26]. For
instance, topological analysis for the optimal power flow was
conducted, with the association between devices determined
by power grid (e.g., the minimum power lost on power
lines) [23]. A real-time pricing strategy was also proposed
for SG based on the green IoT [27], which concentrated on
the physical layer modeling, assuming the cyber layer to be
optimally designed. On the other hand, althoughHSCNs have
been popularized in 5G cellular networks to support large
scale CPSs, characteristics of users/devices in the physical
layer were mostly neglected [15], [28]. For instance, energy
efficiency management of HSCNs was tackled with energy
harvesting, based on sleeping strategies of SBSs [8], [28],
which modelled the traffic flow as constant statistical traffic
pattern affected by the cyber layer.

Moreover, a plethora of researches achieved delay mini-
mization [29], QoE improvement [30], and energy efficiency
maximization [19], [31], for HSCN deployment. However,
these efforts mostly ignored the spatial SC allocation, which
might cause unnecessary long-term cost waste, with inter-
cell interference problems and QoS reduction. One of the
main reasons for ignoring spatial SC allocation resulted from
the concentration on small-scale networks considering single-
or bi-SC modeling and analysis [32], which might not be
applicable for large-scale smart grid.

The activation of MEC-SCs complicates the HSCN
deployment with resource allocation among distributed
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FIGURE 1. Infrastructure of the proposed 3xSD.

computing units [8], [33]. As an emerging technology,
MEC-SCs highly demand work offloading strategies to
optimize the communication and computation quality.
Because of the formulation complexity, MEC-SC work
offloading schemes normally adopted heuristic algorithms
(e.g., genetic algorithm [6], bender decomposition [34]).
These algorithms either significantly worsened the latency
performance with tedious solution searching processes,
or complicated algorithm parameter determination (e.g.,
maximum iteration, population size, etc.); the improper
design of which directly resulted in failure to find opti-
mum solution. Deterministic algorithms (e.g., ADMM)
were considered, which normally sacrificed the formulation
accuracy (e.g., by discarding coupling parameters in the
constraints [35]). Besides, as aforementioned, the spa-
tial SC allocation, together with microgrid customization
in the system modeling, was not considered in these
works.

A joint optimization of data ratemaximization and interfer-
ence mitigation was proposed [3], which provided a generic
spatial SC allocation for SG. Nevertheless, to maximize the
QoS performance, energy efficiency was not emphasized,
which was one of the main blocks to service providers
for the popularization of microgrids. Features of SGUEs
were also not comprehensively modeled in the optimization
process, with transmission pattern assumed as homogeneous
and communication/computation resources as sufficient.
Therefore, in this paper, we fill in the research gap and extend
the research scope, to propose a spatiotemporal D2D based
HSCN deployment for microgrids.

There are several spatiotemporal systemic deployment
schemes proposed previously [17], [18], [36]–[40], which
have pointed out the limitations of separately handling
either spatial deployment or real-time resource allocation.
spatiotemporal SINR analysis was conducted for HSCNs,
trying to overcome the limitation of modeling bias caused by
full buffer assumptions in stochastic geometry based spatial
allocation [40]. Besides, delay analysis was also provided for
5G networks, effectively modeling delay throughout physical
and application layers [39]. However, although raising
up the importance of systemic spatiotemporal analysis,
the abovementioned works might fail to be applied in MEC-
SC based HSCN deployment for microgrids, with D2D
activated, rendering lack of customized system modeling.

Comparison between the proposed 3xSD and selected
literature survey is summarized in TABLE 2, to elaborate on
the paper’s innovations.

III. INFRASTRUCTURE OF SPATIOTEMPORAL MEC-SC
DEPLOYMENT FOR MICROGRID BASED
SMART GRID (3xSD)
In this paper, SG is upgraded by microgrids with the full
utilization of the distributed power supports, achieving higher
energy efficiency and low cost in the future distributed
SG development [23]. Based on the natural features of
microgrids, Figure 1 shows the infrastructure of the proposed
3xSD, divided and interacted by physical and cyber layers.
We assume that N SGUEs are served, which contributes to N
devices in the power system and N end devices in the com-
munication system, simultaneously, by assuming each SGUE
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TABLE 1. Key abbreviations and notations.

TABLE 2. Comparison between the proposed 3xSD and previous works.

embedded with one transceiver. M MEC-SCs are deployed
to provide efficient connectivity and distributed computation
capacity for SGUEs in the coverage of a macro-cell, with
the value M and corresponding MEC-SC locations and
operations (e.g., powering, work offloading) to be determined
by the proposed 3xSD. The SGUEs select a serving SC base
station (SBS) with maximum reference signal received power
(RSRP), or route their data to neighboring SGUEs, according
to D2D based multi-hop communications. Macro-cell base
stations (MBSs) are mainly responsible for coordinating
SBSs with work offloading commands, communicating with
cloud servers, and providing propagation flow to SGUEs
uncovered by SCs.

Physical layer (PHY), i.e., power systems in microgrids,
consists of traditional power generators, distributed renew-
able power generators, power loads and energy storage
devices [1]. Abundant SGUEs within multiple microgrids
render various service demands. At PHY layer, SGUEs are
assigned with the following parameters:

1. Functionality: SGUEs can be classified as traditional
generators (Sg), renewable generators (Sr ), power loads (Sl),
and energy storage devices (Se), respectively, which gains
high diversity on the power transfer and communication
patterns in 3xSD. For instance, Sg normally requires regular
data aggregation and analysis to implement a regular optimal
power flow management [41], whereas Se may be equipped
with event-triggering transceivers to dynamically reporting
the charging/ discharging demand and situation [22].

