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ABSTRACT Community detection in network-type data provides a powerful tool in analyzing and
understanding real-world systems. In fact, community detection approaches aim to reduce the network’s
dimensionality and partition it into a set of disjoint clusters or communities. However, real networks are
usually corrupted with noise or outliers which affect the detected community structure quality. In this
paper, a new robust community detection algorithm that is capable of recovering a clean or a smoothed
version of the corrupted graph and detecting the correct community structure is introduced. The proposed
approach combines robust principal component analysis (RPCA) and symmetric nonnegative matrix factor-
ization (SymNMF) in a single optimization problem. The proposed problem is solved under the framework
of alternating direction methods of multipliers (ADMM). In particular, the corrupted adjacency matrix is
decomposed into a low-rank and sparse components using RPCA and the community structure is detected by
applying SymNMF to the extracted low-rank component. Extensive experiments that have been conducted on
real and simulated binary and weighted networks show that the proposed approach significantly outperforms
existing algorithms in detecting the correct community structure even in grossly corrupted networks.

INDEX TERMS Community detection, graph theory, robust principal component analysis, symmetric
nonnegative matrix factorization.

I. INTRODUCTION
In recent years, graph or network theory has become one of
the most popular tools in modeling and analyzing relational
data. Networks are currently used in many disciplines to
describe the relationship between entities, such as biological
[1], [2], social [3], [4] and communication networks [5],
to name a few. In particular, objects in the system and the
interactions between them can be modeled as the nodes and
edges of the network, respectively. One of the most popu-
lar approaches used in investigating and analyzing networks
is community detection [2], [6], [7]. Community detection
methods reflect the organization of the nodes into clusters
or communities where the nodes in each community share
common properties. Moreover, it provides a significant tool
in network’s dimensionality reduction.

Various community detection or clustering approaches in
networks have been proposed over the past few years [8],
including partitional algorithms [9], [10], hierarchical clus-
tering [11], and Newman-Girvan algorithm [12], [13]. In par-
titional algorithms, multiple approaches have been proposed
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to cluster objects into multiple clusters such as k-means
clustering, spectral clustering and symmetric nonnega-
tive matrix factorization (SymNMF) for graph clustering.
In k-means [14], a cost function that minimizes the
intra-cluster distances and maximizes the inter-clusters dis-
tances is adopted. In spectral clustering [9], an efficient solu-
tion to the relaxed versions of the different cut problems is
provided. In particular, the cut cost depends on the spec-
tral properties of the graph. In SymNMF [10], [15], a sym-
metric nonnegative lower rank approximation is computed
for the input nonnegative similarity matrix. This low-rank
approximation provides the nodes clustering assignment of
the network.On the other hand, authors in [16] suggested
dropping the symmetry for fast SymNMF. This will transfer
the SymNMF problem to a nonsymmetric one and then the
idea from the state-of-the-art algorithms for nonsymmetric
NMF is adopted for the solution. Another approach that is
built upon NMF is introduced in [17], where the authors
propose to learn the affinity matrix adaptively (A2NMF).
In particular, A2NMF embeds each node into a low dimen-
tional space through a transformation matrix that preserves
the community structure as a first stage. Then, the affinity
matrix is learned in this low-dimensional space and utilized
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to guide the learning of the community membership matrix
via manifold regularization. Under hierarchical clustering
approaches, a hierarchical structure is constructed using a
distancematrix. This structure is visualized through a dendro-
gram. More precisely, hierarchical clustering can be imple-
mented by agglomerative or divisive algorithms [18], [19].
Under modularity optimization methods, in [13], the mod-
ularity is defined as the deviation of the within community
edges from the expected value of the same quantity in a
network with the same community partitions but random
connections between the nodes. Specifically, the community
structure is found by maximizing the modularity thorough a
greedy algorithm namely agglomerative hierarchical cluster-
ing. In [20], the authors proposed a different greedy approach
to maximize the modularity, known as Louvain modularity,
to detect the community structure in large weighted networks.
Although the aforementioned methods proved their signifi-
cance in detecting the community structure in networks, their
performance degrades when the networks are corrupted with
noise.

More recently, community detection methods using label
propagation algorithms have been proposed. In [21], a node’s
label influence policy for label propagation algorithm
(LP-LPA) is proposed. The purpose of the LP-LPA algo-
rithm is to improve the initial node selections and tie-break
technique. In particular, it computes link strength value for
links and nodes’ label influence value for nodes in a new
label propagation strategy with preference on link strength
and for initial nodes selection and avoid random behavior in
tie-break states to efficiently update order and rule update.
In [22], a new version of the LPA algorithm for attributed
graphs is introduced, namely structure-attribute similarities
label propagation (SAS-LP). The purpose of SAS-LP is to
detect the communities that solve the problems related to
instability, low quality and to possessing structural cohesive-
ness and attribute homogeneity. Another local approach that
depends on detecting and expansion of core nodes is proposed
in [23]. This approach used local information and identify the
different functions of the nodes to detect all the communities
in the network. A detailed review of the various community
detection algorithms in networks, problems and challenges
can be found in [8], [24] and [25].

