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ABSTRACT The adoption of the advanced data analytics methods has been limited in industries governed by
strict data reuse regulations, such as healthcare. Barriers to data access and sharing have affected numerous
research and development initiatives in healthcare resulting in major delays, extensive use of resources
for data access and findings originating from datasets that are too small to be generalizable. Federated
machine learning presents a solution to the problems health data analytics projects are facing by providing
a way of complying with strict regulatory requirements without sacrificing privacy. Computing frameworks
supporting federated machine learning are still in their infancy and their performance in realistic settings has
been studied only to a limited extent. To expand the existing knowledge on federated learning in realistic
deployment settings three groups of experiments comparing the performance of a neural network-based
model trained in federated manner to that of an equivalent baseline model trained on centralized data storage
were designed. Experiments were conducted on the MIMIC-III dataset and modelled a binary classification
problem predicting in-hospital mortality. The effect that varying amounts of data, number of computational
nodes, and data distribution in the federated network had onmodel performance and on training and inference
durations were studied. Experiments demonstrated predictive performance comparable to that of the baseline
for models trained in federated settings in terms of area under the ROC and F1 scores. Data distribution across
computing nodes showed minimal to no effect on model performance or on training and inference durations.
However, federated model training and inference took approximately 9 and 40 times longer, respectively,
than the equivalent tasks executed in centralized settings. These results indicate that federated learning is a
viable solution for enabling advanced data analytics in environments regulated by strict privacy requirements.

INDEX TERMS Federated learning, machine learning, PySyft, MIMIC-III, learning healthcare system.

I. INTRODUCTION
Advanced data analytics methods are revolutionizing indus-
tries by making business processes increasingly data-driven.
While the use of machine learning (ML) and artificial intel-
ligence (AI) have reached high market penetration and scale
in industries such as retail, finance, manufacturing, and edu-
cation, their use in the field of healthcare is lagging. The
potential for usingAI in a healthcare context is highly debated
and hyped [1], [2]. If this potential is to be realized, however,
it is important to acknowledge that the healthcare sector faces
challenges unlike those affecting other industries. The com-
plexity of the healthcare landscape—influenced by medical
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practice norms, commercial interests, and political and eco-
nomic factors—is difficult to re-engineer using AI algo-
rithms. Medical data infrastructure, which is essential to best-
performing, data-greedy algorithms, is often fragmented due
to technological, legal, and organizational barriers, restricting
access to wider and more representative datasets, especially
those accumulated in large, centralized data storage [3], [4].
While solutions for building large data repositories and data
reuse infrastructure often exist, organizational barriers and
data privacy considerations are more difficult to address.
Similarly, sharing the data by storing them in a centralized
data warehouse outside of institutional control raises privacy
concerns and may potentially have commercial and ethi-
cal implications. Health institutions value autonomy and are
often reluctant to disclose patient data for research and public
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health purposes [5]. Since these problems are here to stay,
alternative methods for training and testing ML algorithms
are required [6].

It is possible to mitigate the consequences of data frag-
mentation using federated ML approaches [7]–[10]. These
approaches circumvent legal and organizational barriers by
moving the model to the data instead of moving data to
the model (centralized storage), as is the case in approaches
using traditional ML algorithms. Federated data access meth-
ods, when combined with privacy-preserving techniques,
provide a technology stack that supports ML algorithm
training while preserving data privacy. The advantages of
this approach have been acknowledged by major technol-
ogy companies such as Google and open-source commu-
nities developing federated learning libraries. At the time
of writing, three major frameworks supporting federated
ML are available: TensorFlow Federated (Google, US,
https://www.tensorflow.org/federated), Federated AI Tech-
nology Enabler (FATE, Webank AI Department, China,
https://www.fedai.org), and PySyft (OpenMined, open-
source community, https://www.openmined.org). These
frameworks provide means for integrating distributed data
sources into model training processes without violating legal
and organizational norms.

Federated ML frameworks are still relatively young in
comparison to mainstream ML algorithms requiring cen-
tralized data storage. Immaturity concerns combined with
the nature of distributed datasets raise numerous questions
concerning reliability, accuracy, and scalability. These con-
cerns originate from the added complexity of performing data
analytics on distributed datasets while preserving privacy.
For instance, none of the parties involved in data processing
has the complete data used for model training, making it
impossible to verify the accuracy of results using established
data analytics tools. Variables including distribution of data
across the network of computational nodes, as well as the
number and size (amount of data) of nodes may influence
system performance and the accuracy of results. However,
these variables and their effects have only been researched
to a limited extent.