2. Locations: Because PHY defines the services in micro-
grids, the location of SGUEs should be assigned according to
their requirements from the power system, which is derived
as:

Ln = (xn, yn) , n ∈ {1..N } (1)

where xn and yn are the axis of SGUE n, according to the x-y
spatial distribution. It is necessary tomention that the location
of SGUEs are normally stabilized temporally, with SGUEs
normally installed fixedly.
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3. Microgrids: The microgrid that SGUE n belongs to is
derived as Cn, n ∈ {1..N }. In general, SGUEs in the same
microgrid might suffer from less privacy issues, meanwhile
data shared in the samemicrogrid can achieve high efficiency,
according to the short physical distance. Moreover, D2D
could be activated more securely among SGUEs in the same
microgrid.

Cyber layer, which is the communication networks (i.e.,
HSCN) served in microgrid, also defines SGUEs in commu-
nication and computation perspectives, including:

1. Transmission pattern: As mentioned, SGUEs require
periodic or non-periodic data transmission, according to
their unique Si, i ∈ {g, r, l, e} in the power system.
Therefore, transmission patterns of SGUE n in the cyber
layer, trn (t) , n ∈ {1..N }, can be either 1 or 0, representing
periodic and non-periodic, respectively, at time t .
2. D2D activation: D2D is activated for SGUE nwhen data

relay among SGUEs is necessary, with its D2Dmode defined
with ϑn (t) = 0, n ∈ {1..N } as not activated and ϑn (t) = 1
as activated at time t . Correspondingly, the D2D activation
between two SGUEs, n and o, is derived as

θno (t) =

{
1, activated
0, otherwise,

n, o ∈ {1..N } (2)

3. SC coverage: cmn (t) ,m ∈ {1..M} , n ∈ {1..N } is
defined as the physical coverage of SCs, regarding to SGUEs,
based on the potential link budget between SCs and SGUEs.
cmn (t) = 1 indicates that the transmit power of SC m is
sufficient to support the data propagation to/from SGUE n.
4. SGUE-SC association: amn (t) ,m ∈ {1..M} ,

n ∈ {1..N } is defined as 1 when connected and 0 otherwise.
It is necessary to mention that with the activation of D2D,
amn (t) does not necessarily mean SGUE n is physically
covered by SC m, which could relay its data via D2D.
Detailed principles and relationship between cmn (t) and
amn (t) are illustrated in Section III.B.
It is intuitive that Si, Ln and Cn (i ∈ {g, r, l, e} ,

n ∈ {1..N }) are defined when initializing 3xSD and
temporally stable, whereas trn (t), ϑn (t), θno (t), cmn (t) and
amn (t) (m ∈ {1..M} , n ∈ {1..N }) are temporally dynamic,
which should be predicted/measured in the spatial/temporal
deployment of the proposed 3xSD, respectively. Moreover,
the hypotheses that the proposed 3xSD makes are summa-
rized as:
Hypothesis 1: Each SGUE n ∈ {1..N } is associated with

one and only one SC m (where m ∈ {1..M}), at time t, either
directly covered by SC m or by D2D:

∀n ∈ {1..N } :
∑

m∈{1..M}
amn (t) = 1 (3)

Hypothesis 2: To prevent latency performance affected by
multi-hop communication, when D2D activated at time t for
SGUE n, data can be relayed to one and only one SGUE:

∀ϑn (t) = 1 :
∑

o∈{1..N }
θno (t) = 1, n ∈ {1..N } (4)

IV. SPATIAL SC POSITIONING
In this section, we propose the spatial deployment of 3xSD,
which optimally determines the SC positioning. It is
necessary to note here that SGUEs are already registered
with their temporally stabilized variables, e.g., Si, Ln and
Gn (i ∈ {g, r, l, e} , n ∈ {1..N }), as aforementioned.
However, the dynamic variables of SGUEs should be esti-
mated, represented by the statistical model-driven modeling,
to provide a long-term energy-efficient SC positioning,
meanwhile ensuring potential QoS performance optimized
and interference mitigated.

A. VARIABLE ESTIMATION OF SGUES
Spatial HSCN deployment determines the SC positioning,
including the number and positions of SCs. Excessive number
of SCs increases the construction and operational costs,
as well as reducing the energy efficiency, whereas the
positions of SCs directly affect the inter-cell interference
and the link budget of SGUEs. Therefore, energy efficiency
maximization and estimated QoS should be considered,
when optimizing the SC positioning in the spatial HSCN
deployment, with interference mitigated.