In this paper, a robust community detection algorithm
in graphs is proposed. The proposed approach presents an
improved formulation for graph clustering even when the
network is corrupted with noise or outliers. In particular,
the proposed approach aims to recover a clean version of
the corrupted graph and use it for community detection. The
contributions of the proposed algorithm are four fold. First,
the proposed approach can detect the community structure in
both binary and weighted networks under the same optimiza-
tion problem. Second, the recovery of the low-rank compo-
nent gets rid of outliers in the graph which leads to a better
community detection results. Third, the proposed approach
does not assume the number of clusters or any model for
the underlying network unlike many other existing methods.

Finally, the network’s community structure is detected
through nonnegative embedding.

This paper is organized as follows: Section II provides
a background description about graph theory, nonnegative
matrix factorization and robust principal component analysis.
In Section III, the proposed algorithm along with the pro-
posed solution are presented with a detailed solution of the
problem in Appendix A- D. Experiments and results are pre-
sented in Section IV. Finally, the conclusions are summarized
in Section V.
Notation: List of notation used in this paper is summarized

in Table 1.

II. BACKGROUND
A. GRAPH THEORY
An undirected weighted graph can be defined as G =

{V ,E,A} where V = {v1, . . . , vn} defines the set of nodes
that models the objects in the network, and E defines the
set of edges that models the pairwise similarities between
the objects [6]. |V | and |E| are the number of nodes and
edges in the network, respectively. The adjacencymatrix,A ∈
Rn×n, is symmetric and its elements represent the similarities
between each pair of nodes. In this paper, A can be either
weighted or binary, where Aij ∈ [0, 1] in the former and
Aij ∈ {0, 1} in the latter.

TABLE 1. List of notation.

B. NONNEGATIVE MATRIX FACTORIZATION (NMF)
let X = [x1, x2, . . . , xm] ∈ Rn×m be a nonnegative data
matrix with m samples and xi ∈ Rn is the vector representa-
tion of the i-th sample. In order to reduce the dimensionality
of the input data matrix, NMF factorizes X as follows:

min
U∈Rn×k ,H∈Rm×k

‖X− UH>‖2F s.t U ≥ 0,H ≥ 0 (1)

where U and V are the basis matrix and the low-dimensional
representation, respectively. ‖.‖F is the Frobenious norm and
> is the transpose operator. Multiple approaches have been
proposed to solve the NMF problem [26], [27].

A special variant of this factorization is when the input
matrix is symmetric. This variant is known as symmetric
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nonnegative matrix factorization (SymNMF) and plays an
important role in network-type data clustering [10]. The input
to SymNMF is the adjacency matrix whereX = X> = A and
its optimization problem is defined as follows:

min
H∈Rn×k

‖A−HH>‖2F s.t H ≥ 0, (2)

where k represents the number of communities or clusters in
the network. The solution of Eq. 2, H = [h1, h2, . . . , hk ] ∈
Rn×k , can be obtained by a Newton-like algorithm or an
alternating nonnegative least squares (ANLS) algorithm as
suggested in [10]. The clustering membership of the i-th node
can be obtained as the location of the largest value in the i-th
row of H.

C. ROBUST PRINCIPAL COMPONENT ANALYSIS
Various methods have been proposed in literature to obtain a
low-rank approximation for noisy matrices such as Principal
Component Analysis (PCA) [28]–[30]. However, PCA per-
formance in recovering the low-rank component of a noisy
matrix decays when the noise is non-Gaussian. An alter-
native approach that is proposed to overcome this problem
is the Robust Principal Component Analysis (RPCA) [31].
In RPCA, the noisy matrix, A ∈ Rn1×n2 , is decomposed into
a low-rank component, L ∈ Rn1×n2 , and a sparse compo-
nent, S ∈ Rn1×n2 . In particular, RPCA solves the following
optimization problem:

min
L,S
‖L‖∗ + λ‖S‖1 s.t L+ S = A, (3)

where ‖.‖∗ and ‖.‖1 are the nuclear norm and the l1-norm of
a matrix, respectively. λ > 0 is the regularization parameter
that penalizes the sparse term. The problem in Eq. 3 can be
rewritten as an unconstrained problem as follows:

min
L,S
‖L‖∗ + λ‖S‖1 +

γ

2
‖A− L− S‖2F , (4)

where the solution of the problem can be found using iter-
ative singular value decomposition (SVD) soft-thresholding
algorithm efficiently [31].

III. ROBUST COMMUNITY DETECTION IN
GRAPHS (RCDG)
A. PROBLEM FORMULATION
Let A ∈ Rn×n be a noise-corrupted adjacency matrix of
a low-rank network, L ∈ Rn×n. In order to detect the
true community structure of the underlying network, it is
important to extract a clean version of the aforementioned
corrupted adjacency matrix. In this paper, we decompose the
adjacencymatrix into a low-rank and sparse components,L ∈
Rn×n and S ∈ Rn×n, respectively. Moreover, the recovered
low-rank component, L, is used to detect the network’s com-
munity structure through learning nonnegative embedding.
Our proposed problem is formulated as follows:

min
L,S,H
‖L‖∗ + λ1‖S‖1 + λ2‖L−HH>‖2F

s.t L+ S = A,L = L>, L ≥ 0,H ≥ 0. (5)

The terms included in the optimization problem in Eq. 5
are considered to achieve the following objectives:

• The terms ‖L‖∗ and ‖S‖with the constraint, L+S = A,
represent the RPCAproblem. The additional constraints,
L = L> and L ≥ 0 are considered to guarantee the
symmetry and nonnegativity of the recovered low-rank
network.

