
Received June 30, 2021, accepted August 7, 2021, date of publication August 18, 2021, date of current version August 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3105914

Training Neural Networks by Enhance
Grasshopper Optimization Algorithm
for Spam Detection System
SANAA A. A. GHALEB 1,3,4, MUMTAZIMAH MOHAMAD1, SYED ABDULLAH FADZLI1,
AND WAHEED ALI H. M. GHANEM 2,3,4
1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu 22200, Malaysia
2Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
3Faculty of Engineering, University of Aden, Aden, Yemen
4Faculty of Education Aden and Saber, University of Aden, Aden, Yemen

Corresponding authors: Sanaa A. A. Ghaleb (sanaaghaleb.sg@gmail.com) and Waheed Ali H. M. Ghanem (waheedghanem@umt.edu.my)

ABSTRACT A significant negative impact of spam e-mail is not limited only to the serious waste of
resources, time, and efforts, but also increases communications overload and cybercrime. Perhaps the
most damaging aspect of spam email is that it has become such a major tool for attacks of cross-site
scripting, malware infection, phishing, and cross-site request forgery, etc. Due to the nature of the adaptive
unsolicited spam, it has been weakening the effect of the previous discovery techniques. This article proposes
a new Spam Detection System (SDS) framework, by using a series of six different variants of enhanced
Grasshopper Optimization Algorithm (EGOAs), which are investigated and combined with a Multilayer
Perceptron (MLP) for the purpose of advanced spam email detection. In this context, the combination
of MLP and EGOAs produces Neural Network (NN) models, referred to (EGOAMLPs). The main idea
of this research is to use EGOAs to train the MLP to classify the emails as spam and non-spam. These
models are applied to SpamBase, SpamAssassin, and UK-2011 Webspam benchmark datasets. In this
way, the effectiveness of our models on detecting diverse forms of spam email is evidenced. The results
showed that the proposed MLP model trained by EGOAs achieves a higher performance compared to other
optimization methods in terms of accuracy, detection rate, and false alarm rate.

INDEX TERMS Metaheuristic, Grasshopper optimization algorithm, classification, artificial neural net-
work, multilayer perceptron, spam email, spam detection system.

I. INTRODUCTION
Email is considered one of the main methods for information
dissemination around the world. It is fast, efficient, inex-
pensive, and easy to use via smartphones, laptops, desktops,
and other latest-generation electronic devices that have made
emails most popular [1], [2]. Despite the prosperity in the
use of other means of communication over the Internet, such
as social networks and instant messaging, etc., emails have
been kept the leadership in social, academic, and business
communications and remain a prerequisite for other means of
communication and electronic transactions. The widespread
use of e-mail has led to a marked improvement in academic,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chakchai So-In .

business, and social communications, which is showing its
impact on the growing economy worldwide [3].

Despite the tremendous benefits of using emails, this com-
munication technology has been accompanied by a large
number of unsolicited emails and occasionally fraudulent
emails, which are collectively known as spam emails. Spam
email is among the most annoying Internet phenomena that
challenge major global companies, including AOL, Google,
Yahoo, and Microsoft [4]. Spam causes many problems
which in turn may cause economic losses, e.g., traffic prob-
lems and bottlenecks that limit memory space, computing
power, and speed. Users also spend large amounts of time
trying to remove spam. For these reasons, spam must be
detected and isolated immediately through what is referred to
as the Spam Detection System (SDS). Spam Detection (SD)
is urgently needed to safeguard email users and prohibit

116768

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0003-4506-5214
https://orcid.org/0000-0002-3764-4788
https://orcid.org/0000-0003-1026-191X


S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

many of the negative usages of emails. Unfortunately, due to
the adaptive nature of spam emails through the use of mail
tools, the effectiveness of SDS has often been limited and
sometimes incompetent, hence the need for better SDS to
achieve higher accuracies detecting spam and maintaining a
low false-positive rate [5].

Five techniques have been widely applied for email spam
detection [6]: (1) Content Based Filtering, Content-Based
Filtering, which is based on analyzing the frequency and
distribution of words and phrases in the content of emails
and creating automatic filtering rules to classify incoming
emails using Machine Learning techniques such as Neural
Network (NN), Support Vector Machines (SVM), k-Nearest
Neighbor (KNN), and Naïve Bayesian (NB) classification;
(2) Case Base Spam Filtering, is a common spam filtering
method, which is also known as sample base filtering. This
method uses a collection model to extract all non-spam and
spam emails of each user and implement pre-processing to
convert the e-mail using feature selection/extraction, dimen-
sionality reduction, then classify the data into two vector sets.
The final step in this method uses ML techniques to train and
test the datasets in order to determine whether the incoming
emails are spam or non-spam [7]; (3)Heuristic or Rule Based
Spam Filtering, uses previously created rules or inferences to
evaluate a large number of patterns that are usually regular
expressions against the chosen message. Some score of the
message is increased if the known patterns are found. Other-
wise, the score of the message is decreased. If the score of the
message exceeds a certain threshold it is identified as spam;
else, it is considered non-spam. Although some ranking rules
do not change over time, other rules need constant updating
to be able to effectively deal with the threat of spammers
who constantly deliver new spam messages that can easily
escape without being noticed by email filters. The SpamAs-
sassin dataset is a popular example of a rule-based spam
filter [7], [8]; (4) Adaptive Spam Filtering, is mainly based on
the use of similarity measurement techniques. It is based on
grouping email into different classes used in the detection and
filtering of spam. The email body is separated into different
groups, each of which has a symbolic text. Each incoming
email is compared to each group, and a percentage of similar-
ity is produced to determine the possible group to which the
email belongs [9]. Finally, (5) Previous Likeness Based Spam
Filtering, is based on prior knowledge, so memory-based or
instance-based ML is used to classify incoming emails based
on their similarity to stored samples (e.g., training emails).
This technique uses the kNN for classifying spam emails.
A multi-dimensional space vector is created from the email
features which are used to plot new instances as points. The
new samples are then assigned to the most popular class
among the K-closest training instances [10].

All the above techniques are based mainly on two basic
approaches: a Machine Learning approach and a knowl-
edge engineering approach [11]. The knowledge engineer-
ing approach is called rule-based filtering, which creates a
set of rules by using rule-based spam filtering tools or by

some other authority [12]. These rules must be maintained
continuously and must be updated, which is a waste of time
and is inconvenient for most users. In contrast, a Machine
Learning approach is called learning-based filtering and is
more efficient than a knowledge engineering approach and
does not require rules; instead, a set of pre-classified emails
is used. Several previous studies have indicated that Machine
Learning has played an important role in terms of detecting
malicious emails on the Internet, using supervised, unsuper-
vised, and semi-supervised techniques. Supervised Machine
Learning algorithms are trained to excerpt the knowledge
that can be used to detect spam. This requires a large email
dataset with labels (spam and legitimate) to produce an
effective classification model. On the contrary, unsupervised
Machine Learning algorithms do not rely on labels of the
data, rather, it looks for patterns and natural groupings among
the instances in the dataset. Semi-supervised algorithms build
their models from a dataset that includes both labeled and
unlabeled data, usually mostly unlabeled [13].

There are many metaheuristic algorithms that have been
improved, the most popular metaheuristic techniques are:
Artificial Bee Colony (ABC), which is an inspired improve-
ment method by imitating the behavior of bees, [14], [15];
Particle Swarm Optimization (PSO) [16], which is inspired
by behavior of swarms of fishes and birds; Genetic
Algorithms (GA) [17], which are inspired by the method
of optimization and research, relying on three operators
such as selection, crossover, and mutation; Dragonfly Algo-
rithm (DA) [18], which are inspired by dynamic and
static swarming behaviors of dragonflies in nature; Cuckoo
Search Algorithm (CS) [19], which is inspired by the par-
asite egg incubating behavior of some cuckoo birds in the
nests of other birds; Ant Lion Optimization (ALO) [20],
which is inspired by the interaction of ant lions in nature;
Monarch Butterfly Optimization (MBO) [21], which is
inspired by the migration behavior of monarch butterfly; Bat
Algorithm (BAT) [22], which is inspired by the echoloca-
tion behavior of bats in nature; Harmony Search (HS) [23],
which is inspired by the process of improvising musi-
cal harmonies by musicians in an orchestra; Moth-Flame
Optimization Algorithm (MFO) [24],which is inspired by
the navigation method of moths in nature called trans-
verse orientation; Chicken Swarm Optimization (CSO) [25],
which is inspired by the hierarchical system in the chicken
swarm that include the roosters, hens, and chicks; Sine
Cosine Algorithm (SCA) [26], which is based on sine and
cosine mathematical model to generate multiple initial ran-
dom candidate solutions and requires them to fluctuate
outwards or towards the best solution; Salp Swarm Algo-
rithm (SSA) [27], [28], which is inspired by the behavior of
salp swarms when foraging in the ocean and navigating; Ant
Colony Optimization (ACO) [29], which is inspired by the
behavior of ants keeping tracks between colonies and a food
source using pheromone; and Animal Migration Optimiza-
tion (AMO) [30], which is inspired by the behavior of animal
swarm migration.

VOLUME 9, 2021 116769



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

In general, metaheuristic algorithms are enjoying great
popularity due to their flexible and powerful performance in
dealing with complex real-world problems. They have the
ability to exploit/explore the useful information of the popula-
tion in order to find the optimal solutions. These efficient and
durable algorithms are used to tackle various problems such
as feature selection problems, single-objective problems,
multi-objective problems, engineering design problems, and
Machine Learning training problems.

The literature shows that the Machine Learning approach
in email filtering attains efficient classification performance.
Some of the most popular spam email classification algo-
rithms are Artificial Neural Network (ANN) [31]–[33],
SVM [5], and Naive Bayes Classifier [4]. Many studies have
also combined Machine Learning algorithms or hybridized
more than one algorithm to produce a more accurate and
robust detection method [34]. However, these methods still
suffer from being time-consuming and very costly. ANNs are
commonly used techniques that show accurate classification
results of spam email detection [35]–[38] and are inspired by
the biological neural system. The most popular applied type
of ANN is the Multilayer Perceptron (MLP).

The traditional method used to train connection weights in
the MLP model is based on gradient descent technique, such
as the Backpropagation algorithm. However, all the gradient
based methods suffer some main drawbacks like slow con-
vergence, high dependency on the initial parameters and the
high probability of being trapped in local minima [39]–[42].
There are three major drawbacks to an ANN-based SDS.
• The error function of an ANN is a multimodal function
that is frequently trapped into local minima.

• This type of ANN-based SDS demonstrates a slow con-
vergence.

• Overly complex models usually result in over-fitting.
In this work, we propose a Machine Learning approach

based on MLP classifier trained by a recent meta-
heuristic optimizer called Grasshopper Optimization Algo-
rithm (GOA). In this approach, which will be referred to
as GOAMLP, where the GOA is utilized to optimize the
parameters of MLP. The GOAmimics the navigation of adult
grasshopper in naturewhen forming one of the largest swarms
on the planet. Some of the main advantages of this algo-
rithm are small numbers of controlling parameters, adaptive
exploratory and exploitative search patterns, and gradient-
free mechanism. The GOAMLP will be applied on three
different spam datasets and compare with other MLPs trained
with the other common metaheuristic algorithms, namely,
ABC, ALO, BBO, CS, DA, DE, GSA, HS, MBO, MFO,
PBIL, PSO, SCA, and WOA. The goal is to enhance the
detection accuracy. Therefore, the contribution of this work
can be summarized in the following three points:

1. Applying the new enhanced EGOAs algorithms to opti-
mize MLP and address the shortcomings of ANNs in
the field of spam detection.

2. Assessing the validity, performance, and reliability
of the new technique in detecting new threats by

using three datasets (SpamBase, SpamAssassin, and
UK-2011 Webspam).

3. Comparing our new proposed model with other evo-
lutionary and swarm intelligence algorithms, using the
three spam datasets to confirm the superiority of our
model.

The next sections will present the following; section II will
present related work. Section III reviews the materials and
methods which include: an overview of the proposed SDS,
GOA, EGOA, and discusses howGOA can be adapted to train
theMLP. Section IV presents the performance evaluation and
discussion. Section V discusses the analysis of the experi-
ments used. And finally, section VI discusses the conclusion
of the research.

II. RELATED WORK
This section briefly introduces the relevant work that as
used to enhance the performance of the GOA by introducing
random mutation operators, and then, we proceed to discuss
the related works on MLP training using these stochastic
techniques.

One of the works that contributed to the enhancement of
the GOA is our previous work in [43] on which we depend
to train the MLP for SD in the present paper. There have
been some earlier endeavors to improve the original GOA
with opposition-based learning (OBL) strategy. For instance,
OLBGOA has been developed by [44] for solving the global
optimization functions and engineering problems. It has two
phases, the first phase generates an initial population and
its opposite using the OBL strategy, and the second phase
uses the OBL as an additional phase to update the GOA
population in each iteration. However, in order to reduce the
time complexity, the OBL strategy is only utilized for half of
the solutions and lacking the required randomness to enhance
the convergence rate of the algorithm.

In [45], the authors have proposed IGOA by adding three
strategies to the original GOA to solve the global uncon-
strained and constrained optimization problem. The Gaus-
sian mutation first gives GOA the ability to perform more
robust local search, then, using Levy flight strategy, which
enables GOA to perform more robust global search. Finally,
Opposition-based learning strategy to improve the conver-
gence rate of the algorithm. Still the technique is lacking
adequate population diversity and randomness and suffering
of extra time complexity than the original GOA. Another
limitation of IGOA is that only four functions were used to
verify the performance.

In [46], the CGOA algorithm has been proposed incorpo-
rating the Chaos theory into GOA in order to accelerate the
speed of global convergence. The study integrates 10 of the
most widely chaotic maps into GOA: Chebyshey map, Circle
map, Gauss/mouse map, Iterative, Logistic map, Piecewise
map, Sine map, Singer map, Sinusoidal map, and Tent map,
which aim to efficiently balance exploration and exploitation.
The results of the study show that the chaotic maps (partic-
ularly the circle map) are able to improve the performance

116770 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

of GOA. Nonetheless, the algorithm fails to handle many
benchmark functions due to unsuitable chaotic factors.

In [47], yet another improved GOA based on chaos the-
ory (CGOA) has been designed to solve the optimal chiller
loading problem. The algorithm key goal is to minimize the
energy consumption in chillers by considering the ratio of
the part loading in chillers as the optimization parameter.
In spite of the improvement the technique has fallen short
of tackling the inability to avoid local optima leads which
has led to excessively long time in selecting the best chaotic
map of the parameter. Another concerning limitation to this
approach is only four benchmark functions are used to verify
the performance.

In [48], a nonlinear comfort zone parameter/ Levy flight
mechanism-based GOA has been suggested. But the algo-
rithm still at times would fall in the trap of local optima
after a quick convergence into a promising area. The results
also shows that the nonlinear comfort zone parameter and the
Levy flight factors were not suitable when handling many
optimization functions. The study proposes a new algorithm
based on GOA to solve optimization problems and task
scheduling problems.

Finally, in [49], the authors propose IGOA. A new
enhanced GOAwith two modification steps in order to tackle
a few of the shortcomings of GOA. The first step is for
the variation of the c factor which determines the optimum
point more quickly and accurately. The second step provides
random walks to the grasshopper in its swarm. However,
the technique impairs exploitation capability of IGOA, suf-
fers local optimal trap, and lacks fast convergence towards the
optimal values. The lack of good randomness leads to a lack
of diversity during the search iterations. And as a result, every
search agent could only search the determinate position.

Therefore, in recent years, many researchers proposed to
use Stochastic Global Optimization (SGO) methods for train-
ingMLPs which are based on generating a number of random
solutions to solve the problem. One type of SGO method
that is getting more interest in training NNs is the Nature-
InspiredMetaheuristic Algorithms (NIMAs). The NIMAs are
an example of SGOmethods that are becoming more popular
in training NNs.

The SGO methods of Swarm Intelligence (SI) can be used
to train NNs; they offer an alternative to trajectory driven
methods. Trajectory-driven training methods are analogous
to an error-minimizing process. The error surfaces generated
by NNs are complex surfaces having multiple local minima
points and the trajectory-driven paradigm is generally con-
sidered to be inefficient in searching for the global mini-
mum of such search space. They tend to converge to a local
solution that is near the starting point of search. The basic
advantages of the SGO methods to the training of an MLP
are their ability to address redundancy in training patterns,
the inclusion of training data that are currently not in train-
ing set (i.e., the possibility of dynamic learning), and faster
training than trajectory-driven training methods. Many SGO
methods showed improvements in accuracy and efficiency

computation, in comparison with the trajectory-driven meth-
ods such as Backpropagation (BP) and Levenberg Mar-
quardt (LM) algorithms. Using such SGO methods for NN
training, many problems associated with BP can be over-
come [50]. Many algorithms fall under this category, e.g.,
PSO [51], and ABC [52].

In [35], the authors developed a detection model based
on training BPNNs using GA. The algorithm optimizes the
weights of the BPNN, improves the classification accuracy,
false-positive rate, and false-negative rate. The results were
not particularly ideal because, in this study, the authors used
private data set to evaluate the model.