Since D2D is activated, SGUE n could have two possible
data transmission paths. One is directly connected with
one SBS via the coverage of one SC with sufficient link
budget. The other could transmit via D2D, by relaying data
to the adjacent SCs (not physically covered). These two
paths correspond to the determination of the D2D activation
defined in Section III, with ϑn (t) = 0 and 1 (n ∈ {1..N }),
accordingly. In addition, SGUE data transmission path could
also determine cmn (t) and amn (t) (m ∈ {1..M} , n ∈ {1..N }),
with the properties defined as:
Property 1: ∀t ∈ [0,T ], if ϑn (t) = 0&cmn (t) = 1,

amn (t) = 1, based on Hypothesis 1.
Property 2: ∀t ∈ [0,T ], if ϑn (t) = 1&cmn (t) = 0,

amn (t) = 0, based on Hypothesis 1.
Property 3: ∀t ∈ [0,T ], ϑn (t)+ cmn (t) = 1.
Properties 1-3 can be further derived, with the definition of

θno (t) (n, o ∈ {1..N }):
Property 4: ∀t ∈ [0,T ], if ϑn (t) = 0 or ϑo (t) = 0,

θno (t) = 0, according to (2);
Property 5: ∀t ∈ [0,T ], if θno (t) = 1, ϑn (t) = ϑo (t) = 1,

according to (2);
Property 6: ∀t ∈ [0,T ], if ϑn (t) = θno (t) = cpo (t) = 1,

cpn (t) = 1.
The association between SGUEs and SCs (amn (t)), as well

as the D2D activation (ϑn (t)) are determined dynamically,
which can only be estimated according to the model-driven
formulation for the spatial HSCN deployment of 3xSD.
Therefore, all the time-variant variables are estimated in this
section, represented as x (t) → x̃, e.g., ϑn (t) → ϑ̃n (n ∈
{1..N }).

Based on the association of SGUE-SC, and D2D probabil-
ity, the inter-cell interference in the spatial HSCNdeployment
of the proposed 3xSD is formulated related to the average
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signal to interference-noise ratio (SINR), which is formulated
in the point of view of SC m, as

γ̃m (M ,Lm) =
∑

n∈{1..N }

P̃m · Gmn
N+ Ĩmn

·c̃mn ·ãmn, m∈{1..M}

(5)

where Lm is the location of the SBS m, which is one of the
outputs of the spatial SC positioning scheme in 3xSD. P̃m
is the transmit power of the SBS m, which is estimated as
average of the solution space of transmit power. Gm,n refers
to the gain of the SBSm to SGUE n. γ̃m (M ,Lm) is calculated
with the estimation of D2D probabilities (estimated regarding
Ln and Cn), by considering the estimated c̃mn and ãmn. N
and Ĩmn are the additive Gaussian noise and interference,
respectively, with Imn estimated as

Ĩmn =
∑

i∈{1..M},i6=m
E
[
P̃i · Gin·h̃in (M ,Lm)

]
, n∈{1..N }

(6)

where h̃in (M ,Lm) ← hin(M ,Lm, t) is the estimated
time-varying small-scale fading channel gain from SBS i
to SBS m.

According to Shannon based capacity formula, the achiev-
able throughput between SBS m and SGUE n is [6]:

σ̃mn (M ,Lm) = Bm log2

(
1+

P̃m · Gmn
N + Ĩmn (M ,Lm)

·c̃mn · ãmn

)
,

m ∈ {1..M} , n ∈ {1..N } (7)

where Bm is the bandwidth available for the SBS m.
ConsideringD2D communication, the overall achievable data
rate of SBSm and energy efficiency (Ẽ (M ,Lm)) estimated in
the spatial tier are calculated as:
∀m ∈ {1..M} : σ̃m (M ,Lm)

=

∑
n∈{1..N }

∑
i∈{1..M}

σin (M ,Li)·ϑ̃n ·ãmn ·c̃in

+

∑
n∈{1..N }

σ̃mn (M ,Lm) (8)

Ẽ (M ,Lm) =
∑

m∈{1..M}

P̃m
σ̃m (M ,Lm)

(9)

B. SPATIAL SC POSITIONING SCHEME
In this paper, we maximize energy efficiency and achievable
data rate with interference mitigation for HSCN by the spatial
SC positioning, which ensures the optimal long-term HSCN
deployment for microgrids, and thus paves the infrastructural
way to the dynamic temporal HSCN deployment (i.e.,
TOSPO). Therefore, the optimization problem for spatial
SC positioning is formulated as a conflictive multi-objective
optimization based on (5), (8) and (9), with weighting factors
assigned (m ∈ {1..M}):

Fsp (M ,Lm) = ω1fsp,1 (M ,Lm)+ ω2fsp,2 (M ,Lm)

+ω3fsp,3 (M ,Lm)

= ω1

∥∥∥∑
m∈M

σ̃m (M ,Lm)
∥∥∥+ω2

∥∥∥Ẽ (M ,Lm)∥∥∥
+ω3

∥∥∥∑
m∈M

γ̃m (M ,Lm)
∥∥∥ (10)

where fsp,1 (M ,Lm), fsp,2 (M ,Lm) and fsp,3 (M ,Lm) are the
three objectives for the spatial SC positioning scheme,
namely achievable data rate maximization, energy effi-
ciency maximization, and interference mitigation (e.g., SINR
maximization), respectively, which are normalized to be
comparable. ω1, ω2, ω3 ∈ [0, 1] are the weighting factors for
the three objectives, which should be determined according to
the demand of service providers of microgrid. For instance,
for the microgrid serving hospitals, interference should
be mitigated with less emphasis on energy efficiency to
ensure the reliability of the HSCN. On the other hand, for
commercial usage of microgrid, service providers might seek
more cost-effective solution for the HSCN deployment to
reduce cost.