• The term ‖L−HH>‖2F with the constraintH ≥ 0 defines
the SymNMF problem for graph clustering.

• λ1 > 0 and λ2 > 0 are regularization parameters.

B. PROBLEM SOLUTION
To solve the proposed problem in Eq. 5, an alternating itera-
tive method is proposed. The solution starts with introducing
an auxiliary variable M ∈ Rn×n in order to separate the
variable H from L as follows:

min
L,S,H,M

‖L‖∗ + λ1‖S‖ + λ2‖M−HH>‖2F

s.t L+ S = A,M = L,M =M>, M ≥ 0,H ≥ 0. (6)

The problem proposed in Eq. 4 is a nonconvex problem
since the included SymNMF formulation term is a nonconvex
optimization problem. To tackle this issue, an iteratively alter-
nating approach is adopted where each variable is obtained by
fixing the other variables until convergence. More precisely,
assuming thatH is estimated, the rest of the problem consists
of three convex but non-smooth functions. Consequently,
we propose to solve for L, S and M using a combination
of alternating direction methods of multipliers (ADMM)
[32], [33] and proximal algorithms [34], [35]. In a similar
fashion, in each iteration, after L, S and M are obtained,
the estimate of the variableH can be updated using SymNMF
as proposed in [10].

The augmented Lagrange multiplier function with respect
to the primal variables L, S andM of Eq. 6 can be formulated
by adding the Lagrange multipliers or dual variables, Z1 and
Z2, as:

L(L,S,W,H) = min
L,S,W,H

‖L‖∗ + λ1‖S‖1

+λ2‖M−HH>‖2F + 〈Z
l
1,A− L− S〉

+
γ1

2
‖A− L− S‖2F + 〈Z

l
2,M− L〉

+
γ2

2
‖M− L‖2F ,

s.t M =M>, M ≥ 0, (7)

where Z1 and Z2 can be computed at the l-th iteration as:

Zl+11 = Zl1 + γ1(A− Ll+1 − Sl+1), (8)

and

Zl+12 = Zl2 + γ2(M
l+1
− Ll+1). (9)

ADMM along with proximal algorithms are adopted to
solve for the primal and dual variables in Eq. 7. The proposed
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solution is summarized in Algorithm 1 and a detailed expla-
nation can be found in Appendix A-D. The update rules of
the primal variables can be defined as follows:

Ll+1 = prox 1
γ1+γ2

‖L‖∗

(
γ1Wl

1 + γ2W
l
2

γ1 + γ2

)
, (10)

whereWl
1 = A− Sl + Zl1

γ1
,Wl

2 =Mk
+

Zl2
γ2

and proxf (W) =
argminL∈Rn×n f (L)+

1
2 ‖ L−W ‖

2
F is the proximity operator

of the convex function f where f (L) is defined as f (L) =
‖L‖∗. Details are included in Appendix A.
Also,

Sl+1 = prox λ1
γ1
‖S(t)‖1

(
A− Ll+1 +

Zl1
γ1

)
. (11)

as explained in Appendix B.
Next, M is updated, as explained in Appendix C, by

computing the following closed form solution:

Ml+1
=

2λ2HlHl>
+ γ2Ll − Zl2

2λ2 + γ2
(12)

Finally, the nonnegative factor H is computed using
SymNMF [10] approach. In particular, SymNMF updates H
by solving:

min
H∈Rn×k

‖Ml+1
−HH>‖2F s.t H ≥ 0, (13)

where the solution suggested in [10] is based on a multistart
global optimization algorithm which combines random
sampling with a local search procedure.

C. COMPUTATIONAL COMPLEXITY OF RCDG APPROACH
In the proposed approach, the variables L, S, and M in the
optimization problem are solved by ADMM and proximal
algorithms assuming H is fixed until convergence. In each
iteration, the computation of the nuclear norm proximal has
a complexity of O(2n3) and the computation of H using
projected gradient descent (PGD) by alternating nonnegative
least square (ANLS) requires O(kn2), where n and k are
the number of nodes and number of clusters in the network,
respectively. Moreover, the number of clusters is determined
during each iteration using AS metric by computing it over
a range of clusters, K . The computational complexity of
AS is KO(e) where e is the number of edges in the adja-
cency matrix. By Considering the computational complexity
for the different terms during each iteration, the effective
computational cost is due to the computation of the nuclear
proximal operator. Consequently, assuming the total num-
ber of iterations needed for the algorithm to converge is lf ,
the computational complexity of the proposed algorithm is
lfO(n3).

IV. RESULTS
A set of undirected weighted and binary simulated networks
are generated to evaluate the performance and robustness
of the proposed approach in extracting a clean version of
the adjacency matrix and detecting the correct community

Algorithm 1 RCDG
Input: A ∈ Rn×n, λ1, λ2, ε.
Output: L, S, H, Clustering labels.
1: l ← 0
2: Initialize L← A, S← zeros(n, n),M← L.
3: γ1← 1, γ2← 1.
4: Zl1← A− Ll − Sl , Zl2←Ml

− Ll .