In [53] the authors developed an approach where the algo-
rithm of the Negative Selection Algorithm (NSA) is applied
to optimize the weights of the BPNN. After the optimization
of the BPNN, it is employed into the SD. The algorithm
improves the false rate and effective performance, based on
the data in a spam dataset.

In [54] the authors proposed an approach for SD based
on a feedforward NN classifier that can be used for SD in
an offline mode. A Memetic Algorithm (MA), which is an
extension of the traditional GA, is employed to optimize the
interconnection weights of the NN for SD. Its performance
has been evaluated on the UCI SpamBase dataset. However,
theMA traditional GAwas limited because of its lack of local
optimal.

In [55] the authors presented an SD using a feedforward
NN. The network is trained by a new optimization tech-
nique that was inspired by the herding behavior of real
small crustaceans called Krill Herd Algorithm (KH), to iden-
tify spam and non-spam. The ANN trained by KH showed
higher accuracy and faster convergence speed compared to
the traditional PB algorithm. However, the limitation of
KH-FFNN is that only one dataset was used to verify the
performance.

In [56] have proposed SD based on ANN trained by
Biogeography Based Optimization (BBO) algorithm. Their
model has demonstrated a high accuracy of identifying spam
e-mails compared to the other approaches. Its performance
has been evaluated on the SpamAssassin and SpamBase
dataset.

In [57] the authors proposed a new SD based on an ANN
trained by the enhanced Bat Algorithm (EBAT) to learn the
patterns of spam email given in SpamBase and UK-2011
Webspam training datasets. In addition to the aforementioned
works, we propose a new SDS model built using the most
promising GOA algorithm to train the MLP in solving the
problems encountered by the traditional MLP’s training algo-
rithms. Our proposed model is able to detect spam email and
false alarm rates in SpamBase,

SpamAssassin, and UK-2011 Webspam benchmark
datasets with higher accuracy. The UK-2011 Webspam
dataset contains a new emerging attack compared with the
SpamBase and SpamAssassin datasets. Our experiments have
shown that our new SDS model performs better than all the
other techniques in the literature.

VOLUME 9, 2021 116771



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 1. THE EGOAMLP-SDS Model.

In [4] the authors proposed an approach for SDS, using
Water Cycle Feature Selection (WCFS) of the spam message
and used three ways of multiple classifiers algorithms which
are SVM, KNN, NB. Its performance has been evaluated
on the benchmarks, SpamBase. However, the performance
can be improved by using different datasets combinations of
features.

In [58], the authors proposed an approach for SDS, using
a Machine Learning -based Content analysis of the spam
message. And the system is composed of six modules. Which
two different spam detectors were tested, the former with
SynonymReplacer (SR), the latter without synonym replacer.
Its performance has been evaluated on the benchmarks, Spa-
mAssassin, Trec2007. However, the results obtained are poor.

In [59] the authors developed an approach for BP with
momentum optimized ANN and BP optimized ANN. Its per-
formance has been evaluated on the benchmarks, SpamBase.
However, BP and BPwithmomentum are very popular, it gets
trapped in local optima.

Finally, in [50] the authors proposed an approach for SD
based on a feature-centric spam email detection model based
on content, sentiment, semantic, user, and spam-lexicon fea-
tures set. Its performance has been evaluated on the bench-
marks, SpamAssassin. However, more efficient results can be
obtained by introducing more features.

III. METHODOLOGY OF THE STUDY
In this section, the methodology of this study designs and
implements the SDS model based on an ANN, which is
trained by the EGOAs algorithms, as shown in Figure 1.
Our purpose is to design a new SDS model that achieves
promising scores in terms of classification accuracy, detec-
tion rate, false alarm rate, global convergence and exhibits
strong robustness in identifying spam emails with the help
of a series of six different variants of enhanced Grasshopper
Optimization Algorithm (EGOAs) for training the ANNs.

MLPs are powerful classification tools that have proven
highly capable of solving the challenges faced by SDS. This
kind of tool recognizes the typical characteristics of the

system users, the context of electronic mailing, and statisti-
cally significant deviations from established user behavior.
These tools have open and extendable structures, which help
them create a general knowledge model of the behavior of
an environment. The procedure chiefly entails determining
the structure and parameters of the NN to learn the relation-
ship between the incoming patterns and the target output by
training.

The MLP training is a complex task of prominent impor-
tance in problems that require learning. This training process
can be classified as an optimization problem. The training
procedure can derive its solution from a linear constraint
with a nonlinear optimization problem, therefore, different
optimization algorithms are applied in the literature to solve
this problem. The enhanced GOA algorithm is a stochastic
global optimization that aims to find a convenient solution
or approximate optimal solutions in a search space. EGOAs
addresses the problem of trapping in a local optimum solution
in the search space before reaching the global optimum with
very fast convergence; it has powerful robustness and global
convergence. Figure 1 illustrates the model of the proposed
SDS and shows that it can be divided into several modules,
namely, the spam dataset module, ANN module and the
optimization module, which can be described as follows:

The first stage in the proposed model is using spam dataset
module (SDmodule) in order to process, filter, and extract the
features from the audit data. The dataset contains predefined
training and testing sets that are used as inputs for the next
ANN module. Before entering data into the NN module,
the input data should be normalized to fall between [−1,+1],
to render these data usable for the next module.

The second stage uses the ANN module, which receives
the training features of the input data from the spam dataset
module. The ANN module is designed as a MLP, which con-
sists of one input layer, a number of hidden layers, a number
of neurons in each hidden layer, and one output layer. The
outbound data from the SDS module (the training dataset)
are fed into the ANN module as an input training pattern for
training the ANN. This training process is performed using

116772 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

the error evaluation criteria of Mean Squared Error (MSE)
as input to the optimization module (the EGOA module)
and receiving the updated structure and weights/biases of the
network from the EGOA module.

FIGURE 2. Function S when L = 1.5 and F = 0.5, and range of function S
when X is in [1], [4] [61].

The EGOAmodule is developed as a standalone system for
updating the structure solution and weights/biases solution
after each iteration. In each iteration of the training process,
the EGOAmodule sends its solutions as a set of structure and
weights/biases into the ANN module, which assesses these
solutions based on a training dataset and then returns their
fitness values. In this study, the MSE is selected as a known
fitness function for the proposed EGOA training algorithm.
The structure and weights/biases for the ANN are obtained
by minimizing the value of MSE. Afterward, the knowledge
base (ANN structure and weights/biases) is updated. The
maximum number of iterations parameter shown in Figure 1
(Max Iteration) controls the stopping of the training process.
The last stage is carried out after obtaining the best model in
terms of the best ANN structure and weights/biases, which
was built by using the training dataset. Here, the testing
inputs are fed from the testing dataset into the trained ANN
to predict the output. The testing process of the ANN can
be viewed as checking the predicted output with the closest
match to any of the target classes.

A. THE GRASSHOPPER OPTIMIZATION ALGORITHM
The Grasshopper Optimization Algorithm (GOA) is one
of the metaheuristic algorithms that were inspired by the
behavior of grasshopper insects as proposed in 2017 by
Saremi et al [61]. GOA is also faced with the problem of
being trapped in local optima and slow convergence. These
disadvantages limit the wider application of GOA. Although
grasshoppers are usually seen individually in nature, they
constitute the largest swarms of all insects. A large number
of these insects produce a swarm of pest that causes severe
damage to crop production and agriculture; a large number
of grasshoppers is a nightmare for farmers. The life cycle of
the grasshopper swarms consists of two stages: nymphs and
adults.

The nymph grasshopper moves slowly over a small dis-
tance, which helps to exploit their living area and eat all the
plants on their paths. On the other hand, the adult grasshopper
has two main tasks: finding food and migration. It can jump

high andmove over a large distance to find food and therefore
have a larger area to explore. We can conclude that both
movements carried out by the grasshopper, that is, slowmove-
ment (small distance) and sudden movement (large distance)
of the large group of swarms, corresponds to exploration
and exploitation. In exploration, the grasshoppers (finding
food) tend to move a large distance, whilst they prefer to
move locally during the exploitation stage. These two tasks,
as well as finding a food source, are achieved by grasshop-
pers naturally. The mathematical model that represents the
swarming behavior of the grasshopper was offered in [61],
and is repeated here:

Xi = Si + Gi + Ai, (1)

where Xi represents the position of the ith grasshopper, Si rep-
resents the social interaction given in Eq. (2), Gi represents
the gravity force on the ith grasshopper, and Ai represents the
wind advection. The social interaction Si is given by:

Si =
N∑
j=1
j6=i

s(dij)d̂ij (2)

where dij represents the distance between the ith and
jth grasshoppers, and is calculated as dij =

∣∣xi − xj∣∣, parame-
ter s is a function to calculate the strength of social forces,
which is calculated by Eq. (3), and d̂ij =

∣∣xi − xj∣∣ /dij
represent the unit vector from the ith grasshopper to the jth

grasshopper.

s (r) = fe
r/l − e−r (3)

With f is the intensity of attraction and l repre-
sents the attractive length scale. Grasshoppers create three
food-seeking regions in terms of social interaction: the com-
fort zone, the repulsion region, and the attraction region. The
function s is illustrated in Figure 2 to show elicits forces
of attraction and repulsion between the grasshoppers. One
can observe from the figure that when the distance is in the
range [0, 2.079], the grasshoppers repel each other to avoid
impact. However, there is no attraction nor repulsion when
the difference is exactly at 2.079, and agents are said to be
in the comfort zone. As the distance extends beyond 2.079,
the function keeps increasing till the distance reaches a value
of around 4. This range [2.079, 4] is called the attraction
phases. Here, the grasshoppers cooperate to reach the food
source. Different values of f and l would give variant zones
of repulsion, comfort, and attraction. However, for the GOA,
the values of f = 0.5 and l = 1.5 are used. Despite the
excellent modeling of the different zones by Eq. (3), it gives
a value of almost zero when the distance goes beyond 10
(Figure 2). Thus, to solve this issue, the distances between the
agents are projected to the range [1, 4]. The Gi component in
Eq. (4), which is calculated as follows:

Gi = −gêg (4)

VOLUME 9, 2021 116773



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

where g represents the gravitational constant whilst êg is the
unity vector toward the center of earth. The last argument Ai
in Eq. (1) is calculated by Eq. (5).

Ai = uêw (5)

From Eq. (5), u is constant drift and êw is the unity vector in
the direction of wind. The nymph grasshopper has no wings,
so their movements are closely related to the wind direction.
After substituting Eq. (2), Eq. (4), and Eq. (5) in Eq. (1),
the final equation becomes:

Xi =
∑N

j=1,j6=i
s
(∣∣xj − xi∣∣)xj − xidij

− gêg + uêw (6)

where s (r) = fe/l−e−r and argumentN in Eq. (6) represents
the number of grasshoppers. Because nymph grasshoppers
land on the ground, their position should not go below a
threshold. However, Saremi et al. were unable to utilize
Eq. (6) for modeling any swarm simulation or optimization
algorithms because it hinders the algorithms from exploiting
and exploring the search space close to the solution.

The nymph grasshopper algorithm is designed for a
grasshopper swarm which stays in free space. Furthermore,
the mathematical Eq. (6) cannot be used directly to solve
optimization problems, as the grasshoppers rapidly achieve
the comfort zone, and the swarm does not converge to a
specified point. A modified version of Eq. (6) by Eq. (7) was
proposed by Saremi et al [61] to solve optimization problems:

Xdi = c
(∑N

j=1,j6=i
c
ubd − lbd

2
s
(∣∣∣xdj − xdi ∣∣∣ xj − xidij

))
+ T̂d

(7)

In Eq. (7) the ubd and lbd parameters represent the upper
and lower bounds in the Dth dimension, respectively, while
s (r) = fer/l − e−r .T̂d represents the best solution value
of the Dth dimension in the current iteration, and argument
c represents the decreasing coefficient to detract from the
comfort area, attraction area, and repulsion area. It aims to
strike a balance between exploration and exploitation, as after
the arrival of grasshoppers to the promising areas it needs
to reduce exploration and increase exploitation, by obliging
the grasshopper to search locally to find an accurate approx-
imation of the global optimum. Therefore, the argument c
is required to be decreased proportional to the number of
iterations. This mechanism encourages exploitation as the
iteration count increases. The argument c reduces the comfort
zone proportional to the number of iterations and is calculated
as follows:

c = cmax−Iter cmax−cminitermax
(8)

It should be noted from Eq. (7) that the coefficient c plays
two main roles: The task of the first coefficient c which
is outside the main brackets is quite similar to the inertial
weight (w) in PSO. It decreases the grasshopper movements
around the optimum solution. In other words, this coeffi-
cient balances the exploitation and exploration of the entire

swarm around the optimum solution. While the second coef-
ficient c decrease the distances of the three regions (comfort
zone, repulsion zone, and attraction zone) between grasshop-
pers. Also, the component [c ubd−lbd2 ] is linearly decreases
the space that the grasshoppers should explore and exploit.
The second part s

(∣∣xj − xi∣∣) indicates if a grasshopper should
be repelled from (exploring) or attracted to (exploiting) the
target. Parameter cmax represents the maximum value, cmin
represents the minimum value, Iter is the current iteration,
and itermax indicates the maximum number of iterations.

In original work that proposed the GOA algorithm,
the authors used the values 1 and 0.00001 for cmax and
cmin, respectively. The next grasshopper position is computed
based on its current position, all other grasshoppers’ posi-
tions, and the best grasshopper’s position obtained so far,
as given in Eq. (7). Note that the first component of this
equation considers the location of the current grasshopper
with respect to other grasshoppers. The GOA is using only
one position vector for every search agent. This means that
GOA updates the position of a grasshopper based on the
global best, its current position, and all other grasshoppers’
positions in search agents. Thus, GOA requires all search
agents to get involved in defining the next position of each
search agent.

Algorithm (1) lists the pseudo code of the GOA algorithm.
As shown in the algorithm 1, the first step is to initialize all
the parameters such as the maximum number of iterations,
the maximum value of coefficient c, the minimum value
of coefficient c, and the number of populations. The GOA
algorithm starts by generating a random population xdi , i =
1, 2, . . . ,N , d = 1, 2, . . . , dim, (an array of N rows and
dim columns) and calculating the fitness function for each

Algorithm 1 Grasshopper optimization algorithm (GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ), i = 1, 2, 3 . . . ,N ; and
d = 1, 2, . . .. Dim (no. of dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (iter< itermax)
Update the parameter c using Eq. (8);
for each grasshopper in population
Normalize the distances between grasshoppers in Xdi
to [1], [4];
Update x ∈ Xdi by using Eq. (7);
Adjust the boundaries for the current grasshopper in
population;
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

116774 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

grasshopper (solution) xd , d = 1, 2, . . . , dim, and the best
grasshopper (solution), Td , is then selected according to the
best fitness function. Thereafter, for each grasshopper xi of
the population, the following three steps are implemented:
1) Normalizing the distances between grasshoppers in Xdi
to [1], [4]; 2) Update the current grasshopper xi ∈ Xdi by using
Eq. (7); 3) Adjusting the boundaries for the current grasshop-
per in the population. In the last step, the grasshopper position
updates are made frequently until the end criterion is met.

The grasshopper position and fitness of the best target is
finally returned as the best approximation for the global opti-
mum. In real-world engineering applications, GOA has been
applied to solve many optimization problems including linear
antenna arrays, function optimization, flow shop scheduling,
reliability problem, economic load dispatch, and others [62].

B. THE ENHANCED GOA ALGORITHM
As discussed above, the original GOA algorithm has the
ability to exploit the search space, but it occasionally fails
into local optima trap, which adversely impacts the overall
performance. Therefore, in this section, we are presenting
six enhanced variations of the GOA (EGOAs). This has been
carried out by integrating several of the mutation operator’s
strategy in order to improve the ability to deeply explore
and exploit the search space and swiftly reach the opti-
mal value. The new six proposed algorithms are E1GOA,
E2GOA, E3GOA, E4GOA, E5GOA, and E6GOA; and their
detailed pseudocodes are shown in Algorithm 2, Algorithm 3,
Algorithm 4, Algorithm 5, Algorithm 6, and Algorithm 7
respectively.

In order to enhance the diversity of the solution random-
ization would be a required component to GOA. Random-
ization helps the algorithm to explore multifarious regions
with a high solution diversity. GOA has coefficient c which
has a similar role, but it is confined to certain local jumps.
Additionally, the mutation operator, which happens to be the
probabilistic operator too, randomly modifies grasshopper
movement in search spaces based on the grasshopper prior
probability of existence.

Aiming to allow the original search space to reach the
optimal solution swiftly and renovate the out-of-range solu-
tions, the six aforementioned mutation operator’s strategies
are only applied to the GOA’s exploitation phase in order to
maintain 50% of the domain space that has been calculated by
GOA. Generally, each algorithm would consist of two main
phases, initial, and updating phase. In order to decide which
type of search phase to adopt the algorithms examines the
aging degree of probability values for each individual.

1) E1GOA, E2GOA, E3GOA, E4GOA, E5GOA, AND E6GOA
ALGORITHMS
In this section, we propose six enhancements strategies to
the GOA algorithm. First is E1GOA which is based on the
original GOA, but it aims to enhance the performance of
GOA by using a highly efficient mutation operator. To help

improving the diversity of the solution as well as the con-
vergence to the optimal value the operator is taken as a
set of random-based modifications which would also allow
for more mutations in solutions that have been examined in
grasshopper search whilst assisting to avoid local optimum
traps. This provides the algorithm with the ability to exploit
solution in the local neighborhood whilst exploring new areas
in the search space, two crucial characteristics of an effective
optimization algorithm [63].