A study by Purushotham et al. [11] benchmarked deep
learning algorithms on the Medical Information Mart for
Intensive Care-III (MIMIC-III) dataset and compared deep
learning models to more traditional ML approaches. Our
study aims to expand upon existing research by reproducing
the experiments reported by Purushotham et al. [11] in feder-
ated settings and comparing model performance metrics for
centralized and federated model training.

Similar work has already been done by Lee and Shin,
who benchmarked models trained using TensorFlow Fed-
erated (Google, US, https://www.tensorflow.org/federated).
The experiments demonstrated that models trained in feder-
ated settings reach comparable predictive performance to the
models trained on a centralized dataset [12]. However, these
experiments were performed in rather minimalistic settings
(3 computing nodes), that were sufficient to demonstrate the

feasibility of the federated model training. Our work sup-
plements these findings with the experimental results from
more realistic deployment settings and provide trends show-
ing how predictive performance, model training and inference
durations are affected by the varying configurations of the
computing node network.

Our main contributions to the existing research come
directly from the experiments described in this manuscript.
Using our experimental setup, we demonstrated that a neural
network model trained in federated settings achieves predic-
tive performance that is comparable to the baseline model
trained on a single data repository. Model performance is
minimally affected by the number of nodes in the system,
amount of data hosted by a single node and data distribution
on the computing nodes. Performance trends provide indica-
tions on the scaling potential of the federated learning system
in terms of model training and inference durations.

The paper is organized as follows: we start the paper
with the Introduction to the problem statement and suggest a
potential solution that requires more research and evaluation
in realistic settings. We then present the Method for evalu-
ating the selected Federated ML framework, including data,
evaluation metrics and baseline measures. Results section
presents the results from the performed experiments contrast-
ing them to the corresponding baseline measures. Discussion
section places our findings in a broader context, comparing
them to the existing research. The paper is concluded by sum-
marizing our findings at a more general level and providing
implications for further research.

II. METHOD
A. SELECTED FRAMEWORK AND SETUP
Experiments were performed using PySyft version 0.2.9,
Python version 3.7.6, and PyTorch version 1.4.0. PySyft vir-
tual and real workers were deployed on a Google Compute
Engine (n1-stadard-32 instance, 32 virtual CPUs of type
Intel(R) Xeon(R) CPU@ 2.30GHz, 120GB RAM, no GPU).
Virtual workers are a construct in PySyft used for simplifying
experimental setups. These workers run as separate processes
on a single virtual machine and receive their own datasets at
runtime. Real computational nodes are standalone services
and can be deployed on one or several physical computing
nodes. Given PySyft’s immaturity, experiments were begun
using virtual workers only and were later repeated using
both virtual and real workers. To simplify the experimental
setup, real nodes residing in Docker containers, deployed on
a single Google Compute Engine instance, were used as a
substitute for physical computational nodes. All experiments
were repeated 5 times using random data splits and average
values for the selected metrics have been reported.

A model-centric setup was used. In this approach,
the model is hosted by a coordinating node, while computa-
tional nodes download themodel and train it on local datasets.
After model training is complete, the difference in weight
between the downloaded and trained models is calculated and
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sent back to the coordinating node. The coordinating node
collects model differences from all computational nodes,
aggregates them, and uses them to update the global model.

B. DATA
A dataset equivalent to the one used by Purushotham et al.
[11] was used in the present study. Following detailed
preprocessing instructions, feature sets were derived from
MIMIC-III dataset. To limit the scope of our experiments,
only one feature set, referred to as Feature set A [11], was
used. Feature set A contains 35,637 data rows (examples)
and 17 features, such as chronic diseases, admission type,
and patient age. These features were extracted for the first
24 hours after ICU admission. A detailed description of data
preprocessing and feature engineering is available in the
original paper [11].

C. EXPERIMENTS AND METRICS
To shed more light on how federated learning frame-
work performance is affected by realistic deployment
scenarios—characterized by varying amounts of potentially
skewed and unbalanced data residing in some computational

nodes—a series of experiments was designed. These exper-
iments were split into three groups based on their system
configuration:

1. Data – the number of nodes in the network was kept
constant (n = 32), while the amount of data in the sys-
tem increased. Data was uniformly distributed across
the nodes.

2. Nodes – the amount of data in the system was kept con-
stant (maximum), while the number of computational
nodes increased from 1 to 128. Data was uniformly
distributed across the nodes.