%Dual variables definition
5: Pk1 = ‖L

l
‖∗, Pl2 = λ1‖S

l
‖1, Pl3 = λ2‖M

l
−HH>‖2F .

%Primal objectives definition

6: while ‖P
l+1
1 −P

l
1‖

2
F

‖Pl1‖
2
F

> ε and
‖Pl+12 −P

l
2‖

2
F

‖Pl2‖
2
F

> ε and

‖Pl+13 −P
l
3‖

2
F

‖Pl3‖
2
F

> ε do

7: Estimate Hk+1 by solving Eq. 13.
8: if l = 2 then
9: Determine the number of clusters using asymp-

totical surprise (AS) metric [36].
10: end if
11: Update Lk+1 using Eq. (17).

%Updating primal and dual variables
12: Update Sk+1 using Eq. (19).

13: UpdateMk+1 using Eq. (22).

14: Update Zl+11 using Eq. (8).

15: Update Zl+12 using Eq. (9).

16: Update Pk+11 , Pk+12 and Pk+13 using Step 5.
17: l ← l + 1.

18: end while
19: Obtain clustering labels.

structure in graphs. The experiments are performed using
MATLAB R2020b on a desktop with the specifications
(Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz 3.00 GHz
and RAM of 16GB). The proposed method is compared
to other existing methods including, spectral clustering
(SC) [9], modularity-Louvain1 [20], symmetric nonnega-
tive matrix factorization using alternating nonnegative least
square2 (SymNMF-ANLS) [10], [15], symmetric nonneg-
ative matrix factorization using Newton-like algorithm3

(SymNMF-Newton) [10], [15], fast symmetric nonnega-
tive matrix factorization using hierarchical alternating least
square4 (SymNMF-HALS) [16] and adaptive affinity learn-
ing nonnegative matrix factorization5 (A2NMF) [17]. The
number of the clusters is estimated for each network as the
number that maximizes the asymptotical surprise6 (AS) met-
ric [36] for all the algorithms except for modularity-Louvain
since the number of clusters is estimated by the algorithm

1https://sites.google.com/site/bctnet/
2https://github.com/hiroyuki-kasai/NMFLibrary
3https://github.com/hiroyuki-kasai/NMFLibrary
4https://github.com/hiroyuki-kasai/NMFLibrary
5https://github.com/smartyfh/AANMF
6https://github.com/CarloNicolini/communityalg
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itself. The comparison is conducted using multiple accuracy
measures including normalized mutual information (NMI),
normalized variation of information (VI), F-value, precision,
recall, purity and the detected number of clusters (DNOC)
where all the measures are averaged over 50 simulations.
In addition to these validation measures, an Error Rate
(ER) measure is adopted form [37] to evaluate the per-
formance of the different algorithms. The error rate is
defined as:

Error Rate = ‖CLCT
L − GtG

T
t ‖

2
F , (14)

where Gt ∈ Rn×k is the indicator matrix that is built for the
network’s community ground truth and CL ∈ Rn×k is the
indicator matrix that is storing the clustering labels obtained
by the algorithm. error rate are employed. In other words,
the error rate quantifies the distance between the community
structures represented by CL and Gt . A better clustering
results should achieve a higher NMI, F-value, precision,
recall and purity values and a lower VI and ER values. The
values of all metrics values are normalized between [0, 1]
except for ER.

A. SIMULATED WEIGHTED NETWORKS
1) EXPERIMENT 1: SIMULATED NETWORKS WITH
DIFFERENT COMMUNITY STRUCTURES
In this experiment, the generated simulated networks consist
of 100 nodes and sparse noise SN = 20%,with different com-
munity structures. The variation in the community structure is
achieved by changing the number and the sizes of the clusters.
The number of the clusters is estimated for each network as
the number that maximizes the asymptotical surprise (AS)
metric [36]. The intra- and inter-cluster edges are randomly
generated from a truncated Gaussian distribution in the range
of [0, 1] with µintra = 0.5, σintra = 0.2, µinter = 0.1,
σinter = 0.1. The parameters are selected empirically as
λ1 = 0.3 and λ2 = 1. The ground truth and the networks’
statistics used in this experiment are presented in Table 2 and
Table 3, respectively.

TABLE 2. The ground truth of the generated networks for experiment 1.

A comparison of the performance between the proposed
algorithm and existing algorithms is presented in Table 4.
The comparison is conducted by normalized mutual informa-
tion (NMI), variation of information (VI), Error Rate (ER),

F-value, precision, recall, purity and detected number of
clusters (DNOC) where all the measures are averaged over
50 simulations.

As it can be seen from Table 4, the proposed algorithm
performs better than the other methods in terms of the dif-
ferent validation measures. In this experiment, the effect of
increasing the number of clusters while decreasing their size
is studied. Usually, it is hard to detect small communities in
networks and this is one of the challenges that faces commu-
nity detection algorithms. From the results shown in Table 4,
it is clear that RCDG can detect the correct community struc-
ture of the underlying network efficiently. Moreover, RCDG
is capable of detecting small communities even in noisy
networks, in addition to its ability of detecting the correct
number of clusters. On the other hand, the performance of
the other existing algorithms decays rapidly as the number
of clusters increases and their sizes decrease. As it can be
noticed from the results, many of these algorithms succeed in
detecting the correct number of clusters, however, they fail in
detecting the correct clustering labels.