E1GOA algorithm has three stages, initialization, updat-
ing, and final phase. It is worth mentioning that not only does
E1GOA adopts all the parameters of the original GOA, but it
also adds four new control parameters p, limit1, limit2, and
w. In the initialization phase, the search space solutions are
spotted, and values are assigned to several parameters. During
updating phase, E1GOA iterations are performed to modify
solutions until a stopping criterion is met. The updating phase
consists of two parts GOA phase and the Mutation Operator
phase. In each iteration the grasshopper is calculated as such
if rand value (ε_1) is less than p, it will perform the classical
GOA algorithm (GOA phase); otherwise, the new mutation
operator proposed will take place; the ε_1 represents a ran-
dom number in [0, 1].

The p in E1GOA functions similarly to coefficient p in
migration operator and butterfly adjusting operator of the
MBO algorithm (the value of P ∈ [0, 1]) [64]. In fact, p is
considered a switching parameter to decide the operator to
employ either the GOA phase or the new mutation operator
phase. For instance, if p is near 1 (too high), more solutions
will be generated using GOA phase, whereas if p is near 0
(too low), more solutions will be generated by using the
new mutation operator phase. This decides whether the new
mutation operator phase, or GOA phase, will play a most
important role in the newly generated solutions.

As described in Algorithm 2, the mutation operator algo-
rithm has three feasible choices whilst evaluating newly
generated grasshopper: (1) grasshopper is updated based on
the randomly selected grasshopper solution vectors, i.e., it
is choosing a solution from previously improved solutions.
(2) The newly generated grasshopper is updated close to the
best-known solutions, or (3) the newly generated grasshopper
is updated from a feasible range. When E1GOA selects a
value of a decision variable from solution vectors, the value
is modified using these three rules. The grasshopper position
could be optimized using three factors: solution vectors, con-
trol parameters (limit1 and limit2), and randomization. If the
newly generated grasshopper has a significantly improved
fitness, then it replaces the worst grasshopper in the solution
vectors. The updating process is carried out until a stopping
condition is fulfilled.

The new mutation operator proposed in this work includes
two control parameters, limit1 and limit2 ∈ [0, 1]. These
two parameters play a similar role to the Harmony Mem-
ory Consideration Rate (HMCR) and the Pitch Adjustment
Rate (PAR) used in the Harmony Search Algorithm (HS)
[65], which is inspired by the musical improving process.

VOLUME 9, 2021 116775



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

If the value of the parameter limit1 is excessively high (close
to 1), then the majority of the grasshopper solutions are used
in solution vectors; as a result, other grasshopper solutions
are not explored well, thereby leading to incorrect solutions.
If the value is extremely low (close to 0), then only a small
number of fittest grasshopper solutions are chosen, which
then leads to a slow convergence rate. As a rule, limit1 ranges
from 0.7 to 0.95.

An appropriate method needs to be used to adjust the
grasshopper movement successfully and thus adopt the jump
significantly in the second part. In terms of principle,
the grasshopper movement can be slightly adjusted in the lin-
ear or nonlinear form theoretically. Linear adjustment is most
popular utilized than nonlinearity adjustment. Consequently,
the grasshopper movement is updated by Eq. (9) or Eq. (10).

x t+1i = w×
(
x tir2 − x

t
best
)
× 2× (rand − 1) ; (9)

x t+1i = w×
(
x tir1 − x

t
best
)
× 2× (rand − 1) ; (10)

In the equations above, x t+1i is a new position of grasshop-
per i at iteration t + 1. In the same way, x tir1 represents
the newly generated position of the grasshopper r1. Sim-
ilarly, x tir2 describes the newly generated position of the
grasshopper r2. Moreover, the grasshopper r1 and r2 are
randomly selected from the population (Solution Vectors).
If ε3 < limit2, then the newly generated grasshopper is
updated using Eq. (9). On the other hand, if ε3 > limit2, then
the newly generated grasshopper is updated using Eq. (10).
x tbest represents the best solution ever found at iteration t .
whereas rand is a random number generated from a uniform
distribution in [0, 1]. The variable w in Eq. (9) and Eq. (10) is
similar to the inertial weight (w) in PSO algorithm, it reduces
the grasshopper movements around the optimum value. This
variable plays an important role in balancing exploitation
and exploration of the mutation operator around the optimum
value.

The limit2 parameter is very much like the mutation oper-
ator in evolutionary algorithms and pitch adjustment rate in
the harmony search algorithm. Meanwhile, the limit2 entirely
determines the degree of the grasshopper movement and
should be set carefully. If the value of limit2 is close to
1 (very high), then the solutions significantly change, and the
algorithm may not converge at all. If the value of limit2 is
close to 0 (very low), then the solutions slightly change,
and the algorithm may be premature. Usually, limit2 ranges
from 0.1 to 0.5.

Finally, the randomization in the third element aims to
increase the diversity of solutions. Although limit2 has similar
functionality, its functionality is limited to a local location
that corresponds to local search. The use of randomization
often commences the search process to explore diversified
areas to find the global optimal solution.

The main contribution in the proposed algorithm (E1GOA)
is to plug the new mutation operator into the GOA algorithm
to increase the diversity of the population in an endeavor to

Algorithm 2 (E1GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (iter< itermax)
Update the parameter c using Eq. (8);
for i = 1 to N (grasshopper in population) do
if ε1 ≤ p then
GOA phase ();
else
if ε2 ≤ limit1 then
Randomly select a grasshopper in population (r1);
x t+1ir1
= x tr1;

if ε3 < limit2 then
Randomly select a grasshopper in population (r2);
x t+1ir2
= x tr2;

x t+1i = w×
(
x tir2 − x

t
best

)
× 2× (rand − 1) ;

else
x t+1i = w×

(
x tir1 − x

t
best

)
× 2× (rand − 1) ;

end if
else
x t+1i = x tmin + rand × (x tmax − x

t
min);

end if
end if
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

enhance the performance of GOA to speed up the conver-
gence to the optimal solution.

Now we offer the second proposed algorithm, which is
E2GOA algorithm, as shown in Algorithm 3. The goal of this
algorithm is very similar to the previous algorithm (E1GOA),
but the new mutation operator of E2GOA has been slightly
modified by comparison with E1GOA to test and evaluate
the different forms of mutation operators. We have to take
into consideration that these various new mutation operators
are possible to give us a different result if it is applied to the
same real-world problem. So, we present six different forms
of mutation operators in this article. The idea behind E2GOA
algorithm is to develop the E1GOA mutation operators by
introducing a slight modification to the control parameter.
E2GOAhas two control parameters: p and limit1. Parameter p
in E2GOA plays the same role as parameter p in E1GOA.
In terms of parameter limit1, if ε2 < limit1, an individ-
ual x tr1 is chosen from grasshoppers in the population as
demonstrated in Eq. (11), and then a new grasshopper x t+1i

116776 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

Algorithm 3 (E2GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (Iter < itermax)
Update the parameter c using Eq. (8);
for i = 1 to N (grasshopper in population) do
if ε1 ≤ p then
GOA phase ();
else
if ε2 < limit1 then
Randomly select a grasshopper in population (r1);
x t+1ir1
= x tr1;

x t+1i = w×
(
x tir1 − x

t
best

)
× 2× (rand − 1) ;

end if
end if
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

is updated by using Eq. (10).

xt+1ir1
= xtr1 (11)

The E3GOA algorithm is the third algorithm proposed in
this work and is shown in Algorithm 4. This algorithm is
similar to the previous proposed algorithms but with a slight
modification in the mutation operator. The mutation operator
in E3GOA algorithm is using two control parameters: p and
limit1. Here, the variable p plays the same role as in the
previously proposed algorithms. And ε1 and ε2 in [0, 1] are
two random numbers drawn from the uniform distribution.
If ε1 ≤ p, the new solution will be generated by using the
GOA phase. If ε1 > p, the new solution will be generated
by using the mutation operator. The new mutation operator
has one control parameter, limit1, such that if ε2 ≤ limit1,
two individual grasshoppers, x tr1 and x

t
r2 are randomly chosen

from the grasshopper population. Here N is population size,
(r1) and (r2) are integer numbers in [1, N ]. If (r1) is not
equal to (r2), then x

t+1
i is updated by Eq. (9) else x t+1i is

updated by Eq. (10). However, if ε2 > limit1, x
t+1
i is updated

randomly from the feasible range. x tbest represents the current
best grasshopper in the population, t is the current generation
number. Variable rand is a random number generated from a
uniform distribution in [0, 1].

The E4GOA algorithm is the fourth proposed algorithm
in this work and is shown in Algorithm 5. This algorithm is
similar to the previously proposed algorithms but with a slight

Algorithm 4 (E3GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (iter < itermax)
Update the parameter c using Eq. (8);
for i = 1 to N (grasshopper in population) do
if ε1 ≤ p then
GOA phase ();
else
if ε2 ≤ limit1 then
Randomly select a grasshopper in population (r1);
x t+1ir1
= x tr1;

Randomly select a grasshopper in population (r2);
x t+1ir2
= x tr2;

if (r1 6= r2) then
x t+1i = w×

(
x tir1 − x

t
best

)
× 2× (rand − 1) ;

else
x t+1i = w×

(
x tir2 − x

t
best

)
× 2× (rand − 1) ;

end if
else

x t+1i = x tmin + rand × (x tmax − x
t
min);

end if
end if
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

modification in the mutation operator. While the structure
of this algorithm is quite similar to the previous algorithms,
the fundamental difference is the method of updating the
movement of the grasshopper, which is implemented by
Eq. (12) or Eq. (13)., x tworst represents the worst current
grasshopper in the population, and t is the current generation
number.

x t+1i = (w× x tir1 − x
t
best )× 2× (rand − 1) (12)

x t+1i = (x tworst − w× x
t
ir2 )× 2× (rand − 1) (13)

The E5GOA algorithm is the fifth proposed algorithm in
this work and is shown in Algorithm 6. This algorithm is sim-
ilar to the E2GOA algorithm but with a slight modification in
the mutation operator, where the update to the movement of
the grasshopper is performed using Eq. (12) or Eq. (13).

The E6GOA algorithm is the sixth proposed algorithm in
this work and is shown in Algorithm 7. This algorithm is
similar to the E1GOA algorithm, but the mutation operator
used to update the movement of the grasshopper in search

VOLUME 9, 2021 116777



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

Algorithm 5 (E4GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (iter < itermax)
Update the parameter c using Eq. (8);
for i = 1 to N (grasshopper in population) do
if ε1 ≤ p then
GOA phase ();
else
if ε2 ≤ limit1 then
Randomly select a grasshopper in population (r1);
x t+1ir1
= x tr1;

Randomly select a grasshopper in population (r2);
x t+1ir2
= x tr2;

if (r1 6= r2) then
x t+1i = (w× x tir1 − x

t
best )× 2× (rand − 1) ;

else
x t+1i = (x tworst − w× x

t
ir2
)× 2× (rand − 1) ;

end if
else
x t+1i = x tmin + rand × (x tmax − x

t
min);

end if
end if
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

space is based on Eq. (14) or Eq. (15).

xt+1i = xti − w× (xtir2−x
t
best)× 2× (rand− 1) (14)

xt+1i = xti − w× (xtir1−x
t
best)× 2× (rand− 1) (15)

2) ALGORITHM COMPLEXITY ANALYSIS
The computational complexity of the enhanced grasshopper
optimization algorithm mainly depends on the number of
solutions represented by the dimension (d), and the number
of the populations represented by the population size (n).
Considering the worst scenario, the overall computational
complexity is O (dn) ≈ O (O (calculate the oppositional
position of all solutions and evaluate its fitness) + O
(sort solutions of population and oppositional population)).
In the iterative process of the proposed algorithms (EGOAs),
the time complexity of an iteration is analyzed as follows: In
step 1, the main operation for produce the initial population,
and the time complexity is O (dn). In step 2, judging the
stopping criteria, the time complexity is O (1). In step 3,

Algorithm 6 (E5GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (Iter < itermax)
Update the parameter c using Eq. (8);
for i = 1 to N (grasshopper in population) do
if ε1 ≤ p then
GOA phase ();
else
Randomly select a grasshopper in population (r1);
x t+1ir1
= x tr1;

if ε2 ≤ limit1 then
x t+1i = (w× x tir1 − x

t
best )× 2× (rand − 1) ;

else
x t+1i = (x tworst − w× x

t
ir1
)× 2× (rand − 1) ;

end if
end if
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

judging the parameter value rand, and if rand is less than
the parameter (p), perform the GOA phase the time com-
plexity is O (dn). Otherwise, perform the EGOA phase; by,
performing updating the solution of search space, the time
complexity is O (d). In step 4, iteration to continue and return
to step 3. Therefore, the final computational complexity of the
proposed algorithms is O (EGOAs) ≈ O (dn).

C. THE GOA ADAPTATION PROCESS
The process of adapting metaheuristic algorithms for the
purpose of training an ANN is an important process. In the
metaheuristic-based methods, the training process translates
to using suitable ANN structure, ANN weights and biases
representation, fitness function and termination condition(s).
Consequently, for adapting EGOAs as an ANN training
method, these aforementioned four aspects can be adapted
to suit the functionality of the EGOAs algorithm and sat-
isfy the requirements mandated by the ANN training pro-
cess in general, thus the new training method is known as
EGOAMLP algorithm. The efficiency of the hybridization of
the grasshopper algorithmwith the NN has already been eval-
uated and compared with some other meta-heuristic methods
and showed promising results [66], which is the main moti-
vation in using the grasshopper algorithm to build our new
model.

116778 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

Algorithm 7 (E6GOA)
Initialize all the parameters such as:
Maximum No. of iterations (itermax), cmax , cmin, and number
of population (N );
Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);
Calculate the fitness of each grasshopper;
T̂d = the best grasshopper;
While (iter < itermax)
Update the parameter c using Eq. (8);
for i = 1 to N (grasshopper in population) do
if ε1 ≤ p then
GOA phase ();
else
if ε2 ≤ limit1 then
Randomly select a grasshopper in population (r1);
x t+1ir1
= x tr1;

if ε3 < limit2 then
Randomly select a grasshopper in population (r2);
x t+1ir2
= x tr2;

x t+1i = x ti − w× (x tir2−x
t
best )× 2× (rand − 1) ;

else
x t+1i = x ti − w× (x tir1−x

t
best )× 2× (rand − 1) ;

end if
else

x t+1i = x tmin + rand × (x tmax − x
t
min);

end if
end if
end for

Update T if there is a better solution;
iter = iter + 1;
end while
Return the best solution of T;

There are three fundamental methods applied to train NNs
by using metaheuristic algorithms. Firstly, the metaheuristic
is utilized to find a suitable ANN structure for the NN during
the learning process, where the training algorithm determines
the best architecture of the NN model for solving a particular
problem. Changing the architecture can be accomplished by
manipulating the connections between the neurons, the num-
ber of hidden layers and the number of hidden neurons in each
layer. Secondly, metaheuristics are used to find a combination
of weight and bias that provides a minimum MSE which
represents the cost function of the NN training. The train-
ing algorithm searches for suitable values for all connection
weights and biases to minimize the overall error of the ANN.
Lastly, the metaheuristic is used to adjust the parameters
of the gradient descent learning algorithms. The previous
studies such as [64], [66], [67] have been applied based on
the second method which is finding the optimal weights and
biases during the training process. However, the present study
applies the GOA algorithm that was proposed recently, to find

Algorithm 8 The Pseudocode of EGOAMLP
1: Initialize all the parameters such as:
Training parameters;
Maximum No. of iterations (itermax), cmax , cmin, and num-

ber of population (N );
Probability (P) of applying EGOA operator on ANN struc-

ture or Weights & Biases;
2: Generate a random population (Xdi ) :
(i = 1, 2, 3 . . . ,N ) and (d = 1, 2, . . .. dim Ü no. of
dimensions);

3: Calculate the fitness of each grasshopper;
4: for each grasshopper do
5: Calculate the MSE for the grasshopper by Eq. (25);
6: if the current MSE < the global minimal MSE then
7: Update the global minimal MSE
8: end if
9: end for
10: T̂d = the best grasshopper;
11:While (iter< itermax)
12: Update the parameter c using Eq. (8);
13: If (rand < P)
14: Apply EGOA on structure of the solution and apply

equation 17 on the final result from EGOA.
15: Add or remove the random nodes in weights & biases

16: else
17: Apply EGOA on weights & biases of the solution
18: Build the structure from the parent grasshoppers
19: end if
20: for each grasshopper do
21: Calculate the MSE for the grasshopper by Eq. (25);
22: if the current MSE < the global minimal MSE then
23: Update the global minimal MSE
24: end if
25: end for
26: Update T if there is a better solution;
27: Save the current best solution with the minimal MSE;
28: iter = iter + 1;
29: end while
30: Return the best solution of the minimal MSE;

the optimal ANN architecture and optimize its weights and
biases.