The applicable constraints include (3)-(4), and
(11)-(13) defined as the achievable data rate of each
SGUE fulfilling microgrid demands, backhaul flow limit
of each SBS, and transmit power limit for each SBS,
respectively:

σ̃mn (M ,Lm) ≥ σ̃minmn , m ∈ {1..M} , n ∈ {1..N } (11)

σ̃m (M ,Lm) ≤ σmaxm , m ∈ {1..M} (12)

P̃m ∈
[
0,Pmaxm

]
, m ∈ {1..M} (13)

It is obvious that the optimization problem (10), with the
constraints, is highly non-linear mixed-integer programming.
Instead of discarding or relaxing the integer variables [35],
which might sacrifice the formulation accuracy, we develop
a multi-criteria decision making algorithm based on VIKOR,
a commonly-recognized optimization algorithm with fast
computation and accuracy [42], to search for a trade-off
solution for the multi-objective optimization problem of the
spatial SC positioning scheme. The global best and worst
values for all the objectives should be analyzed as f ∗sp,i and
f −sp,i, respectively, with i ∈ {1, 2, 3} in the scheme. The utility
measures (U ) and regret measures (R) are further calculated
for each candidate solution:

Um =
∑

i∈{1,2,3}
αi
f ∗sp,i−fsp,i (m,Lm)

f ∗sp,i−f
−

sp,i

, m∈{1..M} (14)

Rm = max

[
αi
f ∗sp,i − fsp,i (m,Lm)

f −sp,i − fsp,i (m,Lm)

]
,

i ∈ {1, 2, 3} , m ∈ {1..M} (15)

In this paper, to simplify the computation, the candidate
solutions are selected based on M , while the corresponding
location of SCs (Lm) is determined based on the principle
that SCs should be located evenly to cover the serving
space with minimum inter-cell interference. The global best
and worst values of U and R,

{
U∗,U−

}
and

{
R∗,R−

}
are obtained similar to

{
f ∗sp,i, f

−

sp,i

}
. The sorting criteria

(Sm) [3] with v generally set as 0.5 and the optimal
solution by the spatial SC positioning scheme can be
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obtained as

Sm = v
(
Um − U∗

U− − U∗

)
+ (1− v)

(
Rm − R∗

R− − R∗

)
, m ∈ {1..M} (16)

Moptimal
= arg Sm (17)

V. TEMPORAL ON-DEMAND SC POWERING AND WORK
OFFLOADING (TOSPO)
The spatial SC positioning is determined in Section IV,
with optimized long-term energy efficiency, maximized
achievable data rate and mitigated inter-cell interference.
However, real-time data-driven optimization process of
HSCN deployment is still required to dynamically fulfill the
demand of SGUEs, with real-time energy and cost efficiency
management. Therefore, in this section, on-demand SC
powering and offloading scheme (TOSPO) is developed for
the temporal HSCN deployment of 3xSD.

A. ON-DEMAND MEC-SC POWERING STRATEGY
The dynamic MEC-SC powering scheme is proposed based
on the sleeping strategy [28]. According to the heterogeneous
operation modes of SGUEs, SBSs could fall into sleeping
mode, when sufficiently few SGUEs are active in a time
period, with the facilitation of D2D. According to the
transmission pattern (trn (t)), SGUEs could be categorized as
periodic and non-periodic, corresponding to the requirement
from the physical layer of the proposed 3xSD.

The possibility that periodic SGUE nwith the time interval
Tn generates packets at the period 1t is formulated as

δtrn(t)=1 (t) =
1t
Tn
, n ∈ {1..N } (18)

Suppose there are npm periodic SGUEs covered by SC
m, with cmn (t) = 1, n ∈

{
1..npm

}
, ,m ∈ {1..M},

the number of active periodic SGUEs (N p′
m (t)) and active

non-periodic SGUEs (N np′
m (t)) in SC m are derived based

on (18) considering D2D, as

N p′
m (t) =

∑
n∈
{
1..npm

} δtrn(t)=1 (t) · amn (t) (19)

N np′
m (t) =

∑
n∈
{
1..nnpm

} δtrn(t)=0 (t) · amn (t) (20)

where δtrn(t)=0 (t) refers to the probability that non-periodic
SGUE nwill be active at {t, t+1t}, which obeys the Poisson
distribution. The total number of active SGUEs at time t is
summed by (19) and (20) as

N ′m (t)=N
p′(t)
m +N np′(t)

m , n ∈
{
1..npm

}
, m∈{1..M} (21)

Therefore, the clustering of active SGUEs at time t
provides guidance to MEC-SC powering, intuitively by
turning on MEC-SCs with large N ′m (t), while switching
MEC-SCs with less N ′m (t) to sleeping mode and offload their
work to adjacent MEC-SCs.

In the proposed TOSPO, we adopt k-means clustering
for MEC-SC powering, which is capable of handling real-
time MEC-SC powering with low computation costs, as a
partitioned clustering algorithm. Besides, k-means clustering
is applicable for SGUE clustering without outliers in
microgrids, due to the physical close location of SGUEs in
the same microgrid [1]. When initializing, the centroids of
the cluster k (µ0

k (t) , k ∈ {1..K }) at time t are randomly
determined. All the other active SGUEs are clustered based
on the minimum distance regarding µ0

k (t) as:

k0n = arg min
k∈{1..K }

∥∥∥Ln − L0µ0
k (t)

∥∥∥2 , n ∈
{
1..n′m (t)

}
(22)

For each iteration, the centroid is updated as the center of
each cluster. The algorithm repeats until no SGUEs are re-
assigned to other clusters, or the centroids are unchanged,
or the sum of squared error decreases to the pre-defined
level. The final centroid of clusters, µimaxk (t) , k ∈ {1..K },
determines SC powering, with:

τm (t) =

{
1,

∑
k∈{1..K }

cmµimaxk (t) = 1

0, otherwise
, m ∈ {1..M}

(23)

where τm (t) = 1 indicates that SC m is active at t, t + 1t ,
whereas τm (t) = 0 means SC m is in sleep mode to reduce
power consumption.