2) EXPERIMENT 2: SIMULATED NETWORKS WITH
DIFFERENT NOISE LEVELS
The purpose of this experiment is to evaluate the performance
and robustness of the proposed algorithm in networks that
is affected with different noise levels. In this experiment,
the simulated networks consist of 100 nodes, 4 clusters
and different noise levels SN%. The ground truth of the
nodes’ community membership is C1(1 − 30), C2(31 − 60),
C3(61 − 80), C4(81 − 100) and the networks’ statistics are
given in Table 3. The number of the clusters is estimated for
each network by asymptotic surprise. Intra- and inter-cluster
edges are randomly generated from a truncated Gaussian
distribution in the range of [0, 1] with µintra = 0.5, σintra =
0.1, µinter = 0.1, σinter = 0.1. The parameters are selected
as λ1 = 0.3 and λ2 = 1.

A comparison of the performance between RCDG and
other algorithms is presented in Table 5. The comparison
is done using normalized NMI, VI, ER, F-value, precision,
recall, purity and DNOCwhere all the measures are averaged
over 50 simulations.

As it can be seen in Table 5, The noise levels are set
to SN% = {5%, 10%, 15%, 20%, 30%}. The results in the
table show that RCDG outperforms the other methods in
terms of the different measures. From this experiment, we can
notice that the other algorithms perform well as long as the
noise levels are low. However, as the noise level increases
and the network become grossly corrupted, their performance
decays significantly. On the other hand, the proposed RCDG
shows robustness to higher levels of sparse noise where it
can detect the correct community structure of the network
and the correct number of clusters too. For instance, with
SN% = 30%, all the other algorithms failed to detect the
correct community structure while RCDG performed very
well and achieved very high accuracy in term of the different
measures.
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TABLE 3. Networks 1-10 statistics averaged over 50 simulations, including: Number of nodes (|V |), Number of edges (|E |), average degree (Davg), node
betweenness centrality (NBC), edge betweenness centrality (EBC), density, clustering coefficient (C) and assortativity coefficient (r ).

TABLE 4. Performance comparison between the proposed method (RCDG), spectral clustering, modularity, SymNMF-ANLS, SymNMF-Newton,
SymNMF-HALS and AANMF in terms of average NMI, VI, ER, F-value, Precision, Recall, Purity and DNOC. Networks are constructed with 100 nodes,
SN = 20% and variable number of clusters (NOC).

3) EXPERIMENT 3: SIMULATED NETWORKS WITH
DIFFERENT SIZES
In this experiment, the simulated networks consist of 4 clus-
ters, SN = 20% and variable size or number of nodes from
32 to 2048 on a logarithmic scale. In particular, the objective
of this experiment is to test the scalability of the algorithm.
The networks’ Intra- and inter-cluster edges are randomly

generated from a truncated Gaussian distribution in the range
of [0, 1] with: µintra = 0.7, σintra = 0.2, µinter = 0.2,
σinter = 0.2. A comparison of the run time between the pro-
posed RCDG algorithm and the other algorithms is presented
in Fig. 1.

As it can be seen from Fig. 1, the proposed algorithm
takes longer time compared to the other methods except for
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TABLE 5. Performance comparison between the proposed method (RCDG), spectral clustering, modularity, SymNMF-ANLS, SymNMF-Newton,
SymNMF-HALS and AANMF in terms of average NMI, VI, ER, F-value, Precision, Recall, Purity and DNOC. Networks are constructed with 100 nodes,
4 clusters and variable sparse noise levels SN%.

the A2NMF algorithm, especially as the size of the network
increases. However, the other methods fall behind the pro-
posed algorithm in extracting a clean version of the adjacency
matrix and detecting the correct community structure. In fact,
it can be said that the performance of the proposed algorithm
is a trade-off between complexity and accuracy.

B. PERFORMANCE SENSITIVITY TO THE
REGULARIZATION PARAMETERS
In the proposed algorithm, there are two regularization
parameters; λ1 and λ2. λ1 controls the l1-norm of the sparse
component while λ2 controls the symmetric nonnegative
matrix factorization term. To study the effect of these param-
eters, the performance of the proposed algorithm in terms
of different quality metrics is explored for a range of the
parameters. In particular, the effect of the variation of each
parameter on the clustering results is investigated by fixing
the other one. Fig. 2(a)- Fig.2(n) show the variation of the reg-
ularization parameters impact on the performance of RCDG
in terms of average NMI, VI, ER, Recall, Precision, F-value

and Purity. As it can be seen from the figures, RCDG per-
forms well under a variety of parameter values. For instance,
RCDG performs well under the different values of λ2, e.g.
λ2 ∈ [0.3, 1]. In terms of λ1, the proposed method performs
efficiently for different values of λ1. In RPCA problem, λ1
can be selected as λ1 = 1

√
n as suggested in [31] and this

value can be modified depending on the application. In the
proposed method, RCDG, we suggest a value of λ1 = b

√
n

where b ∝ 1
‖A‖1

. In other words, the parameter λ1 can be set

depending on the network’s sparsity and its value decreases
as the sparsity increases.