The general training pseudo-code of the EGOA is shown
in Algorithm 8 and is also depicted in Figure 3. In line 1, all
the parameters of the EGOA algorithm and the NN model
are initialized, namely, cmax , cmin, itermax , and the lower and
upper bounds. In line 2, a set of solutions is generated ran-
domly. The EGOA algorithm has many variables, including
solution vector size, which represents the number of solutions
in the solution vector (SV). In the SV solutions, every solution
xi(i = 1, 2 . . . ,D) is a D-dimensional vector, where the
dimension of the solutions is defined by Eq. (16). The D is
the number of decision variables. The ranges of lower and
upper limits are specified by two vectors xL and xU , where

VOLUME 9, 2021 116779



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

both having the same length of the solution vector. The SV
is a vector of the best solution vectors achieved so far. It is
an augmented vector of size SV × D, which is composed
as indicated in Eq. (16). The SV size is set prior to run
the algorithm. Each solution vector is also associated with
a quality value (fitness) based on the objective function f (x).
Figure 3 shows that EGOAMLP algorithm is similar to other
optimization algorithms, where it begins by initializing the
random solution memory vector representing candidate MLP
weight values. Line 3 calculates the initial fitness value for
each grasshopper (solution). In lines 4-9, the MSE for each
grasshopper (solution) in the whole SV is checked and the
MSE of the global minimum is derived. In line 10, the EGOA
parameter, namely, T̂d is calculated. In line 11, all the loops
are assigned to maximum iteration. In line 12, coefficient c
of the EGOA is updated.

SV =


x11 x12 · · · x1D
x21 x22 · · · x2D
x31 x32 · · · x3D

· · · · · ·
. . . · · ·

xSV1 xSV2 · · · xSVD




f (x1)
f (x2)
f (x3)
...

f (xSV )

 (16)

In line 13-19, a little variation is introduced to the original
EGOA operator by first testing a probability parameter P
and selecting one of the two possible paths to balance the
application of the EGOA operator to either the ANN structure
or its weights/biases. This parameter is set to 0.5 in order to
give both cases the same opportunity to improve the quality
of solution.

In each generation, the opportunity to identify the solution
as a parent is proportional to the quantity by which its fitness
is less than other of the other solution’s fitness. The opti-
mization process of the EGOA algorithm is applied with the
probabilities of 50% on the ANN structure of the parents, and
there are 50% chances that the optimization process would be
applied to weights and biases of the parents during the current
iteration. If the optimization process of the EGOA algorithm
is to be applied to the structure of parents, then the weights
and biases of neurons are randomly added or removed to fit
the ANN structure of the solution. The number of neurons
in weights and biases solution vector is calculated based on
equations (18, 19). For example, if the size of the new child
solution is smaller than its parents’ solution, then based on
a new ANN structure a number of neurons are randomly
removed from the weights and biases solution vector. If the
child solution size is greater than its parents’ solution, then
a number of neurons are added into the weights and biases
solution. However, if the optimization process by the EGOA
algorithm is to be applied toweights and biases, then theANN
structure of the child solution is inherited from its parents’
solution.

This mechanism allows the EGOAMLP to have an
extensive variety of solutions with the optimal ANN architec-
tures and optimizes values of weights and biases. An effec-
tive fitness function that considers both the number of the

connections (weights and biases) and the error to be min-
imized helps the algorithm to optimize the fitness function
with a small size model. The population of the EGOAs algo-
rithm is updated based on new solutions. The iterations are
stopped when the number of iterations exceeds the maximum
number of generations. Furthermore, this method needs to
check which connection weight and bias are active and which
one is inactive to find the architecture of the ANN. The
selection of the architecture of the NN is the responsibility
of the EGOA algorithm when a new solution is generated.
The pseudocode and the schematic procedure of EGOAMLP
are shown in Algorithm 2 and Figure 3, respectively. The
solutions in the population consist of two parts. The first
part encodes the architecture of the ANN. When the result
of applying the random operator, P decides that the structure
of the MLP is to be adjusted by the new position of the
grasshopper, the search space is formed as a binary pattern
[0, 1] to represent the grasshopper’s position in the binary
vector using a sigmoid function as shown in Eq. (17).

f (x) = 1/
1+ e−x (17)

Eq. (17) is applied on the output of Eq. (7) when the
optimization process of the EGOA algorithm is applied to the
structure of the ANN. If the result of the Eq. (17) is less than
a certain value within the range of (0, 1) then the result of
Eq. (17) is set to zero, otherwise, this result is adjusted to
one.

The second part determines that the weights and biases in
the ANN model are to be adjusted. The movement of each
grasshopper in the search space is towards continuous-valued
places between [−1, 1]. For the initial population, the struc-
ture of the solution is randomly assigned, and then the length
of weights and biases is calculated to fit each structure. In the
end, the values of the weights and biases are randomly gener-
ated. In lines 20-25, the MSE for each grasshopper (solution)
in the whole solution vector is checked and the MSE of the
global minimum is derived. In line 26, the EGOA parameter,
namely, T̂d is updated. Line 27 saves the current best solution
with the minimal MSE. In line 28, the iter parameter is
increased by 1. Finally, in line 30, the best solution to the
minimal MSE is identified.

1) SOLUTION REPRESENTATION OF THE STRUCTURE AND
WEIGHTS/BIASES FOR ANN USING GOA-MLPT
In this part, shows the details of the EGOAMLP model
to improve the MLP architecture and optimizes its weights
and biases for the purpose of classifying email. The goal
behind the EGOAMLPmodel is to reduce the overall error of
accuracy. Furthermore, any MLP model relies on the number
of hidden layers, number of neurons in each hidden layer,
connection weights, biases for each layer and the number
of inputs. The biases relate to each neuron in the hidden
and output layers. In the EGOAMLP model, the solution is
represented by two one-dimensional vectors:

116780 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 3. Adapting EGOA Algorithm Solution Vectors as ANN Structure
and Weights/Biases.

1. ANN structure solution vector represents the number
of inputs, the number of hidden layers and the number
of neurons in each hidden layer in the ANN model.

2. Weights and biases solution vector represents the
weights and biases in the trained MLP model.

Each of these two solution vectors has a different repre-
sentation as shown in Figure 4. The value in the structure
solution vector contains 0 or 1, whilst each value in the
weights and biases solution vector contains a real number
in the range of [−1, +1]. The objective here is to develop
a training algorithm that excels in finding optimal values
for all connection weights and biases and the structure of
the NN, which will ultimately contribute to minimizing the
overallMLP classification error. The structure solution vector
of the EGOAMLP model is divided into three parts. The
first part contains a set of cells representing the neurons
in the input layer, which are considered the features of the
datasets; the second part contains three cells representing the
number of the hidden layers; the third part contains three
cells that are used for the number of nodes in each hidden
layer. Each number in these cells is represented as a binary
string. For example, Figure 4 shows the binary string ‘‘010’’
in the second part of the structure solution vector, which
indicates that there are two hidden layers in the MLP model.
The representation in the first part, corresponding to the input
neurons, is a little different. The bits in the binary string of
this part refers to the individual input features in each sample.
Therefore, the number of cells in this part is equal to the
number of features in the input dataset, and a value of ‘‘1’’
indicates the existence of that particular feature in the current
sample, while a value of ‘‘0’’ indicates that the feature does
not exist in the input sample. All the experiments in this study
use the whole set of features in the dataset.

The length of the weights and biases solution vector is
equal to the number of weights in each layer of the MLP

model, in addition to the number of biases in each layer. This
length is computed using Eq. (18). As such the total number
of weights and biases depend on the total number of hidden
layers as well as the number of nodes per layer, as shown in
Equations (19) and (20).

Length of weights and biases vector = W + B (18)

W = (I × N )+ ((N × N )× (H − 1))+ (N × O) (19)

B = H × N + O (20)

whereW is the number of weights, B is the number of biases,
I is the number of nodes in the input layer, N is the number
of nodes in each hidden layers, H is the number of hidden
layers, and O is the number of nodes in the output layer.
With regard to identifying the number of hidden nodes in the
MLP network, there are several rules proposed in the state-
of-arts and there is no agreement among researchers on the
best rule of application. However, in initialization step of this
work selects a common rule that has been adopted by many
previous works such as those in [40], [66].

FIGURE 4. The solution representation of EGOAMLP algorithm.

2) ADAPTING THE GRASSHOPPER QUALITY MEASURE
(FITNESS FUNCTION)
In this part, to determine how good the improvised solution
is, the GOA algorithm uses a grasshopper quality measure,
i.e., fitness function. The fitness function is used to assess the
quality of the solutions in successive generations. With the
use of the fitness function, a solution is selected that optimizes
the quality of the solution. This fitness function plays the
role of objective functions in optimization algorithms. The
goal here is to minimize the values obtained by this fitness
function. This objective is similar to the aim of the training
methods in previous studies [40], [66], which is to reduce the
overall error. Consequently, the fitness function can utilize
any of the ANNs error calculation formulas or develop a new
measure based on these formulas.

In this study, the fitness function, f (s) of a solution is
computed by the MSE, which is the main quality measure
for the proposed EGOA training algorithm. The goal of the
training algorithm is to minimize the MSE up to reaching the
maximum number of iterations. The MSE is one of the most
used fitness functions. Because this study focuses on clas-
sification problems, the MSE, as the main fitness function,
measures the quality of solution vectors, sorted from best to

VOLUME 9, 2021 116781



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 5. MLP feed-forward computations to compute MSE.

worst with the best being the lowest value of MSE. Thus, to
find an optimal solution, i.e., the MLP with the best weights
and biases vector, the MSE value must be the smallest among
the ones in the current solution vector.

Firstly, the feed-forward computations must be performed
in order to compute MSE on the given MLP structure. This
is a repetitive process that involves the loading of the entire
training dataset. This would require a process by which the
network weights and biases, represented by the solution vec-
tor, are to be loaded into theMLP structure to implement such
a computation. The MLP structure must be therefore flexible
to allow loading of different weight and bias vectors during
the EGOAMLP algorithm initialization and update processes.
The feed-forward computation process is shown in Figure 5.

The objective of training the MLP is to achieve the highest
classification, approximation, or prediction accuracy for both
training and testing samples. In this work, a similar methodol-
ogy used by several studies [68] was applied to calculate the
fitness function. Figure 5 illustrates that the MLP has three
layers including input, hidden, and output layer. Assuming
the number of input nodes is N , the number of hidden nodes
is H , and the number of output nodes is O, then the output of
the ith hidden node is calculated as follows:

f
(
Sj
)
= Sigmoid

(
Sj
)

= 1/
(
1+ exp

(
−

(∑N

i=1
W ij.Xi − βj

)))
,

j = 1, 2, . . . ,H (21)

where Sj =
∑N

i=1Wij.Xi − βj, Wij is the connection weight
from the ith node in the input layer to the jth node in the hidden
layer, βj is the bias (threshold) of the jth hidden node, and Xi
is the ith input. After calculating the outputs of the hidden
nodes, the final output can be defined as follows:

Ok =
∑N

i=1
Wkj.f

(
Sj
)
− βk , k = 1, 2, . . . ,O, (22)

where Wkj is the connection weight from the jth hidden node
to the k th output node and βk is the bias (threshold) of the k th

output node. Finally, the learning error E (fitness function) is
calculated as follows:

Ek =
∑O

i=1

(
Ok
i − d

k
i

)2
(23)

MSE =
∑q

k=1

Ek

q
(24)

where q is the number of training samples, dki is the desired
output of the ith input unit when the k th training sample is
used, andOk

i is the actual output of the i
th input unit when the

k th training sample is used. Therefore, the fitness function of
the ith training sample can be defined as follows

Fitness(xi) = MSE(xi) (25)

IV. PERFORMANCE EVALUATION AND DISCUSSION
All the fair experiments for comparedmodels were conducted
using a laptop loaded with Core i5 2.4 GHz CPU and 8 GB
RAM, and MATLAB R2014a running on a Windows 7, and
no commercial GOAbased softwarewas utilized in this study.
To evaluate the performance of the developed model, we used
three datasets composed of sets of email spam messages. The
sets of messages are marked as spam or non-spam. These
datasets are commonly used in evaluating spam detection sys-
tems. The SpamBase dataset is one of the prominently ancient
datasets, which is still being used in the current research. The
SpamAssassin dataset is a free, open-source, flexible, and
powerful spam-fighting tool where it is characterized by
removing duplicate and irrelevant data. Other datasets have
also emerged in recent years for evaluating SDSs, such as the
UK-2011 Webspam dataset, which is developed in 2011.

To evaluate the performance of the EGOAMLP-SDS
model developed in this study, each dataset was divided into
two parts: one subset is used in the training phase so that
the NN can learn from the data (therefore, these data are
labeled), and another subset to test the trainedNNon new data
that have not been seen during the training (therefore, these
samples are not labeled), as illustrated in Figure 1. The dataset
can be divided into two percentages during the evaluation
process, among which 50/50, 70/30 and 60/40 ratios for
training and testing datasets, respectively, are common in the
literature. In this work, all data sets are randomly split into
70% for training and 30% for testing.

A. DATASET PREPROCESSING
The most important step in this study is processing the
datasets before using them. The dataset pre-processing is
divided into two stages as showed in Figure 1. In the first
stage, the dataset used to evaluate the algorithm is deter-
mined. As the size of this dataset is too huge to load intomem-
ory, random sample records from the dataset are selected.
This random sample is divided into two subsets, the first is
known as the training dataset, and the second is known as the
testing dataset. In the second stage of the pre-processing, all

116782 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

symbols and characters are converted to a numeric value if
they are not numeric. These numeric values are then normal-
ized by using the normalization Eq. 26. To convert the raw
email formats into numeric values, such as the case with the
SpamAssassin dataset, a feature extraction tool is used, which
is available at this link ‘‘https://github.com/7ossam81/Email
Features Extraction’’.

The main objective of normalization is to make numeric
values of different features in the same range. All the fea-
tures of the dataset must be normalized before applying it in
the training and testing processes. It is intended to produce
regular semantics of the feature values in the datasets. The
normalization process puts all features on the same scale by
converting the values into the range [0, 1] using Eq. (26) as
follows:

xnew =
xcurrent − xmin
xmax − xmin

(26)

All the three datasets used in this study have a class for
each set of features, in which the class is either not spam or
spam email. Thus, each record in the dataset belongs to one of
the two classes, non-spam or spam. The value of each class is
mapped to a numeric value, specifically, the non-spam email
class is mapped to the number 0 and the spam email class is
mapped to 1.

1) SPAMBASE DATASET
The SpamBase dataset benchmark is widely popular in the
process of evaluating spam detection systems. This dataset
is consists of 4601 messages (instances), each of which
comprises 57 features. Approximately 1813 (39%) of the
messages are marked as spam and 2788 (61%) are identified
as non-spam. The dataset was acquired from the University of
California at Irvine (UCI)MLRepository [69]. The collection
of features in this dataset has been based on the frequency of
some selected words and special characters in the e-mails,
while the not spam message was contributed by Forman; this
was obtained from a single mailbox.

TABLE 1. All features of the spambase dataset.

This dataset is already pre-processed, though most other
datasets come in their raw format. Among the 57 features,
48 are represented by words generated from the original mes-
sages with the absence of stop-list or stemming, and they are
considered and enlisted as the most unbalanced words for the
class spam. Table 1 shows all the features in this dataset. The

remaining six features are the percentage of appearance of
the special characters ‘‘;’’, ‘‘(’’, ‘‘[’’, ‘‘!’’, ‘‘$’’, and ‘‘#’’. The
other three features are a representation of different measures
of the appearance of capital letters that exist in the text of
the messages. Finally, the class label of each instance can
be 0 for non-spam or 1 for spam. SpamBase dataset is one
of the best datasets that performs well during learning and
evaluation techniques.

2) SPAMASSASSIN DATASET
SpamAssassin is a widely used email spam dataset that is
well-known for spam filters. This dataset is currently pub-
licly available on Kaggle under the name ‘‘SpamAssassin
public corpus’’ [70]. Kaggle is a website that is a transparent
repository for public datasets and this dataset was provided
to the website by the UCL ML repository and other public
open datasets. The SpamAssassin public corpus was publicly
released in 2005. It is made up of sets of private emails
contributed by individual users or collected from the public.
Unlike the SpamBase dataset, all the email headers are pro-
duced in full in SpamAssassin. The SpamAssassin dataset is
considered one of the important datasets used to evaluate the
performance of spam detection systems. This dataset contains
a total of 6047 legitimate (ham) and unsolicited (spam) emails
with 1,897 spam emails (31.4% spam ratio), 3,900 easy
non-spam emails, which does not contain spam signatures
(such as HTML, HTML mark-up, colored text, spammish-
sounding phrases, etc.), and 250 hard but legitimate emails
which are closer to typical spam in many respects (not shown
in Table 2). This unusual distribution of the email typesmakes
the data imbalanced and for that reason more challenging.
In this research work, words are taken as being separated
by white space. The SpamAssassin corpus uses individual
characters such as ‘$’ and ‘#’, even though the email may
contain web links, HTML scripts, pictures, attachments, etc.
This study will focus on the text content of the messages.

TABLE 2. Analysis of spamassassin email messages.