B. WORK OFFLOADING OF MEC-SCS
Among the active MEC-SCs, work offloading should be
achieved to optimize the resource utilization efficiency,
meanwhile ensuring on-demand QoS requirements by
SGUEs. Therefore, a real-time D2D MEC-SC based work
offloading algorithm is proposed.

Suppose an SBS m gains transmit power Pm (t) ,
m ∈ {1 . . .M}. The data rate of one active SGUE n towards
SBS m is measured and referred as σmn (t). The total data
rate received by SBS m, thus, is derived based on N ′m (t)
determined in (21), as:

σm (t) =
∑

i∈{1..N ′m(t)}
σmn (t) τm (t), m ∈ {1..M} (24)

Compared with the estimated σ̃m (M ,Lm) in (8), σm (t)
reflects the on-demand data rate requirement of individual
SGUEs in real-time. We still have to define the maximum
data rate that SBS m can support, similar to (6)-(8):

σmaxm (t) =
∑

n∈{1..N ′m(t)}
σmaxmn (t),

m ∈ {1..M} , n ∈ {1..N } (25)

σmaxmn (t) = Bm log2

(
1+

Pm (t) · Gmn
N + Imn (t)

· cmn (t) · amn (t)
)
,

m ∈ {1..M} , n ∈ {1..N } (26)

where

Imn (t)=
∑

i∈{1..M},i6=m
[E [Pi (t)·Gin ·hin (t)]·ϕm (t)] (27)
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When SGUE o offloads its data to SGUE n via D2D with
θno (t) defined in (2), the constraint for the data rate capacity
of SGUE n should be fulfilled as:∑

m∈{1..M}
[σmo (t) · θno (t)+ σmn (t)] · amn (t)

≤

∑
m∈{1..M}

[
σmaxmn (t) · amn (t)

]
, ∀n, o ∈ {1..N } (28)

In this paper, we focus on the work offloading among
MEC-SCs, by assuming that the total computation capacity
of MEC-SCs (

∑
m∈{1..M} ϕm, ϕm defined as the computation

capacity of MEC-SC m) is capable of processing the
workload of SGUEs. Cloud mainly acts as the central
controller for the work offloading management amongMEC-
SCs to achieve global optimum, with data offloading to cloud
targeted as our future work.

Therefore, similar to (2) and (4), we derive the data
offloaded from MEC-SC m to MEC-SC q as

θMEC−SCmq (t) = min
{
ϑMEC−SCm (t) , ϑMEC−SCq (t)

}
=

{
1, activated
0, otherwise,

m, q∈{1..M} (29)

∀ϑMEC−SCm (t) = 1 :
∑

q∈{1..M}
θMEC−SCmq (t) = 1,

m, q ∈ {1..M} (30)

The corresponding data offloaded from MEC-SC m to
MEC-SC q at time t is defined as ⇀ϕmq (t) ∈ [−ϕmax ,+ϕmax],
which should be limited according to the offloading capacity
of HSCN. Besides, according to the consistency of the traffic,
⇀
ϕmq (t) should be constrained as:

∀ ∈ m, q ∈ {1..M} : ⇀ϕmq (t)+
⇀
ϕqm (t)=0, m, q∈{1..M}

(31)

The overall workload byMEC-SCm, thus, is calculated as:

σ allm (t) = σm (t)+
∑

q∈{1..M}

⇀
ϕmq (t) · θ

MEC−SC
mq (t) ≤ ϕm

(32)

The overall computation latency is further calculated,
based on M/M/1 queuing system [35], as:

DMEC−SCcp (t) =
∑

m∈{1..M}

1
ϕm − σ allm (t)

(33)

where the computation power consumption is linearized with
power consumption for unit data processing ε [35]:

EMEC−SCcp (t) =
∑

m∈{1..M}

[
ε · σ allm (t)

]
(34)

It is necessary to notice here that the communication
latency among SGUE-SC is determined by the k-means
clustering based SC powering discussed in Section V.A. This
subsection mainly aims to minimize the computation latency
of MEC-SCs:

min
⇀
ϕmq(t),m,q∈{1..M}

DMEC−SCcp (t) (35)

s.t. (28), (32),

EMEC−SCcp (t) ≤ EMEC−SCcp,max (36)
⇀
ϕmq (t) ∈

[
−ϕmax ,+ϕmax

]
(37)

Equation (35) (inverse proportional function) can be
solved by optimizing the equivalent augmented Lagrangian
objective function, with Lagrangian multipliers and penalty
terms as (38), as shown at the bottom of the page.
α1 (t) to α3 (t) are the Lagrangian multipliers for the

constraints. DMEC−SCcp (t), regarding ⇀
ϕmq (t), is an inverse

proportional function. Equation (28) can be achieved by
optimal link budget in spatial SC allocation. Besides, it is
intuitive that (36) and (37) are linear constraints. Therefore,
the optimization problem can be solved by the iterative
gradient descent method, given its fast convergence and
global optimum ensured, which updates the controllable
variable, ⇀ϕmq (t) ,m, q ∈ {1..M} to the opposite direction
of the gradient in the solution space. Lagrangian multipliers
are also updated iteratively with the principle in (39)-(40), as
shown at the bottom of the page.
�j is the corresponding penalty term for αj (e.g.,