C. SIMULATED BINARY NETWORKS
In order to evaluate the performance of the proposed RCDG
algorithm in detecting the community structure in binary net-
works, two network benchmarks are adopted. First, the clas-
sical Girvan-Newman benchmark7 introduced in [13], where
the network is divided into k equal sized clusters and each

7https://github.com/mmitalidis/ComDetTB
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FIGURE 1. Network size versus run time comparison between proposed
method (RCDG), spectral clustering (SC), modularity-Louvain,
SymNMF-ANLS, SymNMF-Newton, SymNMF-HALS and A2NMF. Networks
are constructed with 4 clusters and variable number of nodes.

node has a fixed number of internal and external edges.
As the number of internal edges, zi, increases the density
of the network increases and as the number of the exter-
nal edges, ze, decreases the clusters become more distinct.
Second, the planted partitions benchmark7 introduced in [38].
In the latter benchmark, the networks are created with
unequal-sized partitions or clusters with internal edge proba-
bility, pi and external edge probability, pe. As pi increases the
clusters become more dense and as pe decreases the clusters
become more distinct.

Multiple networks with different specifications are gen-
erated to evaluate the performance of RCDG. As it can be
seen in Table 8, six different experiments are conducted by
generating six different networks. The first three networks are
form Girvan-Newman benchmark (GNB), where the clusters
in each of these networks are equally sized and the specifica-
tions are given in the table. The last three networks are gen-
erated from the planted partitions benchmark (PPB) where
the clusters in each network are unequally sized. For each
network, the ground truth clusters the networks’ statistics are
reported in Table 6 and Table 7, respectively.

The performance of RCDG is compared to the other exist-
ing algorithms using NMI, VI, ER, F-value, precision, recall,
purity and DNOC. Each experiment is repeated 50 times and
the average values of the validation measures are reported
in Table 8. As it can be noticed from the table, the existing
algorithms performwell in detecting the community structure
and the number of clusters in the network when the clusters
sizes are equal and the network size is relatively small, such
as in GNB1-GNB2. However, their performance declines the
network’s size grows or when the clusters are unequally-
sized, such as in PPB1-PPB3. On the contrary, the proposed
RCDG proved that it is not affected by these factors and can
detect the correct community structure in small and large
networks with either equal or unequal-sized clusters. This is
due to the fact that the proposed RCDG extracts a clean or

a smoothed version of the corrupted adjacency matrix within
the algorithm and uses it to detect the community structure of
the underlying network.

D. RECOVERING A CLEAN VERSION OF THE
ADJACENCY MATRIX
In this paper, we are proposing a robust community detection
algorithm that decomposes the corrupted graph adjacency
matrix, A, into low-rank, L, and sparse, S, components.
The low-rank property of the adjacency matrix is antici-
pated to strengthen the intra-clusters edges and diminish the
inter-cluster edges [39], [40], [41]. Ideally, the rank of the
adjacencymatrix is equal to the number of communities in the
network and the extracted low-rank component is considered
as a clean or smoothed version of the input adjacency matrix.
Furthermore, we solve for the matrixM which is constrained
to equal Lwith additional constraints to satisfy the properties
of the adjacency matrix.

Figures fromFig. 3-Fig. 7 show some examples of the input
and output of the proposed algorithm. In particular, they show
the input corrupted adjacency matrices from GNB and PPB,
the extracted low-rank component, the sparse component, and
the final output smoothed adjacency matrix. As it can be
seen in the figures, the low-rank components extracted by
the proposed RCDG reinforces the intra-cluster edges and
reduces the inter-cluster edges which creates more distinct
clusters. Consequently, this leads to more accurate commu-
nity detection results even when the input matrix is too noisy
as in Fig. 5-Fig. 7.
In order to measure the accuracy of the resultant com-

munity structure, an Error Rate (ER) validation measure is
adopted. Thismeasure quantifies the distance between a clean
graph that is built from the predetermined ground truth, Gt ,
and the resultant clustering assignment, Ct , by the algorithm.
The results are reported in Table 4-Table 8. As it can be
noticed from the ER values, the proposed algorithm achieved
the lowest scores among all the algorithms and 0 ER in
multiple experiments.

E. REAL NETWORKS
1) PRIMARY SCHOOL NETWORK
The data set comprises weighted network of face-to-face
proximity between students and teachers in a primary school
[42]. The school consists of 10 grades and 10 teachers.
In the constructed network, the nodes represent the individ-
uals and the edges represent the face-to-face interactions.
Each node has two attributes: class namewhich represents the
school class and the grade of the associated individual. Edges
weights represent the duration measured in seconds. Duration
is the total time for the face-to-face time proximity over the
study period and recorded every 20 seconds. The network’s
statistics are: |V | = 242, |E| = 5901, Davg = 1.0747, NBC
= 1017.165, EBC = 5.1502, density = 0.2024, C = 0.0077
and r = 0.1877. Table 9 shows the grades’ labels and number
of students in each grade.
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FIGURE 2. Performance sensitivity of RCDG w.r.t. the different values of the regularization parameters λ1 and λ2
for the simulated networks in Experiment 1 in terms of average: (a) NMI, variable λ1; (b) VI, variable λ1; (c) ER,
variable λ1; (d) F-value, variable λ1; (e) Precision, variable λ1; (f) Recall, variable λ1; (g) Purity, variable λ1;
(h) NMI, variable λ2; (i) VI, variable λ2; (j) ER, variable λ2; (k) F-value, variable λ2; (l) Precision, variable λ2;
(m) Recall, variable λ2;and (n) Purity, variable λ2.
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TABLE 6. The ground truth of the generated networks from Girvan-Newman benchmark (GNB) and planted-partitions benchmark (PPB).