3) UK-2011 WEBSPAM DATASET
The UK-2011 Webspam dataset consists of 3766 instances
with 11 features. Each example in the data is labeled as
Ham or Spam. This dataset was built by using part of
the UK-2007 Webspam dataset, to create an Extended-UK-
2011 Webspam dataset and retrieving a new part of UK spam
web pages for evaluation purposes. It includes 1768 ham
emails and 1998 spam emails. The percentage of spam emails
form approximately 53% of the emails, which makes the data

VOLUME 9, 2021 116783



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

imbalance and therefore more challenging. Table 3 shows all
the features in this dataset, and the full description of the
features can be found in [71], [72].

TABLE 3. Feature descriptions of the UK-2011 webspam dataset.

4) TEST OPTIMIZATION FUNCTION
To obtain reliable comparison, common control parameters
of all the algorithms have been set as the same values. Detail
of all algorithm’s parameters shown in Table 4.

B. ALGORITHMS AND PARAMETERS
In this study, various algorithms have been studied to ensure
a reliable analysis of the performance of the proposed model.
To ensure a reliable comparison, all the common control
parameters of all algorithms were set to the same values,
including the solution vector size SV, and the dimensionality
of the search space D that represents the number of features
of the dataset. The parameters of all algorithms used in this
study are presented in Table 5.

C. EVALUATION CRITERIA FOR SDS
In this study, the proposed model has been compared and
evaluated based on the Accuracy (ACC), Detection Rate (DR)
and False Alarm Rate (FAR), which are widely used in lit-
erature to evaluate the performance of SDSs. These metrics
include the True Negative (TN), True Positive (TP), False
Negative (FN), and False Positive (FP) rates. These four main
criteria are collected from the confusion matrix, which is
a commonly used tool to describe the performance of NN
classifiers. Table 6 shows the confusionmatrix for a two-class
classification. The performance metrics are shown in Table 7.

The abbreviations of the confusion matrix for a 2-class
classification are:
• (TP): indicates that an email classified as spam email is
actually spam email.

• (TN): indicates that an email classified as normal email
is actually non-spam email.

• (FP): represents a non-spam email that is classified as a
spam email.

• (FN): represents a spam email that is classified as a non-
spam email.

TABLE 4. Test optimization functions.

116784 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 4. (Continued.) Test optimization functions.

TABLE 5. The parameters of the models used in the performance analysis.

V. RESULTS AND DISCUSSION
In this section, the evaluated the performance of the proposed
algorithms, the tests were performed in two parts: In the first

TABLE 6. The confusion matrix for a 2-class classification.

TABLE 7. Performance matrix for classification.

part, the tests were performed on the benchmark functions
using the proposed EGOAs approaches and comparing the
performance of the proposed algorithms with the perfor-
mance of the standard GOA, old optimization algorithms, and
a new optimization algorithm for the purpose a total of 34 low
and high-dimensional benchmark functions were used. The
population size was set to 50 in all scenarios and the same
for the maximum number of generations. We also report the
results for every single scenario based on 30 runs to reduce
the impact of chance on individual runs. These tests will be
examined in detail in Scenarios (1, 2, and 3). The second part,
focused on testing the performance of the proposed approach
EGOAs, in the detection of spam emails. These tests will be
examined in detail in Scenarios (4, 5, and 6).

A. SCENARIO 1: PERFORMANCE OF EGOA AGAINST THE
STANDARD GOA ALGORITHM
The experimental test of scenario 1 verified the effective-
ness of the six proposal for an enhanced GOA against the
original GOA. The results of comparing the six proposed
algorithms and original GOA algorithm to solve 34 global
numerical optimization problems are given in Table 8 below.
Due to a large number of optimization functions, the results
(best values) were presented the benchmarks are divided into
2 types that can evaluate the different capabilities of the algo-
rithms: Benchmarks F14-F23 of the Low-Dimensional Func-
tions (LDF) that are set to (2, 3, 4, and 6) dimensions, and
benchmarks F1-F13 and F24-F34 of the High-Dimensional

VOLUME 9, 2021 116785



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

Functions (HDF) that are set to (10, 30, 60, and 90) dimen-
sions, listed in Table 4. The results of this table represent
the best results achieved by each algorithm at all. The ‘‘best
result’’ here means the closest result to the actual optimal
value of the function, as per Table 4. The results for each
benchmark function include a group of lines (row) each cor-
responds to a different dimension of the function as shown
in the table. This table introduces the result of the minimum
value (closest value to the global optimum) achieved by each
algorithm after the 50 generations with run repeated 30 times.
To highlight the best performance, we distinguish the best
minimum value (best result) for each benchmark function in
bold.

Table 8 presents the best value results for 10 func-
tions out of 34 functions. It is evident from the table that
the six proposed algorithms give the best optimal results
on all functions low dimensional benchmark functions of
(2, 3, 4, and 6), with the exception of the E3GOA algorithm
shows the best result on function (F15) in dimension 4 by
comparing it with the six proposed algorithms. The seven
compared algorithms show similar results on F16, F17, F18,
F22, and F23, especially on lower dimensioned functions.
The six proposed algorithms the best result on function (F14)
in dimension 2 by comparing it with the GOA algorithm.
From all 10 experiments in Table 8, the GOA algorithm was
beaten only five times in terms of the best optimum.

Table 8 clearly shows that the six proposed algorithms give
the best optimal results on all functions especially on dimen-
sions of 10 and above, with the exception of four functions,
F8, F27, F29, and F32. From all 106 experiments in Table 8
(10 functions × 1 dimension for each LDF, 24 functions ×
4 dimensions for each HDF), the six proposed algorithms
were beaten only eight times in terms of the best optimum
value. The GOA algorithm shows the better best value on
one function (F27) in dimension 10, on tow functions (F29,
and F32) in dimension 30, on two functions (F8, and F29)
in dimension 60, and on two functions (F29, and F32) in
dimension 90.

To analyze the performance of the algorithms in terms
of their convergence speed, we plot the progression of each
algorithm in a single run over all 50 iterations, showing the
best optimum found by the algorithm per iteration. Due to
the limited space, 4 results out of 106 comparisons are shown
to highlight the most convergent curves of the six proposed
algorithms against the original GOA. Figures 6(a–d) show a
sample of such convergence plots for 4 benchmark functions.

Figure 6(a) shows the results of the seven algorithms
when applied to Zakharov function with 10 dimension. The
result for Zakharov function in Figure 6(a) shows that the
six proposed algorithms outperform the original GOA algo-
rithm again. Although the rate of convergence in the case
of GOA and the six proposed algorithms are similar in
Figure 6(a), there is a significant difference in the result
with our proposals. Figures 6(b, c) show the results against
the Schwefel 2.21, and the Ackley functions respectively
with 30 dimensions. The six proposed algorithms show an

FIGURE 6. Convergence curves of GOA, E1GOA, E2GOA, E3GOA, E4GOA,
E5GOA, AND E6GOA against 4 functions (A-F30, B- F4, C-F10, D-F26) with
10, 30, and 90 dimensions over 50 generations.

116786 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 8. The best results obtained by the E1GOA, E2GOA, E3GOA, E4GOA, E5GOA, E6GOA and GOA on the test optimization functions in (2, 3, 4, 6, 10, 30,
60 and 90) dimensions.

VOLUME 9, 2021 116787



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 8. (Continued.) The best results obtained by the E1GOA, E2GOA, E3GOA, E4GOA, E5GOA, E6GOA and GOA on the test optimization functions in
(2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

116788 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 8. (Continued.) The best results obtained by the E1GOA, E2GOA, E3GOA, E4GOA, E5GOA, E6GOA and GOA on the test optimization functions in
(2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

obviously better convergence and final optimum value in
these functions as well. Figures 6(b, c) show an extremely
better performance for E2GOA in the first iterations. The rate
of convergence for GOA is similar in Figures 6(b, c), as shown
GOA seems to trap quickly into a local optimum. Figure 6(d)
show similar results to the above cases for the functions Levy
function with 90 dimensions. Figure 6 as a whole show also
that all the proposed algorithms are stable in its outstanding
performance over several dimensionalities of the benchmark
functions. We can conclude that all the proposed algorithms
are indeed superior to the original GOA algorithm. How-
ever, that the performance of the six proposed algorithms is
different from one function to another. An algorithm may
outperform the other, depending on the type of application
that uses the algorithm. This is what prompted us to present
them where their performance could be different in a specific
application.

B. SCENARIO 2: PERFORMANCE OF EGOA AGAINST OLD
OPTIMIZATION ALGORITHMS
The experimental test of scenario 2 verified the effective-
ness of the six proposals for an enhanced GOA against old
optimization algorithms, which are ABC, BAT, CS, HS, and
PSO. These comparisons are benchmarked using the same
group of 34 test optimization functions listed in Table 4.
The benchmarks are divided into 2 types that can evalu-
ate the different capabilities of the algorithms: Benchmarks
F1-F13 and F24-F34 of the low-dimensional optimization
functions that are set to 2, 3,4, and 6, Benchmarks F14-F23 of
the high-dimensional optimization functions that are set to
10, 30, 60, and 90 listed in Table 10. The dimensions of the
benchmark functions are modified in order to test the scala-
bility of the proposed algorithms against higher dimensional
optimization functions. The algorithms were run 30 times
using 50 generations each run, with random seeds. In this
same manner, the set of test optimization functions are also
kept the same as previously stated. However, the compared
algorithms are six metaheuristic algorithms selected from
two fields: evolutionary algorithms and swarm intelligence.
To put the performance of the six proposals for enhancing
GOA (EGOA) algorithms in perspective and illustrate its

merits among similar metaheuristic methods, we compare its
performance on global numeric optimization problems with
six other algorithms. All the important parameters for the
involved algorithms are listed in Table 9.

TABLE 9. Parameters of the six old algorithms used for performance
analysis the proposed algorithms.

Table 10 presents the best possible optimum solution
obtained by various EGOAs and the new metaheuristic algo-
rithms on 2, 3, 4, and 6 of the low dimensional optimization
functions. It can be seen from the table that the E1GOA,
E2GOA, E3GOA, E4GOA, E5GOA, and E6GOA perfor-
mance is slightly less superior to other algorithms, except
the E2GOA algorithm that shows better statistical results
compared to the other algorithms on the low dimensional
optimization functions. The E2GOA algorithm also shows
the best performance, especially in terms of the quality of the
reached optimum value in most of the cases.

Moreover, Table 10 presents the results on F1- F13 and
F24 - F34 in 10, 30, 60, and 90 of the high-dimensional opti-
mization functions. It was the fastest among the algorithms
to get the global optimum on functions: F1, F3, F4, F5, F6,
F7, F9, F11, F12, F13, F24, F25, F28, F30, and F33, with the
exception of some of the functions, that the proposed algo-
rithm has not been able to win in all statistical measurements
(best, mean, and standard deviation), particularly functions
F2, F8, F10, F26, F27, F29, F31, and F32.

VOLUME 9, 2021 116789



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 10. The best, mean, and standard deviation of test function values found by the ABC, BAT, CS, PSO, HS, E1GOA, E2GOA, E3GOA, E4GOA, E5GOA,
AND E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

116790 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 10. (Continued.) The best, mean, and standard deviation of test function values found by the ABC, BAT, CS, PSO, HS, E1GOA, E2GOA, E3GOA,
E4GOA, E5GOA, AND E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

VOLUME 9, 2021 116791



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 10. (Continued.) The best, mean, and standard deviation of test function values found by the ABC, BAT, CS, PSO, HS, E1GOA, E2GOA, E3GOA,
E4GOA, E5GOA, AND E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

116792 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 10. (Continued.) The best, mean, and standard deviation of test function values found by the ABC, BAT, CS, PSO, HS, E1GOA, E2GOA, E3GOA,
E4GOA, E5GOA, AND E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

VOLUME 9, 2021 116793



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 10. (Continued.) The best, mean, and standard deviation of test function values found by the ABC, BAT, CS, PSO, HS, E1GOA, E2GOA, E3GOA,
E4GOA, E5GOA, AND E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

Figure 7 shows the results obtained from 11 sample con-
vergence plots when applying ABC, BAT, CS, HS, PSO,
E1GOA, E2GOA, E3GOA, E4GOA, E5GOA, and E6GOA
to solve the following test optimization functions (chosen
randomly from Table 4: Step, Sphere, Schwefel 1.2, and
Penalized No.2. As previously mentioned, these plots show
the progress of the optimization process for each algorithm
throughout the iterations by plotting the best achieved opti-
mum per iteration. From these figures, it can be claimed that
the six proposed algorithms are significantly superior to the
other new metaheuristic algorithms used in this experiment

over the optimization process in terms of both convergence
speed and final result.

Figure 7(a) shows the results obtained for F6 Step func-
tion with 10 dimension. By carefully looking at this figure,
we conclude that the E1GOA, E2GOA, E3GOA, E4GOA,
E5GOA, and E6GOA has a stably faster convergence speed
than the other algorithms during the whole optimization pro-
cess. The ABC, HS, and PSO algorithms demonstrated the
second-best performance and outperform other optimization
algorithms in terms of final global minimum and convergence
speed in F6 function.

116794 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 7. Convergence curves of GOA, E1GOA, E2GOA, E3GOA, E4GOA,
E5GOA, and E6GOA against 4 functions (A-F6, B- F1, C-F3, D-F13) with 10,
30, and 60 dimensions over 50 generations.

The convergence trends of the test optimization function
with 30 dimensions are depicted in Figure 7(b). It can be
disclosed from these figures that the six proposed algorithms
have fast convergence compared with other optimization

algorithms. The convergence trends of the test optimiza-
tion function with 60 dimension are depicted in Figure 7(c).
It can be disclosed from this figure that the six pro-
posed algorithms have fast convergence compared with
other optimization algorithms. The E2GOA converges faster
than E2GOA, E3GOA, E4GOA, E5GOA, and E6GOA.
Figure 7(d) shows the optimization process against (F13:
Dim = 30), the E2GOA converges faster than E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA. ABC, BAT, CS, HS,
and PSO algorithms fall into the trap of the local optimum and
fail to find the best solution.

C. SCENARIO 3: PERFORMANCE OF EGOA AGAINST NEW
OPTIMIZATION ALGORITHMS
In the past few years, many optimization algorithms have
been proposed. There are many new optimization algorithms
showing a clear and superior performance over the old pro-
posed algorithms in the past decade. Consequently, it is
important to compare the six proposed algorithms with a suf-
ficient sample of the latest algorithms. Accordingly, we have
selected six new algorithms published in high-quality jour-
nals, namely, ALO, DA, MBO, MFO, SCA, and SSA. The
scenario that was implemented here is the same as in the
previous scenarios.

In the experimental test of scenario 3, 34 well-known
benchmark functions listed in Table 4 were used to verify
the effectiveness of the six proposals for an enhanced GOA
against new optimization algorithms, which are ALO, DA,
MBO, MFO, SCA, and SSA. The benchmarks are divided
into 2 types that can evaluate the different capabilities of the
algorithms: Benchmarks F1-F13 and F24-F34 of the low-
dimensional optimization functions that are set to 2, 3,4,
and 6, Benchmarks F14-F23 of the high-dimensional opti-
mization functions that are set to 10, 30, 60, and 90 listed
in Table 11 similar to the previous experiments (Sec. V.B).
In this experiment, the parameters for the six proposed algo-
rithms are used the same as in the previous experiments. For
ALO,DA,MBO,MFO, SCA, and SSA,we set the parameters
based on the original works as follows. ALO, DA, MFO,
SCA, and SSA algorithms are based on the implementa-
tion by Mirjalili (http://www.alimirjalili.com/ Projects.html).
For MBO algorithm, the butterfly adjusting rate BAR =
5/12, migration Peri = 1.2, maximum step Smax = 1.0,
keep = 2 and migration ratio ρ = 5/12.

Table 11 presents the best possible optimum solution
obtained by various EGOAs and the new metaheuristic algo-
rithms on 2, 3, 4, and 6 of the low dimensional optimization
functions. It can be seen from the table that the E1GOA,
E2GOA, E3GOA, E4GOA, E5GOA, and E6GOA perfor-
mance is slightly less superior to other algorithms, except
the E2GOA algorithm that shows better statistical results
compared to the other algorithms on the low dimensional
optimization functions. The E2GOA algorithm also shows
the best performance, especially in terms of the quality of the
reached optimum value in most of the cases.

VOLUME 9, 2021 116795



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 11. The best, mean, and standard deviation of test function values found by the ALO, DA, MBO, MFO, SCA, SSA, E1GOA, E2GOA, E3GOA, E4GOA,
E5GOA, and E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

116796 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 11. (Continued.) The best, mean, and standard deviation of test function values found by the ALO, DA, MBO, MFO, SCA, SSA, E1GOA, E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

VOLUME 9, 2021 116797



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 11. (Continued.) The best, mean, and standard deviation of test function values found by the ALO, DA, MBO, MFO, SCA, SSA, E1GOA, E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

116798 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 11. (Continued.) The best, mean, and standard deviation of test function values found by the ALO, DA, MBO, MFO, SCA, SSA, E1GOA, E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

VOLUME 9, 2021 116799



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 11. (Continued.) The best, mean, and standard deviation of test function values found by the ALO, DA, MBO, MFO, SCA, SSA, E1GOA, E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA on the test optimization functions with (2, 3, 4, 6, 10, 30, 60 and 90) dimensions.