EMEC−SCcp (t) − EMEC−SCcp,max for α1). v should be determined

min
⇀
ϕmq(t),m,q∈{1..M}

DMEC−SCcp (t)+ α1 (t)
(
EMEC−SCcp (t)− EMEC−SCcp,max

)
+ α2 (t)

(
⇀
ϕmq (t)− ϕ

max
)2

+α3 (t)
(
σm (t)+

∑
q∈{1..M}

⇀
ϕmq (t) · θ

MEC−SC
mq (t)− ϕm

)
(38)

m, q ∈ {1..M} : ⇀ϕ
i+1
mq (t)

=
⇀
ϕ
i
mq (t)− v

·

 θMEC−SCmq (t)[
ϕm−

(
σm (t)+

∑
q∈{1..M}

⇀
ϕ
i
mq (t)·θ

MEC−SC
mq (t)

)]2+αi1 (t)·ε ·θMEC−SCmq (t)+2αi2 (t)·
⇀
ϕ
i
mq (t)+ α

i
3 (t)·θ

MEC−SC
mq (t)


(39)

αi+1j (t) = αi1 (t)− v ·�j, j ∈ {1, 2, 3} (40)
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TABLE 3. Operation flow of TOPSO.

to be small enough to ensure the convergence to the saddle
point of the Lagrangian. The gradient descent based on-
demand MEC-SC offloading gains sufficient computation
latency with low complexity, which fulfill the real-time SC
deployment for microgrids.

Operation flow of TOPSO is summarized in TABLE 3.
After obtaining features of SGUEs, SGUE-SC association,
and MEC-SCs, TOPSO adopts k-means clustering to group
active SGUEs (N p′

m (t) + N np′
m (t)) into determined K

groups. Cluster centroids µik (t) is updated iterationally, until
the assignment all the SGUEs and cluster centroids are
converged, or the maximum iteration is reached. Sleeping
strategy basedMEC-SC powering, then, outputs the activated
MEC-SCs (τm (t) ,m ∈ {1..M}), determined by the coverage
of centroids of clusters (µimaxk (t)). Since some MEC-SCs
sleep according to MEC-SC powering strategy, as well
as SGUEs are allocated/operated heterogeneously, MEC-
SC offloading is conducted by TOPSO, by formulating
energy-aware overall computation latency optimization by
Lagrangian modeling. Gradient descent based algorithm
is developed, given its fast convergence and simplified
computation. Real-time MEC-SC offloading outputs the
guidance of offloading (⇀ϕ

i+1
mq (t) ,m, q ∈ {1..M}), which

achieves minimizedDMEC−SCcp (t)with optimal EMEC−SCcp (t).

VI. PERFORMANCE ANALYSIS
In this section, we develop three-step performance analysis
to evaluate the proposed 3xSD, systemically and convinc-
ingly. Step 1 analyzes the long-term energy efficiency and
achievable QoS improvement by the proposed SC positioning
scheme, which will be discussed in Section VI.A. Following
Step 1, Step 2 showcases the dynamic latency performance
and energy efficiency optimization of TOSPO for different
scales of microgrid, shown in Section VI.B. Step 3 evaluates
the overall performance of the proposed 3xSD on the case
study with IEEE 342-Node system (a typical test feeder for
microgrids [43]) and selected benchmarks.

A. SPATIAL ANALYSIS OF THE SPATIAL SC POSITIONING
SCHEME
This subsection is devoted to the evaluation of the proposed
SC positioning scheme. Scenarios with multiple scales of
microgrids with the number of SGUEs varied in the range:
N = {200, 400, 600} are considered, where the proposed
spatial SC positioning scheme provides optimal number of
SCs with their positioning. With the typical radius of MBSs
(1km) and SBSs (0.2km) [35], it is not hard to determine
that the maximum number of SBSs in each MBS is ∼25,
to prevent serious inter-SC interference.

Figure 2(a)-(c) shows the three criterions (normalized,
i.e., achievable data rate (σ̃ ), energy efficiency (Ẽ), and
interference mitigation (γ̃ )) for the designed three scenarios
(N = {200, 400, 600}), respectively. Generally, σ̃ is
proportional toM for all scales, resulting in higher efficiency
of spectrum utilization. Ẽ is improved at first and then drops
down after the peak value, regarding the increase of M .
Smaller M might fail to provide sufficient data rate (σ̃ ) to
SGUEs, whereas excessive M results in unnecessary power
consumption and cost. Therefore, Ẽ achieves its peak value
when M = {5,10,13} for N = {200,400,600}, respectively.
Similarly, γ̃m gains its peak value at M = {7,15,21} for
N = {200,400,600}, respectively, rendering insufficient
SBSs losing coverage of SGUEs located at the edge of
MBSs and excessive SCs potentially causing serious inter-SC
interference.