TABLE 7. GNB and PPB Networks’ statistics averaged over 50 simulations, including: Number of nodes (|V |), Number of edges (|E |), average degree
(Davg), node betweenness centrality (NBC), edge betweenness centrality (EBC), density, clustering coefficient (C) and assortativity coefficient (r ).

FIGURE 3. (a) Example of the corrupted adjacency matrix, A, from GNB2
(b) and (c) Low-rank, L and sparse, S decomposition, respectively,
by RCDG, and (d) the clean version of the adjacency matrix.

The proposed algorithm is applied to the primary school
data set to detect the community structure. The number of
clusters is set to 10 which refers to the number of grades
in the school. The regularization parameters are selected as
λ1 = 0.2 and λ2 = 0.1. The detected clusters are shown
in Fig. 8. The black frames represent the ground truth of the
different grades in the school and the teachers are presented
by the red frame. Whereas the colored rectangles represent
the clusters detected by the proposed algorithm. As it can be
seen in the figure, the detected clusters refer almost to the
different grades including their teachers. This application of
the proposed method to the primary school network shows
its ability to detect the community structure in real-world
networks. In fact, the extraction of the low-rank component or

FIGURE 4. (a) Example of the corrupted adjacency matrix, A, from GNB3
(b) and (c) Low-rank, L and sparse, S decomposition, respectively,
by RCDG, and (d) the clean version of the adjacency matrix.

the clean version of the adjacency matrix plays an important
role in improving the detected community structure quality.
This due to the fact that it reinforces the intra-cluster edges
and removes the sparse noise or outliers.

2) REALITY MINING NETWORK
This data set was collected in Massachusetts Institute of
Technology (MIT) Reality Mining [43]. The collected data
represents the recorded cell phone activity of 94 individuals
at MIT over a year. Among the 94 individuals there was
68 who worked in the same building and 26 individuals
were incoming students at the university’s business school.
The Media Access Control (MAC) addresses of nearby
Bluetooth devices are recorded at five-minute intervals. The
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TABLE 8. Performance comparison between the proposed method (RCDG), spectral clustering, modularity, SymNMF-ANLS, SymNMF-Newton,
SymNMF-HALS and AANMF in terms of average NMI, VI, ER, F-value, Precision, Recall, Purity and DNOC. Networks are generated using GN-benchmark
(GNB) and Planted Partitions-benchmark (PPB).

FIGURE 5. (a) Example of the corrupted adjacency matrix, A, from PPB1
(b) and (c) Low-rank, L and sparse, S decomposition, respectively,
by RCDG, and (d) the clean version of the adjacency matrix.

similarity between two subjects refers to the number of
times (intervals) in which there were physical proximity. The
networks are constructed for multiple time steps where each

FIGURE 6. (a) Example of the corrupted adjacency matrix, A, from PPB2
(b) and (c) Low-rank, L and sparse, S decomposition, respectively,
by RCDG, and (d) the clean version of the adjacency matrix.

time step represents a one week. In this paper, we obtained
a static network by averaging the networks over the 46 time
steps (The constructed networks between August 2004 and
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FIGURE 7. (a) Example of the corrupted adjacency matrix, A, from PPB3
(b) and (c) Low-rank, L and sparse, S decomposition, respectively,
by RCDG, and (d) the clean version of the adjacency matrix.

TABLE 9. The grades labels and number of students in each grade.

FIGURE 8. The detected community structure for the primary school
network by the proposed algorithm.

June 2005). The network’s statistics are: |V | = 94, |E| =
3114, Davg = 0.6025, NBC = 303.1064, EBC = 4.1928,
density = 0.7124, C = 0.0026 and r = −0.0579.
The proposed algorithm is applied to the reality mining

network to detect its community structure.The number of
clusters is set to 2. The regularization parameters are selected
as λ1 = 0.3 and λ2 = 1. The detected clusters are shown
in Fig. 9. The black frames represent the ground truth of
the different students and the professor is presented by the

FIGURE 9. The detected community structure for reality mining network
by the proposed algorithm.

red frame. Whereas the colored rectangles represent the clus-
ters detected by the proposed algorithm. As it can be seen in
the figure, the 2 clusters detected by the algorithm refer to
the colleagues working in the same building on campus in
addition to the professor while the second one refers to the
incoming students.