Moreover, Table 11 presents the results on F1- F13 and
F24 - F34 in 10, 30, 60, and 90 of the high-dimensional
optimization functions. It was the fastest among the algo-
rithms to get the global optimum on functions: F1, F2, F3,
F4, F5, F6, F7, F9, F10, F11, F12, F13, F24, F25, F26, F28,
F30, F31, F33, and F34, with the exception of some of the
functions, that the proposed algorithm has not been able to
win in all statistical measurements (best, mean, and standard
deviation), particularly functions F8, F25, F26, F27, F29,
and F32.

Figure 8(a) show the results for F11 Griewank func-
tion. From Figure 8(a), it is obvious that E1GOA, E2GOA,

E3GOA, E4GOA, E5GOA, and E6GOA outperform all other
methods during the whole progress of optimization in these
test optimization functions. Although slower, DA and MBO
performs the second best, after the six proposed algorithms,
at finding the global minimum. Inmany cases, few algorithms
such as DA, MBO, MFO, SCA, and SSA seem to trap into
local optima and fail to find the best solution. The conver-
gence trends of test optimization functions with 30 dimen-
sions are depicted in Figures 8(b-c). It can be disclosed
from these figures that the six proposed algorithms have
fast convergence compared with other optimization algo-
rithms. Figure 8(c) shows the optimization process against

116800 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 8. Convergence curves of GOA, E1GOA, E2GOA, E3GOA, E4GOA,
E5GOA, and E6GOA against 4 functions (A-F11, B- F7, C-F30, D-F4) with 30,
and 90 dimensions over 50 generations.

(F30: Dim= 30), the E2GOA converges faster than E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA. ALO, DA, MBO,
SCA, and SSA algorithms fall into the trap of the local
optimum and fail to find the best solution. Figure 8(d) display
the result for F4 Schwefel 2.21 function with 90 dimension.
In terms of convergence, the six proposed algorithms con-
verge very fast in the case of all functions compared to the
other algorithms. In contrast, ALO, E2GOA, and E5GOA

reached the global optimum in the 3, 5, and 10 iterations,
respectively. The DA,MBO,MFO, and SSA seem to trap into
local optima and fail to find the best solution. From Figure 8
(in most functions) it is noticed that E1GOA, E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA have a close perfor-
mance in terms of both end result and convergence path.

1) COMPARISON THE EGOA WITH THE OTHER IMPROVED
METHODS BASED ON GOA
This section presents the comparison results between EGOA
and the other six enhancements to the original GOA algo-
rithm, which have been analyzed in the related work section.
The setup of this set of comparisons is the same as the
previous experiments, and the purpose of these as well as later
experiments is to assess EGOA in comparison with a wide
variety of algorithms and to reach a more accurate evaluation.
We start the section by briefly introducing all the algorithms
used in our comparison. For more details, we refer the reader
to the original references of the algorithms. We notice from
the discussion in the related work section that the different
works try to improve the original algorithm by adding certain
operators in order to establish a better balance between explo-
ration and exploitation. This goal is evident in the proposal
literature. Hence, our proposal is similarly pursuing the same
idea sought by other researchers, but by using a new and
more appropriate mutation operator this time around. It is
this unique adjustment that has empowered EGOA over the
other algorithms as shown by the results presented later in
the section. For the purpose of the evaluation process, we list
all the control variables used by the algorithms in Table 12.
We report the results of over 30 implementation runs for each
algorithm on each benchmark function listed in Table 4.

TABLE 12. The parameter settings.

The comparison results of our algorithm, as well as other
algorithms, are shown in Table 13. The variables of the opti-
mization functions were standardized across all algorithms.
The results of the other algorithms were directly taken from
the original reports which contain all necessary details which
can be consulted by the reader. Table 13 shows the perfor-
mance of the six proposed algorithms (E1GOA, E2GOA,
E3GOA, E4GOA, E5GOA, and E6GOA) compared with
the optimization methods mentioned in section II. Table 13
demonstrates the best possible solution (Best) and the average
result (Mean) obtained by each method. So, each benchmark
function has two rows for each outcome. The values in the

VOLUME 9, 2021 116801



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 13. Comparisons of the related works and the six proposed algorithms (EGOA) and GOA on benchmark function.

last two rows of this table show the total number of bench-
mark functions for which the specific optimization algorithm
performs better than other methods; the values are marked
in bold. If a particular method does not provide a result for
the benchmark function, it is signified by a hyphen ‘‘–’’. It is
evident from the obtained results that all EGOA algorithms
have significantly better performed over their rivals across
all functions. Especially E2GOA which has exceptionally
achieved the best performance overall rest in terms of finding
the global minimum and average values for most of the
functions.

2) COMPUTATION TIME
In this section, we present the computation time of the
proposed algorithms against the original algorithm (GOA),
which is considered another important factor. To further clar-
ify the advantage of the proposed algorithm over the original

algorithm we calculated the computation time between the
two. Due to the limited space in the article, we would limit
the comparisons to 30 dimensions. Table 14 demonstrates
the computation time for the EGOAs against the original
GOA. The results are shown in Table 14. The new algorithms
were clearly the fastest optimization methods, whereas the
original algorithm (GOA) was the slowest. Another conclu-
sion of the above experiment was that the fitness function
evaluation of real-world applications is the most expensive
part of the optimization algorithm. Therefore, the proposed
algorithm (EGOAs) aims to make a trade-off between com-
putational requirements and finding near-optimal solutions.

D. SCENARIO 4: PERFORMANCE OF EGOAMLP AGAINST
THE SpamBase DATASET
The experimental test of scenario 4 verified the effectiveness
of the proposed EGOAMLP models and other metaheuristic

116802 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 14. Computation time for thirteen benchmark functions in 30 dimensions.

based MLP models. The results of comparing the proposed
EGOAMLP and other models against the SpamBase spam
detection benchmark dataset are given in Table 15.

The results of the proposed EGOAMLP models and other
models are calculated based on the definitions in Table 7 and
Equations (27-36). The TP, TN, FN, and FP measurements
are averaged over 100 iterations, and the remaining columns
are derived from these basicmeasurements. The classification
accuracy, detection rate, false alarm rate, Matthews correla-
tion coefficient, positive predictive value, negative predictive
value, sensitivity, specificity, G-mean, and f-measure of each
evaluation measure is reported in the table and denoted as
ACC, DR, FAR, MCC, PPV, NPV, SN, SP, GM, and F1,
respectively.

The most important indicators are the classification accu-
racy, the detection rate, and the false alarm rate. The last
three columns in the table (Rank accuracy, Rank Detection
rate, and rank false alarm rate) highlight the rank of each
algorithm according to these three indicators; the smaller the
better, and denoted as RACC, RDR, and RFAR, respectively.
According to the obtained results, it can be noticed that the

newly proposed models achieve the highest ratios in all mea-
surements, and they are of the top performing MLP trainers.
In addition, it can be observed that the results of the BBO,
DA, and MFO are better than those of other models in the
majority of the measurements.

Table 15 demonstrates the results of the experiment, which
were carried out using the SpamBase dataset. Spam detection
model E2GOAMLP was capable of achieving the highest
ratios in the three criteria: ACC, DR, and FAR with val-
ues of 96.9%, 97.2%, and 0.037, respectively. E2GOAMLP
was also ranked the first best with respect to the ACC,
DR, and FAR. The E4GOAMLP model was ranked the sec-
ond best with respect to ACC and FAR with a value
of 94.3% and 0.044 respectively, ranked fourth with respect
to DR of 93.5%. The GOAMLP model was quite close to
E4GOAMLP with an accuracy of 94.1%, the detection rate
of 94.0%, and the false alarm rate of 0.057. GOAMLP was
ranked the third best with respect to the ACC and FAR,
but ranked the second-best with respect to the DR. The
E5GOAMLP model is ranked fourth with respect to the ACC
of 93.7% and ranked third with respect to DR of 93.8%,

VOLUME 9, 2021 116803



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 15. The measurements of the performance of 21 models to detect spam in the spambase dataset.

ranked 5th with respect to FAR of 0.064. The E3GOAMLP
model was ranked fifth with respect to ACC and DR with a
value of 93.2% and 93.4% respectively and ranked seventh
with respect to FAR of 0.072. The E1GOAMLP was also
ranked the 5th with respect to the ACC of 93.2% but ranked
the 6th with respect to the DR and FAR of 93.1% and 0.066,
respectively.

The DAMLP model was ranked seventh with respect to
ACC and DR with a value of 92.5% and 91.7% respectively,
ranked fourth with respect to FAR of 0.063. The MFOMLP
model was ranked 8th with respect to ACC and DR with a
value of 91.4%, 91.5% respectively, and ranked 10th with
respect to FAR of 0.092. Additionally, the BBOMLPmodel is
ranked 8th with respect to ACC, 9th with respect to DR, and
ranked 7th with respect to FAR with values of 91.2%, 90.2%,
and 0.072, respectively. Conversely, two models performed
poorly in the SpamBase dataset: HSMLP model with an
inferior ACC of 71.9% and DR of 71.3%, followed by the
PBILMLP model with an inferior ACC of 65.8% and DR of
62.3%. Also, in terms of FAR two models performed poorly
in the SpamBase dataset: PBILMLP and ABCMLP with an
inferior performance in the FAR with a value of 0.289 and
0.392, respectively.

Figures 9 and 10 demonstrate the results of the proposed
models (EGOAMLP) and other metaheuristic based MLP
models when applied to the SpamBase dataset, showing both
convergence speed and final optimization result in terms
of MSE. Investigating the convergence curves in Figure 9,
we can clearly notice that the proposed models (EGOAMLP)
are significantly outperforming the GOAMLPmodel in terms
of the convergence speed, which indicates the stability of the
proposed training model. Both GOAMLP and EGOAMLP

FIGURE 9. Convergence curve of GOAML and proposed model based on
averages of MSE the spambase datset.

FIGURE 10. Convergence curve of all models based on averages of MSE
for the spambase dataset.

models converge sharply at the early iterations; nevertheless,
soon the GOAMLP almost gets stuck in the local minimum
before the 7th iteration, and the global minimum decreases
slightly.

116804 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

On the other hand, EGOAMLP models have the strongest
performance for finding a better solution and converge to
a better minimum than the GOAMLP model. For example,
Figure 9 shows that all the models start the optimization
process of the SpamBase dataset at the same fitness, but after
iteration 7, the GOAMLP model gets trapped in a subopti-
mal solution, while all the proposed models and specially
E2GOAMLP and E5GOAMLP have a much more stable
convergence rate and can find the best global function values,
except for the E6GOAMLP model that has an outstanding
performance after iteration 20.

As shown in Figure 10, we can clearly notice that all the
proposed models and the other models begin the optimization
process at the same cost. However, the proposed models
are more stable and have a fast convergence rate than other
models. Furthermore, all the proposed models (EGOAMLP)
are capable to find the minimum values during the training
over the whole optimization process.

From Figure 10, E2GOAMLP and E5GOAMLP have a
little difference in final fitness cost; however, the convergence
speed of E2GOAMLP is always faster than E5GOAMLP
and other metaheuristic based MLP models. Thus, the MSE
obtained by E2GOAMLP is better than the other models
during the whole convergence process. We conclude that
E2GOAMLP significantly outperforms other models in terms
of convergence speed and better performance, which indi-
cates the robustness and stability of E2GOAMLP.

Due to the limited space, Figure 11 illustrates the confusion
matrices for the new proposed models in addition to some
other models. It should be noted that their choice was random,
and the goal was to demonstrate the performing trainers
against the SpamBase dataset.

E. SCENARIO 5: PERFORMANCE OF EGOAMLP AGAINST
THE SpamAssassin DATASET
This section introduces the experimental test of scenario 5
to compare the effectiveness of the proposed EGOAMLP
models with 15 metaheuristic based MLP models against
the SpamAssassin spam detection benchmark dataset. The
results are given in Table 16. The proposed EGOAMLP
models show the highest ratios in all measurement criteria
(ACC, DR, FAR, MCC, PPV, NPV, SN, SP, GM, and F1)
except for the last proposed model, E6GOAMLP. According
to the attained results, we can notice that the proposed models
can achieve the best values with respect to ACC, DR, and
FAR. E2GOAMLP ranked the top, scoring 98.1%, 97.8%,
and 0.012, respectively. In addition, it is very competitive in
terms of GM measurement criteria with a value of 98.3%.
The advantage of the GM measurement is that it indicates
a good balance between SN and SP. The second rank in this
dataset in terms of ACC and FAR is recorded by E3GOAMLP
with values of 96.1 % and 0.014, respectively, but the second-
best DR is recorded by E5GOAMLP with a value of 95.2%.
The E5GOAMLP model was ranked third with respect to
ACC with a score of 95.5%, and in terms of DR is scored by
E4GOAMLP with a value of 95.0%, while in terms of FAR is

FIGURE 11. The confusion matrices against the spambase dataset.

scored by GOAMLP with values of 0.033. The E4GOAMLP
model was ranked fourth with respect to ACC with a score of
94.9%, and in terms of FAR is scored by E5GOAMLP with a
value of 0.040. As for the fifth rank in terms of ACC is scored

VOLUME 9, 2021 116805



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 16. The measurements of the performance of 21 models to detect spam in the spamassassin dataset.

by GOAMLP with a value of 94.2% and in terms of DR is
scored by model BBOMLP with a value of 93.4%, while in
terms of FAR is scored by HSMLP with values of 0.051.

The GOAMLP was ranked 6th with respect to DR, 3rd
with respect to FAR with values of 93.1% and 0.033, respec-
tively. From the previous results, we notice the superiority
of all the proposed models with the SpamAssassin dataset,
which were powerful and efficient models for achieving high
performance of the classification accuracy with a low false
alarm rate, except for the E6GOAMLPmodel which achieved
unsatisfactory results.

The ALOMLP model is ranked 7th with respect to ACC
and FAR with values of 92.3% and 0.054, respectively. The
HSMLP and MBOMLP were superior to ALOMLP in terms
of FAR with values of 0.051 and 0.053, respectively. The
CSMLPwas ranked 9thwith respect toACC andDRwith val-
ues of 91.4%, and 90.7% respectively, and 12th with respect
to FAR with values of 0.070, followed by the SCAMLP and
MFOMLP models. SCAMLP was ranked 10th with respect
to ACC and FAR with a score of 91.2% 0.060 respectively,
but 12th with respect to DR, with values of 89.8%. The
MFOMLP was ranked 11th with respect to ACC with a score
of 91.1%, but 10th with respect to DR, and 13th with respect
to FAR with values of 90.4% and 0.076, respectively.

On the other hand, the ABCMLP performed relatively
poorly with this dataset in comparison to the other algorithms
with an accuracy of 79.6%, and a detection rate of 75.1%.
Additionally, the ABCMLP model has the best specificity
of 0.89; however, it performed poorly in terms of sensitiv-
ity, which is only 0.75, which was the reason for the poor
performance in terms of GM with the value of 81.7. The
worst models with the SpamAssassin dataset in terms of
FAR were ABCMLP and DEMLP scoring 0.111 and 0.112,
respectively.

FIGURE 12. Convergence curve of goamlp and proposed models based on
averages of MSE for the spamassassin dataset.

From the above analyses about the results of Table 16,
we conclude the stability of the proposed models in terms of
(ACC, DR, FAR) compared to the rest of the models. In addi-
tion, most of the proposed models have better performance
than other models for the SpamAssassin dataset.

Moreover, the optimization process of each model is given
in Figures 12 and 13. The convergence trends of the proposed
models (EGOAMLP) and other metaheuristic based MLP
models applied to the SpamAssassin dataset in terms of MSE
are evidenced in detail. Inspecting the convergence speed and
final optimization result of the curves, it can be obviously
noticed that all EGOAMLP models are able to overcome
other models in terms of the convergence speed and final
optimization result, except for the E6GOAMLPmodel, where
its performance was disappointing.

From Figure 12, it can be clearly noticed that E1GOAMLP,
E2GOAMLP, E3GOAMLP, E4GOAMLP, and E5GOAMLP
are capable of outperforming the original GOAMLP and
the E6GOAMLP model in terms of the fastest convergence

116806 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 13. Convergence curve of all models based on averages of MSE
for the spamassassin dataset.

rate and finding the global minimum. Looking carefully at
Figure 12, all themodels can be divided into 3 groups: the first
group including E1GOAMLP, E2GOAMLP, E3GOAMLP,
E4GOAMLP, and E5GOAMLP is performing the best,
the second group including the original GOA is performing
the second best; and the last group including E6GOAMLP is
performing the worst.

Figure 13 shows the optimization process for all mod-
els against the SpamAssassin dataset. In this case, the fig-
ure obviously shows that the performance of E1GOAMLP,
E2GOAMLP, E3GOAMLP, E4GOAMLP, and E5GOAMLP
differs from the other models, they are superior to the rest of
the models clearly, whereas E6GOAMLP fails to find the best
solution in this dataset.

The BBOMLP and ALOMLP models perform the
second-best in this dataset. Furthermore, all the models have
the almost the same initial values, while E5GOAMLP over-
takes all the other models. All models obviously outperform
the ABCMLP model.

Considering the results demonstrated in Figures 12 and 13,
it can be concluded that all the proposed models’ perfor-
mance are superior to other models and quite competitive
with each other. Additionally, the results illustrate that the
ALOMLPmodel performs much better than the other models
initially, while later it is overtaken by BBOMLP, CSMLP, and
MFOMLP models.