It is obvious that trade-off solution should be determined
when considering the three criterions (σ̃ , Ẽ , γ̃ ) simultane-
ously, which achieves optimum on differentM in the solution
space. Therefore, Figure 3(a)-(i) represents the achievement
of σ̃ , Ẽ , γ̃ for different scales with varying weightings by the
proposed SC positioning scheme, respectively. Based on (10),
{ω1, ω2, ω3} represents the weighting coefficient for σ̃ , Ẽ , γ̃ ,
respectively, with ω1 plotted on x-axis and ω2 on y-axis. ω3
can be simply obtained by ω3 = 1− ω1 − ω2.
In general, each criterion can achieve better performance

with its corresponding weighting as higher. For instance,
σ̃ increases linearly with the increasing of its weighting
coefficient (ω1). Similar principles occur to Ẽ /ω2 and γ̃ /ω3,
respectively. Besides, the reduction of σ̃ could deteriorate Ẽ ,
due to the definition of Ẽ in this paper as ‘‘bit/J/Hz’’. Based
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FIGURE 2. The main criterions (normalized) vs. No. of SCs for (a) N = 200; (b) N = 400; (c) N = 600.

on Figure 3, the proposed spatial SC positioning scheme
provides guidance to the spatial SC deployment with long-
term (σ̃ , Ẽ , γ̃ ) optimization. The peak value of σ̃ , Ẽ , γ̃
can be potentially achieved as {21.14, 64.82, 93.89}Mbps,
{8.92, 23.68, 30.75}bit/J/Hz, and {20.52, 23.91, 29.45}dB
for N = {200, 400, 600}, respectively. With ω1 = ω2 = ω3
representing a generic case, the average σ̃ , Ẽ , γ̃ achieves
{18.01, 44.96, 73.55}Mbps, {8.88, 23.66, 30.65}bit/J/Hz
and {19.99, 22.46, 28.78}dB for N = {200, 400, 600},
respectively, withM = {5, 11, 14}.

B. DYNAMIC ANALYSIS OF TOSPO
This subsection discusses the dynamic on-demand HSCN
deployment by the proposed TOSPO (powering and work
offloading), for different scales ofmicrogrid based smart grid.
Features of SGUEs are randomly assigned with Si, Ln, Cn,
trn (t), ϑn (t), θno (t), cmn (t) and amn (t). TOSPO is evaluated
within 60 sec, with time interval as 1 sec. To reflect the
concern of privacy of SGUEs, probability of D2D is assigned
as [0,0.8] if SGUEs are clustered in the same microgrid,
and [0,0.2] otherwise. Intuitively, With the increase of D2D
probability, the data rate of the whole system increases near-
linearly [3].

Figure 4 shows the real-time DMEC−SCcp (t) and the
corresponding required workload (σ (t)), during the oper-
ation time. Generally, DMEC−SCcp (t) is proportional to the

required σ (t), with limited computation power of MEC-
SCs. Although SGUEs are located randomly and operated
dynamically, the proposed TOSPO is capable of covering all
the SGUEs and providing efficient computation capacity with
computation latency less than 22.73sec for N ≤ 600. More-
over, the difference between the average DMEC−SCcp (t) for
different microgrid scales in Figure 4 (a) limits to ∼0.23%,
indicating the high scalability with stable performance of the
proposed TOSPO. For instance, since M for N = {200, 400,
600} is obtained by the spatial SC positioning scheme as
M = {5, 11, 14}, respectively, the influence on the average
DMEC−SCcp (t) by different microgrid scales limits within
∼0.3ms/MEC-SC, which potentially supports microgrid with
ultra-dense MEC-SCs.
Moreover, generally, shown in Figure 4 (a), without

D2D activated, DMEC−SCcp (t) increases, due to the increased
data aggregation in MEC-SCs, based on (24), (32)-(33).
On average, based on the D2D probability determined in
TABLE 4, DMEC−SCcp (t) can be improved by 11.59% with
D2D activated.
Figure 5 shows the MATLAB based convergence time

of the proposed TOSPO, operated on i7-4702MQ CPU and
8GBRAM. Concretely, since the fast convergence of gradient
descent based algorithm, the work offloading algorithm
achieves an average of 4.14ms, with variance less than
0.59 for N = {200, 400, 600}. The k-means clustering
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FIGURE 3. Optimal σ̃ , Ẽ, γ̃ with varying ω1, ω2, ω3 for N = {200,400,600}: (a) Optimal σ̃ for N = 200; (b) Optimal Ẽ for N = 200; (c) Optimal γ̃ for
N = 200; (d) Optimal σ̃ for N = 400; (e) Optimal Ẽ for N = 400; (f) Optimal γ̃ for N = 400; (g) Optimal σ̃ for N = 600; (h) Optimal Ẽ for N = 600;
(i) Optimal γ̃ for N = 600.

proposed SC powering algorithm also performs acceptable
convergence with the maximum convergence time for
N = 600 as 20.22ms. Therefore, the overall achieved
convergence time of TOSPO is as small as 25.08ms, sufficient
to support microgrids [44].

C. CASE STUDY OF THE PROPOSED 3xSD
In this subsection, a typical test feeder for communication
system analysis in microgrids, IEEE 342-Node system,
is selected as the testbed. Parameter settings for the case study
are based on the setup of IEEE 342-Node system, shown
in TABLE 4. To showcase the performance of the proposed
3xSD, two benchmarks, representative of the advanced
HSCN deployment, are selected to represent the spatial and
temporal benchmarks respectively, which include:

1. Optimization of D2D-based data rate optimization
and interference mitigation (ODDRI) [3], which focuses on

SC positioning, with D2D probability estimated during the
initialization of HSCNs.