V. CONCLUSION
In this paper, a new robust community detection algorithm
in both binary and weighted graphs is proposed. The objec-
tive of the proposed approach is to detect the true commu-
nity structure even in noisy networks. Particularly, the pro-
posed approach decomposes the noisy adjacency matrix into
low-rank and sparse components. The extracted low-rank
component represents a clean version of the original noisy
network.Moreover, the extracted low-rank component is used
for clustering through nonnegative embedding. The robust-
ness and accuracy of the proposed approach are tested and
evaluated using multiple simulated and real-world networks.
The proposed method shows high accuracy in detecting the
network’s community structure even with the presence of
noise and outperforms other well-known algorithms.

APPENDIX A
UPDATE L
Updating each one of the variables is carried by iteratively
alternating approach. In order to update each variable, we fix
the other variables and solve for the variable of interest
following the solution suggested in [4]. This procedure is
repeated until convergence. A detailed derivation of the
update rules is presented in this appendix and the following
appendices. For the update of L, the terms with L only are
kept:

Ll+1 = argmin
L∈Rn×n

‖L‖∗ + 〈Zl1,A− L− Sl〉

+
γ1

2
‖A− L− Sl‖2F + 〈Z

l
2,M

l
− L〉

+
γ2

2
‖Ml
− L‖2F , (15)
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by combining the quadratic terms in Eq. 15, it can be simpli-
fied to:

= argmin
L∈Rn×n

‖L(t)
‖∗ +

γ1

2
‖L− (A− Sl +

Zl1
γ1

)‖2F

+
γ2

2
‖L− (Ml

+
Zl2
γ2

)‖2F

= argmin
L∈Rn×n

‖L‖∗ +
γ1 + γ2

2
‖L−

γ1Wl
1 + γ2W

l
2

γ1 + γ2
‖
2
F

= prox 1
γ1+γ2

‖L‖∗

(γ1Wl
1 + γ2W

l
2

γ1 + γ2

)
, (16)

whereWl
1 = A− Sl + Z1

1
γ1
,Wl

2 =Ml
+

Zl2
γ2

and proxf (W) =
argminL∈Rn×n f (L) +

1
2‖L −W‖2F is the proximity operator

of the convex function f [35]. LettingW = γ1Wl
1+γ2W

l
2

γ1+γ2
, γ =

γ1+γ2
2 and W = QW6WF>W be the SVD of the matrix W,

singular value soft thresholding is then used to update Ll+1

as:

Ll+1 = QW� 1
γ
(6W)F>W, (17)

where �τ is the element-wise thresholding operator defined
as �τ (a) = sgn(a)max(|a| − τ, 0).

APPENDIX B
UPDATE S
Update S by keeping only the terms with S:

Sl+1 = argmin
S∈Rn×n

‖S‖1 + 〈Zl1,A− S− Ll+1〉

+
γ1

2
‖A− S− Ll+1‖2F

= argmin
S∈Rn×n

‖S‖1 +
γ1

2
‖S− (A− Ll+1 +

Zl1
γ1

)‖2F (18)

Following the Ll+1 update, Sl+1 can be calculated as:

Sl+1 = prox λ1
γ1
‖S‖1

(
A− Ll+1 +

Z1
1

γ1

)
= � λ1

γ1

(
A− Ll+1 +

Zl1
γ1

)
(19)

APPENDIX C
UPDATE M
In a similar fashion to L and S,M is updated by keeping only
the terms withM which reduces the main problem to:

Ml+1
= argmin

M∈Rn×n
λ2‖M−HlHl>

‖
2
F + 〈Z

l
2,M− Ll+1〉

+
γ2

2
‖M− Ll+1‖2F s.t M =M>,M ≥ 0

= argmin
M∈Rn×n

λ2‖M−HlHl>
‖
2
F

+
γ2

2
‖M− (Ll+1 −

Zl2
γ2

)‖2F ,

M = M>,M ≥ 0

= argmin
M∈Rn×n

F(M), M =M>,M ≥ 0. (20)

By expanding the Frobenius norm terms as trace functions,
the gradient of the function F(M) can be formulated as:

∇Mf (M) = λ2(2M− 2HlHl>)+ γ2
(
M− Ll+1 +

Zl2
γ2

)
.

(21)

Then, a closed form solution can be computed forMl+1 as:

Ml+1
=

2λ2HlHl>
+ γ2Ll − Zl2

2λ2 + γ2
, (22)

where a symmetric version ofM can be calculated as M+M>
2

and Mij = 0 if Mij < 0.

APPENDIX D
UPDATE H
Finally, updating H is performed using SymNMF approach
proposed in [10]. In [10], the authors proposed two algo-
rithms to solve the SymNMF problem, namely Newton-like
algorithm and an ANLS-based algorithm. Both algorithms
are guaranteed to converge to stationary point solutions.
However, as suggested by the authors, it is preferred to con-
sider practical considerations about the data of interest to
achieve better clustering results. In particular, Newton-like
algorithm results in higher accuracy but is more suitable for
small networks, e.g. n < 3000. Whereas, the ANLS algo-
rithm suits sparse networks and performs well with large net-
works, e.g. n = 106. In the proposed approach, the symmetric
nonnegative matrix factorization problem is solved using
the ANLS algorithm due to its low complexity compared
to Newton-like algorithm. Furthermore, since our proposed
approach extracts a clean version of the adjacency matrix and
uses it as an input for the SymNMF, this improves the final
clustering results using ANLS.
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