3. Distribution – the amount of data in the system
(maximum) and the number of computational nodes
(n = 32) were kept constant, while data were dis-
tributed across the nodes following these distributions:
uniform (baseline), linear, beta left skewed, beta cen-
tered, and beta right skewed (Figure 1).

Predictive performance of the models trained in the afore-
mentioned experimental setups was measured in terms of
ROC AUC and F1 score. Model training and inference dura-
tions were measured in seconds. Experimental setups are
summarized in Table 1.

FIGURE 1. Data distribution in computational nodes. A – uniform, B – linear, C – beta left skewed, D – beta
centered, E – beta right skewed.

TABLE 1. Configuration of experiments.
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FIGURE 2. Influence of data amount on the performance of the federated model. A – F1 score. B – ROC AUC. Node type refers to
the type of computational nodes used in the experiment: Virtual – PySyft Virtual workers, Real – PySyft computational nodes
residing in separate docker containers. Baseline – baseline measure referring to model performance trained in centralized settings.

D. PREDICTION TASK AND NEURAL NETWORK MODEL
While several variations of mortality prediction (e.g., short-
term, long-term) were modelled by the authors of the original
paper [11], the experiments described herein used a binary
classification task of predicting in-hospital mortality. A neu-
ral network with the same architecture as the one reported
by Purushotham et al. [11] (i.e., a feed-forward network with
sigmoid output layer) was used for this task.

E. BASELINE
Model performance in a centralized training scenario
was used as a baseline for evaluating the models
trained in federated settings. Results reported by
Purushotham et al. [11] presented sufficient benchmark
values for model performance evaluation, however, model
training and inference duration metrics were lacking. There-
fore, training scripts and parameters reported in the original
paper [11] were reused to reproduce the performance bench-
mark which was supplemented with the lacking measures.
Running these scripts on the entire dataset resulted in perfor-
mance metrics values that were very close to those reported in
the original paper [11]. Minor discrepancies were attributed
to randomness in the training process, for instance random
network initialization and random order of data samples.

III. RESULTS
Experiment results were grouped according to system config-
uration, as described in the Method section.

A. DATA
This group of experiments studied how model performance
is affected by the amount of data residing in the federated

learning node network. A fixed number (n = 32) of PySyft
workers were allocated an increasing amount of data used
for model training. Figure 2 demonstrates how predictive per-
formance in terms of ROC AUC and F1 scores was affected
by the amount of data in the system. Baseline refers to the
corresponding model performance in a centralized training
scenario.

Increasing the amount of data used for model training
resulted in a better-performing model (Figure 2). As soon
as a sufficient amount of data was provided, ROC AUC and
F1 score values for a federated model were close to those of
the model trained in a centralized manner.

Figure 3 shows howmodel training and inference durations
were affected by the increasing amount of data in the net-
work. Subgraph A illustrates the time required for collecting
pointers to the nodes that participate in model training. The
remaining subgraphs show how model training and inference
durations were affected by the increasing number of data rows
used for model training.

Figure 3 shows that higher amounts of training data
increased the time required for training the model,
as expected. Subgraph A suggests that time overheads for
collecting pointers to the nodes participating in model train-
ing and hosting data are minimally influenced by the amount
of data. While training duration increases with the amount of
training data, prediction time remains relatively stable.

B. NODES
This group of experiments studied how model performance
was influenced by the number of computational nodes in the
network. The amount of data distributed among the nodes was
kept constant (maximum) while the number PySyft workers
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FIGURE 3. Influence of the amount of data in the network on training and prediction times when number of
computing nodes is constant (n = 32). A – Collecting pointers time (s). B – Training time (s). C – Training per epoch
time (s). D – Prediction time (s). Node type refers to the type of computational nodes used in the experiment: Virtual
– PySyft Virtual workers, Real – PySyft computational nodes residing in separate docker containers. Baseline –
baseline measure referring to model performance trained in centralized settings.

ranged from 1 to 128 for virtual nodes and from 1 to 32 for
real nodes (Figure 4). Memory constraints prevented exper-
iments with more than 32 real PySyft worker nodes from
being performed. The baseline subgraph depicts model per-
formance in a centralized training scenario.

The number of virtual workers (computational nodes) had
a minor influence on model performance (Figure 4). ROC
AUC and F1 score values were similar for models trained
in federated and centralized settings (Figure 4). A noticeable
drop in performance appeared when scaling up the experi-
ment to a maximal configured number of nodes. This drop
would suggest that a network consisting of a large number of
nodes, each hosting little data, may not be an optimal scenario

for training the best-performing model (each node hosted
approximately 557 and 278 examples in 64 and 128 node
setups, respectively). However, it is important to note that the
observed drop in performance was relatively small (<6% in
F1 score and <1% in ROC AUC) and may not have major
consequences in real-life settings.