Figure 14 demonstrates the confusion matrices for the
E6GOAMLP model in addition to some other models.
It should be noted that their choice was random, and the goal
was to show the performing trainers against the SpamAssas-
sin dataset.

F. SCENARIO 6: PERFORMANCE OF EGOAMLP AGAINST
THE UK-2011 WEBSPAM DATASET
Finally, this section introduces the numerical performance
measurements and their visual representation for the most
recent UK-2011 Webspam detection benchmark dataset.
A sample of convergence curves and four confusion matrices
are also given for our proposedmodels in addition to theworst
and the best performance models.

These results are shown in Table 17, Figure 15, Figure 16,
and Figure 17, respectively. Confirming of all previous
results, the E2GOAMLP is the top-performing model in

FIGURE 14. The confusion matrices against the spamassassin dataset.

this dataset too. Looking at the three last columns of
Table 17 showing the ranks per ACC, DR, and FAR,
the E2GOAMLP is ranked first in ACC and DR, but 2nd
with respect to FAR at scores of 95.6%, 96.6%, and 0.053,
respectively. E4GOAMLP was ranked 1st with respect to

VOLUME 9, 2021 116807



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 17. The measurements of the performance of 21 models to detect spam in the UK-2011webspam dataset.

FAR with a score of 0.047, but 2nd with respect to ACC and
DR with values of 95.0% and 94.7%, respectively.

The E3GOAMLP model is ranked 3rd with respect to
ACC, DR, and FAR at scores of 93.6%, 93.4%, and 0.062,
respectively, whereas the E5GOAMLP model is ranked 4th
with respect to ACC and FAR at scores of 92.8 and 0.063,
respectively, while it is ranked 8th with respect to DR at a
value of 91.9%. The GOAMLP model is ranked 5th with
respect to ACC and FAR at scores of 92.7% and 0.078, and
3rd with respect to DR at a score of 93.4.

The WOAMLP model is ranked 6th with respect to ACC
at a score of 91.6%, 5th with respect to DR at a score of
93.0%, and 7th with respect to FAR at a score of 0.097. This
is followed by our model E1GOAMLP, which is ranked 7th
with respect to ACC, DR, and FAR at scores of 91.4% and
92.6%, and 0.097 respectively; then followed by BBOMLP,
which is ranked 8th with respect to ACC at a score of 91.1 %,
6th with respect to DR at a score of 92.8%, and 11th with
respect to FAR at a score of 0.105.

Conversely, the DEMLP and GSAMLP models perform
quite poorly with the UK-2011 dataset compared to the
remainingmodels, where DEMLP is ranked 20th with respect
to ACC, DR, and FAR at scores of 81.2%, 80.6%, and 0.182,
and GSAMLP is ranked 21st with respect to ACC and FAR at
scores of 80.9% and 0.204. The PBILMLP model is ranked
21st with respect to DR at a score of 79.6%.

In terms of convergence speed, Figures 15 and 16 demon-
strate that our proposed models have a faster conver-
gence rate compared to the other models, except for
E6GOAMLP. Figure 15 shows the averaged convergence
curves of the GOAMLP and the proposed training algorithms.
From this figure, it can be noticed that the E2GOAMLP
and E4GOAMLP models converge the fastest and signifi-
cantly outperform all other models for this dataset. In this
case, E3GOAMLP and E5GOAMLP are only inferior to

FIGURE 15. Convergence curve of all proposed models based on averages
of MSE for the UK-2011webspam dataset.

E2GOAMLP and E4GOAMLP and perform the second best
among other models. E1GOAMLP performs also well and
ranks 3rd, while GOAMLP and E6GOAMLP fail to find a
satisfied solution under the given conditions.

Figure 16 illustrates the optimization process for all models
against the UK-2011Webspam dataset. The figure shows that
E1GOAMLP, E2GOAMLP, E3GOAMLP, E4GOAMLP, and
E5GOAMLP performances differ from the other models,
where performance is obviously superior to the rest of the
models, while E6GOAMLP fail to find the best solution with
this dataset. The BBOMLP and MBOMLP models perform
the second-best after our proposed models (E2GOAMLP,
E3GOAMLP, E4GOAMLP, and E5GOAMLP) in this dataset.
Furthermore, all the models have almost the same initial
values, while E2GOAMLP overtakes all the other models. All
models obviously outperform the CSMLP model.

Figure 17 shows that the E2GOAMLP and E4GOAMLP
models have overall superior performances in terms of
accuracy, detection rate, and false alarm rate. Additionally,
the E2GOAMLP model has a superior performance in terms
of the confusion matrix. As illustrated in Figure 17, the
E2GOAMLP model has the lowest coefficient values of

116808 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

FIGURE 16. Convergence curve of all models based on averages of MSE
for the UK-2011webspam dataset.

the false positives (FP) and false negatives (FN) compared to
the other 20 models. On the contrary, the E2GOAMLPmodel
has the highest coefficient value of the true positives (TP) and
true negatives (TN), where the correctly predicted cases are
located along with the matrix diagonal.

Figure 17 illustrates the confusion matrices for the
ABCMLPmodel in addition to MBOMLP, E4GOAMLP, and
E2GOAMLP. It should be noted that their choicewas random,
and the goal was to demonstrate the performing trainers
against the UK-2011Webspam dataset.

1) PERFORMANCE COMPARISON OF PROPOSED MODELS
AND OTHER SCHEMES
In this section, we have compared the performance of the pro-
posed model with the more recent proposed schemes of spam
detection systems from state-of -arts are listed in Table 18.

This comparison demonstrates the contribution and supe-
riority of our model on publicly available datasets includ-
ing the SpamBase, SpamAssassin, and UK-2011 Webspam
datasets. The proposed model has the best performance in
the evaluation criteria. The data were correctly classified by
the proposed model compared to those classified by the static
schemes. Moreover, GOAMLP showed a significantly lower
FAR than some of the recent schemes.

2) PERFORMANCE EVALUATION USING T-TEST
In this section, we have analyzed statistically the performance
of the proposed algorithm of the previous results, the tests
were performed in two phases: In the first phase, to be able to
correctly judge the statistical analysis of the previous results,
we have conducted the statistical t-test (T) in order to evaluate
the real performance of the proposed algorithms (EGOAs)
as opposed to the original algorithm (GOA) on 34 bench-
mark functions based on the two-tailed test to reveal the
differences in the obtained best function minima are statically
significant.When comparing two algorithms, algorithm 1 and
algorithm 2, the null hypothesis H0 is defined as the claim
that algorithm 1 and algorithm 2 performed equally well. The
alternative hypothesis H1 is defined as the assumption that
algorithm 1 overcame algorithm 2. Algorithm 1 is EGOA in
all the tests. The significance level of the p-value was set
to 0.05, i.e., the alternative hypothesis H1 would be accepted
if the p-value were less than 0.05 (i.e., 95% confidence level).

FIGURE 17. The confusion matrices against the UK-2011webspam
dataset.

Table 19 presents the p-values from the paired t-tests between
the proposed algorithms (EGOAs) and the original algorithm
(GOA). The boldface demonstrates that the performance of
the original algorithm (GOA) is better than the proposed
algorithms (EGOAs). The last three rows of this table rep-
resent that proposed algorithms (EGOAs) are better than,

VOLUME 9, 2021 116809



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 18. Comparison results with other schemes.

equal to, and worse than the original algorithm (GOA). For
instance, the comparison between E3GOA and GOA indi-
cates that E3GOA performs better than, equal to, and worse
than GOA on 54, 1, and 5 functions, respectively. Similarly,
we can say that E2GOA performs better and worse than
GOA on 52 and 3 functions, respectively. E1GOA performs
better than, equal to and worse than GOA on 46, 11, and
3 benchmark functions. Table 19 shows that all the proposed
algorithms (E1GOA, E2GOA, E3GOA, E4GOA, E5GOA,
and E6GOA) outperform the original algorithm (GOA) on
most of the benchmark functions.

In the second phase, the Statistical t-test for EGOAMLP
against the other models. In comparing two models, model 1
and model 2, the null hypothesis H0 is defined as the claim
that model 1 and model 2 performed equally well. The
alternative hypothesis H1 is defined as the assumption that
model 1 overcame model 2. Model 1 is one of the pro-
posed models (EGOAMLP) in all the tests. The significance
level of the p-value was set to 0.05, i.e., the alternative
hypothesis H1 would be accepted if the p-value were less
than 0.05 (i.e., 95% confidence level). Table 20 presents
the p-values from the paired t-tests between proposed mod-
els (E1GOAMLP, E2GOAMLP, E3GOAMLP, E4GOAMLP,
E5GOAMLP, and E6GOAMLP) and each of ABC, ALO,
BBO, DA, CS, DE, GOA, GSA, MBO, HS, MFO, PBIL,
PSO, SCA, and WOA.

TABLE 19. Comparison between EGOAS and GOA at A = 0.05 on a
two-tailed t-test.

The p value (probability) is used to determine if the MSE
mean differs or not. All the p-values were smaller than 0.05,
except for the tests between DAMLP and E1GOAMLP and
between DAMLP and E6GOAMLP with the SpamAssassin
dataset. Also, the differences between E6GOAMLP and
PBILMLP and between E6GOAMLP and SCAMLPwere not
statistically significant in the SpamAssassin dataset. All the
proposed models were always better than the other models
with the SpamBase dataset. Finally, the differences between
DAMLP and E1GOAMLP, E3GOAMLP, and E5GOAMLP
were not statistically significant with UK-2011 Webspam.

The same is also true for the difference between GOAMLP
and E6GOAMLP. The p-values greater than 0.05 are shown
in boldface to indicate that the hypothesis of EGOAMLP
superiority cannot be accepted. Therefore, there is a signif-
icant correlation between the mean of the proposed models
of differential evolution. This also shows a high level of
accuracy between them. The results below show an obvious

116810 VOLUME 9, 2021



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

TABLE 20. P-value for EGOAMLP against the other models.

difference between the performance of our proposed mod-
els (EGOAMLP) and the rest of the models. In this table,
p-values of less than 10−2, and those of smaller than 0.05 are
shown in regular face to indicate that the hypothesis of our
proposed models (EGOAMLP) superiority can be accepted.

VI. CONCLUSION
This research introduced a series of six different vari-
ants of the models for the spam detection system, namely,
the EGOAMLPs. The six different models have been
investigated on three spam datasets: SpamAssassin, Spam-
Base, and UK-2011Webspam. Generally speaking, the paper
focuses on the applicability of six different variants of the
EGOAMLP model to train MLP in order to develop a new
spam detection system (SDS). The confusion matrix is the
main source of the basic measurements of TP, TN, FN,

and FP. The performance of the six proposed variants was
compared with a number of recent spam detection systems.
The current study utilized 15 of the metaheuristic algorithms
to train the MLP such as ALO, ABC, BBO, DA, CS, DE,
GOA, GSA, HS, MFO, MBO, PBIL, SCA, PSO, and WOA.
By looking to the obtained results, it can be observed that
the proposed models (namely, E1GOAMLP, E2GOAMLP,
E3GOAMLP, E4GOAMLP, and E5GOAMLP) are able to
significantly improve the performance of classification. The
reason for the improved performance is that the proposed
models provide a better balance between exploration and
exploitation that prevents the models from stagnating in local
optima during the optimization process. The results also
indicate that most EGOAMLPs decrease the comfort zone,
attraction zone, and repulsion zone between grasshoppers in
a much better way which allows the EGOAMLP models to
show better capability in terms of ACC, DR, and FAR. The
results suggest that the tuned models evidently escalate the
reliability of the global optimality and classification accuracy,
they also enhance the quality of the results. The results show
that the best training model of all is E2GOAMLP with the
SpamBase, SpamAssassin, and UK-2011Webspam datasets,
having classification accuracies of 96.9%, 98.1%, and 95.6%,
respectively, and detection rates of 97.2%, 97.8%, and 96.6%,
respectively, and finally FAR values of 0.037, 0.012, and
0.053, respectively. However, this research only evaluated the
models by using all the features of the spam detection datasets
where an adequate feature selection technique has not been
included. Therefore, in the future our research will focus on
developing an effective SDS based on two goals: the first is
to reduce the number of selected features, and the second
is to hybridize among the best-proposed models to build an
ensemble-based classifier for spam detection.

REFERENCES
[1] N. Hussain, H. T. Mirza, I. Hussain, F. Iqbal, and I. Memon, ‘‘Spam review

detection using the linguistic and spammer behavioral methods,’’ IEEE
Access, vol. 8, pp. 53801–53816, 2020.

[2] A. Karim, S. Azam, B. Shanmugam, K. Kannoorpatti, and M. Alazab,
‘‘A comprehensive survey for intelligent spam email detection,’’ IEEE
Access, vol. 7, pp. 168261–168295, 2019.

[3] I. Idris and A. Selamat, ‘‘Improved email spam detection model with
negative selection algorithm and particle swarm optimization,’’ Appl. Soft
Comput., vol. 22, pp. 11–27, Sep. 2014.

[4] G. Al-Rawashdeh, R. Mamat, and N. H. B. A. Rahim, ‘‘Hybrid water
cycle optimization algorithm with simulated annealing for spam E-mail
detection,’’ IEEE Access, vol. 7, pp. 143721–143734, 2019.

[5] S. O. Olatunji, ‘‘Improved email spam detection model based on support
vector machines,’’ Neural Comput. Appl., vol. 31, no. 3, pp. 691–699,
Mar. 2019.

[6] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi,
and O. E. Ajibuwa, ‘‘Machine learning for email spam filtering: Review,
approaches and open research problems,’’Heliyon, vol. 5, no. 6, Jun. 2019,
Art. no. e01802.

[7] O. Fonseca, E. Fazzion, I. Cunha, P. H. B. Las-Casas, D. Guedes,W. Meira,
C. Hoepers, K. Steding-Jessen, and M. H. P. Chaves, ‘‘Measuring, charac-
terizing, and avoiding spam traffic costs,’’ IEEE Internet Comput., vol. 20,
no. 4, pp. 16–24, Jul. 2016.

[8] J. R. Mendez, F. Fdez-Riverola, F. Diaz, E. L. Iglesias, and J. M. Corchado,
‘‘A comparative performance study of feature selection methods for the
anti-spam filtering domain,’’ in Proc. Ind. Conf. Data Mining. Berlin,
Germany: Springer, 2006, pp. 106–120.

VOLUME 9, 2021 116811



S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

[9] K. Li, Z. Zhong, and L. Ramaswamy, ‘‘Privacy-aware collaborative spam
filtering,’’ IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 5, pp. 725–739,
May 2009.

[10] Z. Zhang, R. Hou, and J. Yang, ‘‘Detection of social network spam
based on improved extreme learning machine,’’ IEEE Access, vol. 8,
pp. 112003–112014, 2020.

[11] S. Gibson, B. Issac, L. Zhang, and S.M. Jacob, ‘‘Detecting spam email with
machine learning optimized with bio-inspired metaheuristic algorithms,’’
IEEE Access, vol. 8, pp. 187914–187932, 2020.

[12] D. Liu and J.-H. Lee, ‘‘CNN based malicious website detection by invali-
dating multiple web spams,’’ IEEE Access, vol. 8, pp. 97258–97266, 2020.

[13] A. C. Pandey and D. S. Rajpoot, ‘‘Spam review detection using spi-
ral cuckoo search clustering method,’’ Evol. Intell., vol. 12, no. 2,
pp. 147–164, Jun. 2019.

[14] J.-F. Tsai, M.-H. Lin, and D.-Y. Wen, ‘‘Global optimization for mixed–
discrete structural design,’’ Symmetry, vol. 12, no. 9, p. 1529, Sep. 2020.

[15] W.A.H.M.Ghanem andA. Jantan, ‘‘Hybridizing artificial bee colonywith
monarch butterfly optimization for numerical optimization problems,’’
Neural Comput. Appl., vol. 30, no. 1, pp. 163–181, Jul. 2018.

[16] B. Kizielewicz and W. Sałabun, ‘‘A new approach to identifying a multi-
criteria decision model based on stochastic optimization techniques,’’ Sym-
metry, vol. 12, no. 9, p. 1551, Sep. 2020.

[17] A.Milani, ‘‘Evolutionary algorithms in intelligent systems,’’Mathematics,
vol. 8, no. 10, p. 1733, Oct. 2020.

[18] S. Mirjalili, ‘‘Dragonfly algorithm: A new meta-heuristic optimiza-
tion technique for solving single-objective, discrete, and multi-objective
problems,’’ Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073,
May 2016.

[19] X. S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc. World
Congr. Nature Biologically Inspired Comput. (NaBIC), 2009, pp. 210–214.

[20] S. Mirjalili, ‘‘The ant lion optimizer,’’ Adv. Eng. Softw., vol. 83, pp. 80–98,
May 2015.

[21] P. Soltani and E. Hadavandi, ‘‘A monarch butterfly optimization-based
neural network simulator for prediction of siro-spun yarn tenacity,’’ Soft
Comput., vol. 23, pp. 1–15, Nov. 2018.

[22] W. A. H. M. Ghanem and A. Jantan, ‘‘An enhanced bat algorithm with
mutation operator for numerical optimization problems,’’ Neural Comput.
Appl., vol. 31, no. S1, pp. 617–651, Jan. 2019.