2. Dynamic MEC-SC offloading based on ADMM
(ADMM-MEC-SC) [35], which aims to achieve low power
consumption and low computation time by real-time offload-
ing algorithm.

Suppose half of SGUEs transmit data periodically, and the
rest non-periodically in time t ∈ [0, 60] sec with 1t =
1 sec. SGUEs are located based on the Poisson distribution,
with the distance between each other ranging in [0,24] m,
as indicated in IEEE 342-Node system. Besides, the packet
size is designed as [256, 1024] bits to reflect the practical
demand of SGUEs.

Based on the parameter settings in the case study,
the proposed spatial SC positioning scheme in 3xSD is
activated to initialize the HSCN, with the corresponding
M = 14 with ω1 = ω2 = ω3, as aforementioned
in Section VI.B. Therefore, based on the dynamic SGUEs
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TABLE 4. Parameter setting of dynamic simulation analysis.

FIGURE 4. (a) DMEC−SC
cp

(
t
)
; (b) required dynamic σ

(
t
)

required by SGUEs
vs. operation time.

operation pattern, the initialized SC positioning and powering
within one macro-cell at t = 0 is shown in Figure 6.
According to the operation patterns of SGUEs at t = 0,
k-means clustering based SC powering in TOSPO determines
the sleeping modes for SCs, as shown in Figure 6, by which
the active SCs can cover all the cluster centroids obtained by
TOSPO, with D2D.

FIGURE 5. Computation convergence latency of TOSPO (powering +
offloading).

FIGURE 6. HSCN deployment (SC positioning and powering) (t=0).

Figure 7 shows the real-time total latency during the oper-
ation. After initialization (t < 2 sec), the convergence time
of the proposed 3xSD limits to [21.94, 23.52] ms, whereas
the communication and computation latency of 3xSD is
relatively stabilized in the range of [37.85, 41.65] ms.
Similarly, the benchmark ODDRI requires a larger latency
for initializing the HSCN for microgrid. However, since
real-time work offloading is lacked, the latency of ODDRI
deteriorates during the operation, with the accumulation of
the excessive workload of busy MEC-SC, while leaving
certain less-heavy-load MEC-SCs idle. On the other hand,
ADMM-SC could achieve the workload offloading among
MEC-SCs, yet non-optimal MEC-SC positioning results in
a larger latency up to 93.26ms. In summary, the average
achieved latency of the proposed 3xSD during the operation
reaches as lows as 60.18ms, which surpasses the benchmarks,
ODDRI and ADDM-MEC-SC, by 27.81% and 35.47%,
respectively.

Figure 8 depicts the energy efficiency (EMEC−SCcp (t)) of
the proposed 3xSD within [0, 60] sec, compared to the
two considered benchmarks. The fluctuation of EMEC−SCcp (t)
is consistent with the real-time data rate demanded by
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FIGURE 7. Latency performance of 3xSD and benchmarks.

FIGURE 8. EMEC−SC
cp

(
t
)

of the proposed 3xSD.

SGUEs. Meanwhile, EMEC−SCcp (t) can also be improved by
the proposed 3xSD with SC powering. Similar to Figure 7,
EMEC−SCcp (t) of ODDRI decreases along operation time,
rendering the deteriorated data rate because of the workload
congestion. By contrast, the proposed 3xSD gains the
stable outperformance on EMEC−SCcp (t) optimization, with an
average value of 27.90 bit/J/Hz, superior to the benchmarked
ODDRI and ADDM-MSC-SC by 49.05% and 33.93%,
respectively. Therefore, with the spatiotemporal HSCN
deployment for microgrids, the proposed 3xSD achieves
optimal latency and energy efficiency performance with high
scalability and reliability, chronically and dynamically, which
provides optimal energy efficient and QoS-ensured solution
for large scale microgrids.

VII. CONCLUSION
This paper proposes a spatiotemporal D2D small cell
allocation and on-demand deployment for Microgrid based
smart grid development (MSD), named as 3xSD, which
extracts the features of smart grid user equipment (SGUEs)
chronically and dynamically, from both physical and cyber
layers of microgrids. Concretely, a spatial small cell posi-
tioning algorithm is proposed based on VIKOR, which

achieves optimal long-term achievable data rate and energy
efficiency with interference mitigation. On top of the spatial
SC positioning scheme, a temporal on-demand Small cell
powering and work-offloading scheme (TOSPO) is proposed
to maximize the real-time energy efficiency and minimize
the overall latency, simultaneously, with the fusion of
k-means clustering and gradient descent algorithm. The
proposed 3xSD is evaluated with spatial analysis, temporal
analysis, and case study based on a typical test feeder
(IEEE 342-Node system). Numerical results indicate that
the proposed 3xSD achieves energy efficiency and latency
as 27.90 bit/J/Hz and 60.18 ms on average, outperforming
the selected benchmarks, by at least 33.93% and 27.81%,
respectively. Therefore, the proposed 3xSD provides a high
energy-efficiency, high scalability and optimized latency
solution, chronically and dynamically, for microgrid. We will
further extend the proposed 3xSD towards larger scale smart
grid development (e.g., city-wide, etc.), together with the
resilience study regarding emergency handling, as future
work.
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