Similarly, the way in which the number of workers in the
network influenced model training and inference times was
tested while keeping a constant amount of data in the system
(Figure 5).

Increasing the number of computational nodes in the net-
work showed interesting trends. Naturally, the time required
to collect pointers to the nodes increased when the number
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FIGURE 4. Dependency of model performance on the number of computational nodes in the system. A – F1 score. B – ROC
AUC. Node type refers to the type of computational nodes used in the experiment: Virtual – PySyft Virtual workers, Real –
PySyft computational nodes residing in separate docker containers. Baseline – baseline measure referring to model
performance trained in centralized settings.

of nodes grew. Model training per epoch followed a slightly
increasing trend that could be explained by the computational
overhead required for aggregating models trained on each
node into a global model (Figure 5).

Although each training epoch took longer when the num-
ber of nodes increased, the time required for overall model
training showed an opposite pattern—the more nodes in the
network, the faster the entire model was trained. Faster con-
vergence and early stopping may explain faster model train-
ing in a larger network of nodes. Prediction time increased
when the number of computational nodes in the network
grew, however this increase was relatively small.

C. DISTRIBUTION
Five data distributions (uniform, linear, beta left skewed, beta
centered, and beta right skewed, Figure 1) were followed
when assigning partial datasets to computational nodes. Mor-
tality prediction models were trained using these data dis-
tributions across the nodes to check the effect on predictive
model performance and time required for training and infer-
ence (Figure 6).

Figure 6 shows that data distribution across the network
had minimal influence on model performance—both ROC
AUC and F1 scores were minimally affected, and no spe-
cific trends were observed. The same patterns are visible in
training and prediction times, showing minimal effect of data
distribution across the computing nodes.

IV. DISCUSSION
The experiments presented in this paper illustrate the ini-
tial results of comparing ML models trained in centralized
and federated manners. Models were evaluated in terms of

predictive performance and training and inference durations.
The effects of data amount, number of nodes, and data dis-
tribution in computational nodes were studied, giving an
indication for model performance and system scalability in
scenarios where the computational node network is unbal-
anced in terms of node size.

There were minimal differences in model performance,
measured by ROC AUC and F1 scores, between centralized
and federated approaches, as long as a sufficient amount of
data was provided during model training. Model performance
was not affected by the number of computational nodes in the
system. Data distribution across the nodes (in terms of the
amount of hosted data) did not have an influence on model
performance.

Our findings support existing research on the performance
of federated learning frameworks. Similar to our experiments,
Zhu et al. compared the performance of federated PySyft
and TFF models to equivalent models trained on centralized
data for a text recognition task. Their results showed that
federated learning models could achieve comparable (and
in some cases even higher) accuracy [13]. A recent study
modelled in-hospital mortality prediction task using MIMIC-
III dataset and reported that neural network models trained
using TensorFlow Federated framework reached compara-
ble predictive performance to the equivalent state-of-the-
art models trained in centralized settings [12]. Ziller et al.
presented a system for privacy-preserving medical image
analysis based on federated ML. Benchmarking system per-
formance against locally-trained models showed minor dif-
ferences across several reported metrics [14]. Our results for
different models, training tasks, and data showed the same
trends.
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FIGURE 5. Influence of the number of computational nodes on model training and inference time using maximum
amount of training data available in the dataset. A – Collecting datasets time (s). B – Training time (s). C – Training per
epoch time (s). D – Prediction time (s). Baseline – baseline measure referring to model performance trained in
centralized settings. Node type refers to the type of computational nodes used in the experiment: Virtual – PySyft Virtual
workers, Real – PySyft computational nodes residing in separate docker containers.

Model training and inference durations showed interest-
ing trends. As expected, experiments using virtual and real
PySyft computing nodes took longer than when running them
in centralized settings. In general, more data in the federated
node network resulted in longer training times. Correspond-
ing duration values for models trained on centralized data
followed a similar pattern, however, the increase in durations
was much slower when the amount of data grew. In com-
parison to the baseline, training in federated settings was
approximately 3 and 9 times slower using PySyft virtual and
real node setups, respectively.