[23] D. Manjarres, I. G.-L. S. Landa-Torres, S. J. Del, M. N. Bilbao,
S. Salcedo-Sanz, and Z. W. Geem, ‘‘A survey on applications of the
harmony search algorithm,’’ Eng. Appl. Artif. Intell., vol. 26, no. 8,
pp. 1818–1831, 2013.

[24] S. Mirjalili, ‘‘Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,’’Knowl.-Based Syst., vol. 89, pp. 228–249, Nov. 2015.

[25] D. Wu, S. Xu, and F. Kong, ‘‘Convergence analysis and improvement
of the chicken swarm optimization algorithm,’’ IEEE Access, vol. 4,
pp. 9400–9412, 2016.

[26] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[27] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017.

[28] G. I. Sayed, G. Khoriba, and M. H. Haggag, ‘‘A novel chaotic salp swarm
algorithm for global optimization and feature selection,’’ Appl. Intell.,
vol. 48, no. 10, pp. 3462–3481, 2018.

[29] K. Socha and C. Blum, ‘‘An ant colony optimization algorithm for contin-
uous optimization: Application to feed-forward neural network training,’’
Neural Comput. Appl., vol. 16, no. 3, pp. 235–247, May 2007.

[30] X. Li, J. Zhang, andM.Yin, ‘‘Animalmigration optimization: An optimiza-
tion algorithm inspired by animal migration behavior,’’ Neural Comput.
Appl., vol. 24, nos. 7–8, pp. 1867–1877, Jun. 2014.

[31] C. H. Wu, ‘‘Behavior-based spam detection using a hybrid method of rule-
based techniques and neural networks,’’ Expert Syst. Appl., vol. 36, no. 3,
pp. 4321–4330, Apr. 2009.

[32] A. H. Mohammad and R. A. Zitar, ‘‘Application of genetic optimized
artificial immune system and neural networks in spam detection,’’ Appl.
Soft Comput., vol. 11, no. 4, pp. 3827–3845, Jun. 2011.

[33] M.-C. Su, H.-H. Lo, and F.-H. Hsu, ‘‘A neural tree and its application to
spam e-mail detection,’’ Expert Syst. Appl., vol. 37, no. 12, pp. 7976–7985,
Dec. 2010.

[34] M. Zmyślony, B. Krawczyk, and M. Woźniak, ‘‘Combined classifiers with
neural fuser for spam detection,’’ in Proc. Int. Joint Conf. CISIS-ICEUTE-
SOCO Special Sessions. Berlin, Germany: Springer, 2013, pp. 245–252.

[35] K. Manjusha and R. Kumar, ‘‘Spam mail classification using combined
approach of Bayesian and neural network,’’ in Proc. Int. Conf. Comput.
Intell. Commun. Netw., Nov. 2010, pp. 145–149.

[36] H. Xu and B. Yu, ‘‘Automatic thesaurus construction for spam filter-
ing using revised back propagation neural network,’’ Expert Syst. Appl.,
vol. 37, no. 1, pp. 18–23, Jan. 2010.

[37] S. Mirjalili, ‘‘How effective is the Grey Wolf optimizer in training multi-
layer perceptrons,’’ Appl. Intell., vol. 43, no. 1, pp. 150–161, 2015.

[38] W. A. H. M. Ghanem and A. Jantan, ‘‘A cognitively inspired hybridization
of artificial bee colony and dragonfly algorithms for training multi-layer
perceptrons,’’ Cognit. Comput., vol. 10, no. 6, pp. 1096–1134, Dec. 2018.

[39] W. A. H. Ghanem and A. Jantan, ‘‘Using hybrid artificial bee colony
algorithm and particle swarm optimization for training feed-forward neural
networks,’’ J. Theor. Appl. Inf. Technol., vol. 67, no. 3, pp. 1–11, 2014.

[40] W. A. H. M. Ghanem and A. Jantan, ‘‘Training a neural network for
cyberattack classification applications using hybridization of an artificial
bee colony and monarch butterfly optimization,’’ Neural Process. Lett.,
vol. 51, pp. 1–42, Oct. 2020.

[41] W. A. H. M. Ghanem and A. Jantan, ‘‘Swarm intelligence and neural
network for data classification,’’ in Proc. IEEE Int. Conf. Control Syst.,
Comput. Eng. (ICCSCE), Nov. 2014, pp. 196–201.

[42] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah, ‘‘Grasshop-
per optimization algorithm for multi-objective optimization problems,’’
Appl. Intell., vol. 48, no. 4, pp. 805–820, 2018.

[43] S. A. A. Ghaleb, M. Mohamad, E. F. H. S. Abdullah, and
W. A. H. M. Ghanem, ‘‘Integrating mutation operator into grasshopper
optimization algorithm for global optimization,’’ Soft Comput., vol. 25,
pp. 1–44, Apr. 2021.

[44] A. A. Ewees, M. A. Elaziz, and E. H. Houssein, ‘‘Improved grasshopper
optimization algorithm using opposition-based learning,’’ Expert Syst.
Appl., vol. 112, pp. 156–172, Dec. 2018.

[45] J. Luo, H. Chen, Q. Zhang, Y. Xu, H. Huang, and X. Zhao, ‘‘An improved
grasshopper optimization algorithm with application to financial stress
prediction,’’ Appl. Math. Model., vol. 64, pp. 654–668, Dec. 2018.

[46] S. Arora and P. Anand, ‘‘Chaotic grasshopper optimization algorithm for
global optimization,’’ Neural Comput. Appl., vol. 31, pp. 1–21, Jan. 2018.

[47] X. Wenhan, W. Yuanxing, Q. Di, and B. D. Rouyendegh, ‘‘Improved
grasshopper optimization algorithm to solve energy consuming reduc-
tion of chiller loading,’’ Energy Sources A, pp. 1–14, 2019, doi:
10.1080/15567036.2019.1687622.

[48] R. Zhao, H. Ni, H. Feng, Y. Song, and X. Zhu, ‘‘An improved grasshop-
per optimization algorithm for task scheduling problems,’’ Int. J. Innov.
Comput., Inf. Control, vol. 15, pp. 1967–1987, Oct. 2019.

[49] P. Mishra, V. Goyal, and A. Shukla, ‘‘An improved grasshopper optimiza-
tion algorithm for solving numerical optimization problems,’’ in Advances
in Intelligent Computing and Communication. Singapore: Springer, 2020,
pp. 179–188.

[50] V. K. Ojha, A. Abraham, and V. Snášel, ‘‘Metaheuristic design of feedfor-
ward neural networks: A review of two decades of research,’’ Eng. Appl.
Artif. Intell., vol. 60, pp. 97–116, Apr. 2017.

[51] I. Idris, A. Selamat, N. T. Nguyen, S. Omatu, O. Krejcar, K. Kuca, and
M. Penhaker, ‘‘A combined negative selection algorithm-particle swarm
optimization for an email spam detection system,’’ Eng. Appl. Artif. Intell.,
vol. 39, pp. 33–44, Mar. 2015.

[52] B. K. Dedeturk and B. Akay, ‘‘Spam filtering using a logistic regression
model trained by an artificial bee colony algorithm,’’ Appl. Soft Comput.,
vol. 91, Jun. 2020, Art. no. 106229.

[53] I. Idris, ‘‘E-mail spam classification with artificial neural network and
negative selection algorithm,’’ Int. J. Comput. Sci. Commun. Netw., vol. 1,
no. 3, pp. 227–231, 2011.

[54] S. Singh, A. Chand, and S. P. Lal, ‘‘Improving spam detection using neural
networks trained by memetic algorithm,’’ in Proc. 5th Int. Conf. Comput.
Intell., Modelling Simulation, Sep. 2013, pp. 55–60.

[55] H. Faris, I. Aljarah, and J. Alqatawna, ‘‘Optimizing feedforward neural net-
works using krill herd algorithm for E-mail spam detection,’’ in Proc. IEEE
Jordan Conf. Appl. Electr. Eng. Comput. Technol. (AEECT), Nov. 2015,
pp. 1–5.

[56] A. Rodan, H. Faris, and J. Alqatawna, ‘‘Optimizing feedforward neural
networks using biogeography based optimization for E-mail spam identi-
fication,’’ Int. J. Commun., Netw. Syst. Sci., vol. 9, no. 1, pp. 19–28, 2016.

[57] A. Jantan, W. A. Ghanem, and S. A. Ghaleb, ‘‘Using modified bat algo-
rithm to train neural networks for spam detection,’’ J. Theor. Appl. Inf.
Technol., vol. 95, no. 24, pp. 1–12, 2017.

116812 VOLUME 9, 2021

http://dx.doi.org/10.1080/15567036.2019.1687622


S. A. A. Ghaleb et al.: Training NNs by EGOAs for SDS

[58] D. Davino, F. Camastra, A. Ciaramella, and A. Staiano, ‘‘Spam detection
by machine learning-based content analysis,’’ in Progresses in Artificial
Intelligence and Neural Systems. Singapore: Springer, 2020, pp. 415–422.

[59] S. Sinha, I. Ghosh, and S. C. Satapathy, ‘‘A study for ANNmodel for spam
classification,’’ in Intelligent Data Engineering and Analytics. Singapore:
Springer, 2021, pp. 331–343.

[60] A. Zamir, H. U. Khan, W. Mehmood, T. Iqbal, and A. U. Akram,
‘‘A feature-centric spam email detection model using diverse super-
vised machine learning algorithms,’’ Electron. Library, vol. 38, no. 3,
pp. 633–657, Jul. 2020.

[61] S. Saremi, S. Mirjalili, and A. Lewis, ‘‘Grasshopper optimisation algo-
rithm: Theory and application,’’ Adv. Eng. Softw., vol. 105, pp. 30–47,
Mar. 2017.

[62] S. Saremi, S.Mirjalili, S.Mirjalili, and J. S. Dong, ‘‘Grasshopper optimiza-
tion algorithm: Theory, literature review, and application in hand posture
estimation,’’ in Nature-Inspired Optimizers. Cham, Switzerland: Springer,
2020, pp. 107–122.

[63] G. G.Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimization,’’Neural
Comput. Appl., vol. 31, pp. 1–20, May 2015.

[64] A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, ‘‘An efficient hybrid
multilayer perceptron neural network with grasshopper optimization,’’ Soft
Comput., vol. 23, no. 17, pp. 7941–7958, 2018.

[65] Z. W. Geem, J. H. Kim, and G. V. Loganathan, ‘‘A new heuristic opti-
mization algorithm: Harmony search,’’ J. Simul., vol. 76, no. 2, pp. 60–68,
Feb. 2001.

[66] W. A. Ghanem and A. Jantan, ‘‘A new approach for intrusion detection
system based on training multilayer perceptron by using enhanced Bat
algorithm,’’ Neural Comput. Appl., vol. 32, pp. 1–34, Dec. 2019.

[67] W. A. H. Ghanem and A. Jantan, ‘‘New approach to improve anomaly
detection using a neural network optimized by hybrid ABC and PSO
algorithms,’’ Pakistan J. Statist., vol. 34, no. 1, pp. 1–14, 2018.

[68] W. A. H. M. Ghanem, A. Jantan, S. A. A. Ghaleb, and A. B. Nasser,
‘‘An efficient intrusion detection model based on hybridization of artificial
bee colony and dragonfly algorithms for training multilayer perceptrons,’’
IEEE Access, vol. 8, pp. 130452–130475, 2020.

[69] M. Hopkins. (1999). UCI machine learning repository: SpamBase data
set. Hewlett-Packard Labs. [Online]. Available: https://archive.ics.uci.
edu/ml/datasets/SpamBase

[70] M. Hopkins et al. UCI Machine Learning Repository: SpamAssassin
Data Set. Accessed: Nov. 29, 2020. [Online]. Available:
https://www.kaggle.com/beatoa/spamassassin-public-corpus

[71] UK-2011 Web Spam Dataset. Accessed: Jul. 2018. [Online]. Avail-
able: https://sites.google.com/site/heiderawahsheh/home/webspam-2011-
20datasets/uk-2011-web-spam-dataset

[72] H. A. Wahsheh, M. N. Al-Kabi, and I. M. Alsmadi, ‘‘A link and content
hybrid approach for Arabic web spam detection,’’ Int. J. Intell. Syst. Appl.,
vol. 5, no. 1, pp. 30–43, Dec. 2012.

[73] M. Alsaleh and A. Alarifi, ‘‘Analysis of web spam for non-English content:
Toward more effective language-based classifiers,’’ PLoS ONE, vol. 11,
no. 11, pp. 1–25, 2016.

[74] A. Alarifi andM. Alsaleh, ‘‘Web spam: A study of the page language effect
on the spam detection features,’’ inProc. 11th Int. Conf.Mach. Learn. Appl.
(ICMLA), Dec. 2012, pp. 216–221.

[75] Y. Kaya and Ö. F. Ertuğrul, ‘‘A novel approach for spam email detection
based on shifted binary patterns,’’ Secur. Commun. Netw., vol. 9, no. 10,
pp. 1216–1225, Jul. 2016.

[76] O. Oludare, O. Stephen, O. Ayodele, and F. Temitayo, ‘‘An optimized
feature selection technique for email classification,’’ Int. J. Sci. Technol.
Res., vol. 3, no. 10, pp. 286–293, 2014.

[77] Z. Razi and S. A. Asghari, ‘‘Providing an improved feature extraction
method for spam detection based on genetic algorithm in an immune
system,’’ J. Knowl.-Based Eng. Innov., vol. 3, no. 8, pp. 569–605, 2017.

[78] H. Faris, A.M. Al-Zoubi, A. A. Heidari, I. M.M. Aljarah, M. A. Hassonah,
and H. Fujita, ‘‘An intelligent system for spam detection and identification
of the most relevant features based on evolutionary random weight net-
works,’’ Inf. Fusion, vol. 48, pp. 67–83, Aug. 2019.

[79] H. Mohmmadzadeh and F. S. Gharehchopogh, ‘‘A novel hybrid whale
optimization algorithm with flower pollination algorithm for feature selec-
tion: Case study email spam detection,’’ Comput. Intell., vol. 37, pp. 1–28,
Jan. 2020.

[80] K. Neighbors, ‘‘A novel hybrid approach for email spam detection based on
scatter search algorithm and K-nearest neighbors,’’ J. Adv. Comput. Eng.
Technol., vol. 5, no. 3, pp. 169–178, 2019.

[81] M. Shuaib, O. Osho, I. Ismaila, and J. K. Alhassan, ‘‘Comparative analysis
of classification algorithms for email spam detection,’’ Int. J. Comput.
Netw. Inf. Secur., vol. 10, no. 1, pp. 60–67, Aug. 2018.

[82] O. E. Taylor, P. Harcourt, and P. Harcourt, ‘‘A model to detect spam
email using support vector classifier and random forest classifier,’’ Int. J.
Comput. Sci. Math. Theory, vol. 6, no. 1, pp. 1–11, 2020.

[83] R. M. A. Mohammad, ‘‘An improved multi-class classification algorithm
based on association classification approach and its application to spam
emails,’’ IAENG Int. J. Comput. Sci., vol. 47, no. 2, pp. 187–198, 2020.

SANAA A. A. GHALEB received the
bachelor’s degree from the University of Aden,
Yemen, in 2011, and the master’s degree from
Universiti Sains Malaysia, Malaysia, in 2017. She
is currently pursuing the Ph.D. degree with the
Faculty of Informatics and Computing, Universiti
Sultan Zainal Abidin. Her general research inter-
ests include technology-enhanced learning and
instructional design and technology. Her research
interests include computer networks and informa-

tion security, cybersecurity, machine learning, artificial intelligence, swarm
intelligence, and metaheuristic.

MUMTAZIMAH MOHAMAD received the
bachelor’s degree in information technology from
Universiti KebangsaanMalaysia, in 2000, themas-
ter’s degree in computer science from Universiti
Putra Malaysia, in 2005, and the Ph.D. degree
from Universiti Malaysia Terengganu. She is cur-
rently an Associate Professor and the Deputy Dean
of Academic and Postgraduate with the Faculty
of Informatics and Computing, Universiti Sultan
Zainal Abidin, Malaysia. She has published more

than 50 research articles, including book chapters and proceedings. She has
worked as a researcher in several national funded research and development
projects. Her research interests include machine learning, pattern recogni-
tion, artificial intelligence, and parallel processing.

SYED ABDULLAH FADZLI received the BMIS
degree in management information system from
Universiti Islam Malaysia, in 2002, the M.Sc.
degree in software engineering from University
Technologi Malaysia, in 2005, and the Ph.D.
degree in computational engineering from Cardiff
University, in 2013. His research interests include
information, computer, and communication tech-
nology, software engineering, knowledge man-
agement, knowledge representation and machine
learning, and embedded systems.

WAHEED ALI H. M. GHANEM received the
B.Sc. degree in computer sciences and engineering
from the University of Aden, Yemen, in 2003,
and the M.Sc. degree in computer science and
the Ph.D. degree in network and communica-
tion protocols from Universiti Sains Malaysia,
in 2013 and 2019, respectively. His research
interests include computer networks and infor-
mation security, cybersecurity, machine learn-
ing, artificial intelligence, swarm intelligence,
metaheuristic, and information technology.

VOLUME 9, 2021 116813