Conversely, increasing the number of computational nodes
while keeping the amount of data constant resulted in
decreasing model training durations. Inference time showed
a slightly increasing trend. Differences in inference times
between centralized and federated setups were higher than
differences in model training times. Making predictions for
the entire testing dataset in federated settings took approxi-
mately 15 and 40 times longer than in a centralized scenario
using virtual and real computing nodes, respectively. Differ-
ences in prediction durations may be explained by computa-
tional overheads introduced by the federated infrastructure.
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FIGURE 6. Influence of data distribution across the nodes on predictive model performance and training and inference
durations. A – F1 score. B – ROC AUC. C – Training time (s). D – Prediction time (s). Baseline – baseline measure referring to
model performance trained in centralized settings. Node type refers to the type of computational nodes used in the
experiment: Virtual – PySyft Virtual workers, Real – PySyft computational nodes residing in separate docker containers.

Even though inference duration for an entire test set may
seem relatively high compared to the baseline, in real-life
deployments predictions are likely to be made for individual
patients rather than big patient groups. Therefore, longer
times for making predictions will likely become negligible.

Solutions to optimize model training in terms of faster con-
vergence and shorter overall training durations were already
suggested for centralized setups [15], [16]. For instance, non-
iterative approaches for model training challenge the back-
propagation algorithm and show clear advantages, especially
when the number of hidden layers increases. The suggested

methods freeze a randomly selected number of nodes in
the network throughout the training process while deter-
mining their output weights analytically. The strengths of
non-iterative approaches have been widely discussed in aca-
demic community and some applications solving practical
problems have been demonstrated [15], [17]. The intersec-
tion of these approaches and federated learning frameworks
presents numerous open questions, calling for more research.

Data distribution across the nodes suggestedminimal influ-
ence on both predictive model performance and training and
inference durations. This is a very positive finding, especially
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when considering the transition of relatively immature feder-
ated learning frameworks to production environments. In a
realistic deployment, computing nodes are likely to be very
different in terms of hosted data amounts, therefore it is
important to clarify that network topology has little to no
influence on the performance of the trained model and train-
ing and inference times. These findings are aligned with
existing research on imbalanced and skewed datasets used for
training ML models in federated settings. Comparable model
performance was recently demonstrated on three datasets,
including MIMIC-III used in our study, regardless of how
unbalanced or skewed data hosted by the computing nodes
was [12]. These results show that models trained in federated
settings are able to achieve performance comparable to the
models trained on centralized data.

A. LIMITATIONS
The results reported in this paper should be considered with
the following limitations in mind.

Model performance experiments used a relatively simple
neural network model that was inherited from the publication
reporting the original experiments in centralized settings [11].
While this model was sufficient for the purpose of our exper-
iments, it may not be generalized for more advanced deep
learning models. Additional studies using various neural net-
work architectures are needed to support our conclusions in a
broader context.

Furthermore, our data distribution experiments do not con-
sider data correlation within the nodes, which could become
an important factor in certain cases. For instance, one doctor’s
office couldmainly serve an elderly population, while another
may only treat children. This and other less obvious data
correlation problems could exist in data processing nodes and
may affect the performance of the overall model.

Due to limited computing resources and additional
complexity associated with infrastructure setup, we have
not performed the experiments using real PySyft work-
ers deployed on dedicated computing instances or physical
hardware—a setup closest to real-life deployment settings.
However, we do not expect that a move to dedicated comput-
ing instances or physical hardware would affect the perfor-
mance (ROCAUC and F1 score) of themodel.Model training
and inference durations are expected to increase, adding time
required for network operations to the reported numbers.

V. CONCLUSION
Federated learning frameworks are attracting major atten-
tion from industries, like healthcare, where centralizing data
in a single repository is not possible. Federated learning
provides a means of harnessing the power of ML in a
regulation-compliant way and accelerating continuous learn-
ing from data generated in routine care—the Learning
Healthcare System [18]–[20].

This paper demonstrated that the performance of MLmod-
els trained in a federated environment is comparable to those
trained on centralized data storage. Federated models are

not affected by unbalanced data distributions across network
nodes.

However, training ML models in a federated environment
has its cost. The efficiency of model training and inference
suffers due to the added complexity of node orchestration,
privacy preservation, and extra steps that are not existent in
centralized approaches. Experiments using PySyft workers
deployed in separate Docker containers within a single cloud
compute instance showed that model training may take up
to 9 times longer, and that inference time may increase by a
factor of 40 in comparison to the model trained on central-
ized data. It is important to note that these numbers include
minimal overheads for network operations, since all worker
nodes reside in the same cloud compute instance. Real-life
deployment will increase durations for both model training
and inference.
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