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ABSTRACT All cancers are caused by changes in the DNA within cells that occur over the course of an
individual’s lifetime. These mutations confer extensive genetic and phenotype variations within individuals,
making the identification of appropriate treatments hard and costly. Moreover, cancer datasets are usually
highly sparse due to the presence of few samples and many input features, making it difficult to design
accurate predictors to classify patients into risk groups. Here, we report on the Multi Learning Training
(MuLT) algorithm, which employs supervised, unsupervised, and self-supervised learning methods in order
to take advantage of the interplay of clinical and molecular features for distinguishing low and high risk
cancer patients. Our solution is evaluated using three independent and public cancer data sets considering
three different performance aspects, through 5-fold cross-validation experiments. MuLT outranks other
methods achieving AUCs between 0.65 and 0.77 and mean squared errors smaller than 0.24, while reducing
classification complexity. These findings confirm the benefits of combining different learning algorithms
and of coupling molecular and clinical data for supporting clinical decision making in Oncology.

INDEX TERMS Machine learning, cancer, molecular bio-markers, composable approach, clinical and
molecular data, cancer risk prediction.

I. INTRODUCTION
Engineering, physical sciences, and oncology integration
have been providing several significant contributions to can-
cer research over the past fifty years. The convergence of
these disciplines driven by Machine Learning (ML) algo-
rithms could lead to new computational models for modeling
complex cancer systems, helping to increase the effectiveness
of treatments, reducing costs, and saving lives [1]. This is a
very important fact, once cancer contributes to a large number
of deaths world wide, fatally reaching more than 4 million
people by 2018 [2] with a projection of 19.8million new cases
per year for 2025 [3].

All cancer are caused by changes in the DNA within cells,
with high genetic and phenotypic variation. This prevents the
identification of appropriate treatments, which may become
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more complex and costly, whilst less effective [4], [5].
Although the development of novel cancer treatments
improved survival over the years, only a subset of patients
benefits from them, which motivates the study of new treat-
ment response predictors to aid cancer diagnosis and risk
evaluation [6]. Herewith, the identification and collection of
relevant markers is a fundamental step to create new effec-
tive and efficient treatment protocols. Currently, the biotech
industry is providing a full sequence of human genome and
this technology has improved at a faster pace than Moore’s
law. These facts have direct impact on the possibility to create
personalized treatments based on a set of highly informative
predictors [7].

As a consequence of those developments, large volumes
of cancer data have been gathered, at both molecular and
clinical levels. Nonetheless, these data sets often pose several
statistical and computational challenges [8]. Among them,
one can mention: high sparsity due to low number of patients
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and high number of molecular features, presence of noise
and inconsistencies, unbalanced number of samples related
to each cancer event (e.g., high risk group), and no clear
relationship of the input variables with treatment outcomes.

ML algorithms could be roughly defined as computa-
tional methods to optimize a performance metric (e.g., Mean
Squared Error (MSE)) based on past stored data represent-
ing a specific set of tasks (e.g., risk classification, salary
estimation).

Size and quality of data are recognized as critically impor-
tant to create useful ML-based models [9]. ML is being
widely used to drive cancer studies, with successful applica-
tions to different cancer types [10], [11]. Thesemethods allow
to automatically extract general patterns hidden in a given
data set related to cancer diagnosis and prognosis. Whilst
modern ML-based predictors need to be trained on hundred
of thousands samples, in general molecular cancer data sets
contain only few hundreds samples [12]. This requires an
additional care in the development of such models, in order
to guarantee that the final predictors obtained effectively
generalize to new data samples.

All these facts define a challenge on defining and imple-
menting algorithms to classify patients into risk groups,
which usually is an information derived from features like
overall survival time, progression-free survival (PFS), or vital
status. ML algorithms could be an important tool as part
of clinical decision-making processes, helping to indicate
effective treatments in order to save lives, or at least to provide
better end-life quality.

In this paper, we propose the Multi Learning Train-
ing (MuLT) algorithm for classifying cancer patients as
low or high risk. MuLT leverages from multiple data pre-
processing and ML algorithms, combining supervised, unsu-
pervised and self-supervised methods in order to create more
accurate predictors. It takes clinical and molecular data as
input considering an interplay of these data into the same
model. Therefore, all public data sets used here are composed
of both types of data. Clinical data usually represent infor-
mation about demography, pharmacology, toxicology, safety
efficacy, and disease data (e.g., age, cancer stage, beta 2,
days to disease progression), while molecular data provide
information about gene expression levels.

We evaluate our approach via cross-validation experiments
on three public cancer data sets. As baselines, we com-
pared our solution to other popular ML models used in
the literature for cancer risk prediction, namely K-Nearest
Neighbors (KNN) [13], Light Gradient Boosting Machine
(LightGBM),Multilayer Perceptron (MLP) [14], and Support
Vector Machines (SVM) [15]. We defined risk categories (i.e,
low and high risk) based on overall survival, PFS, or vital
status features as available in each data set. Our experimental
results allowed us to conclude that, by combining different
learning methods to generate new data representations and
by extracting latent data information embedding molecular,
clinical, and treatment data, it is possible to reach more
precise patient risk predictions. In fact, MuLT performance

was analyzed using data sets of different types of cancer,
reaching better results than all baseline methods employed
in our experiments.

To ensure the reproducibility of our results, we pub-
licly share the source code used in our experiments at
https://github.com/lucasvenez/mult. It not only includes the
code for the proposed approach and the baselines, but also
the code for data download and pre-processing, parameter
optimization, and evaluation.

The remainder of this paper is organized as follows.
Section II presents some preliminary definitions, and reviews
existing work and previous technical approaches. Section III
describes details of the MuLT approach. Section IV details
the experimental design. Section V presents and discusses our
results. Finally, Section VI brings our final remarks and point
outs future work directions.

II. BACKGROUND AND RELATED WORK
This section summarizes the mathematical notations
employed in this work, presents fundamental definitions of
molecular genetics and data derived from such area, and
describes some related work that encompasses ML tech-
niques applied to cancer data.

Regarding the mathematical notation employed, Table 1
summarizes the main symbols used to designate the data
items, operations and sets, among others.

TABLE 1. Mathematical notation summary.

A. MOLECULAR GENETICS
Oncogene generation is driven by series of mutations in genes
that implies in changes of cell functions. These mutations
occur within the coding sequence of genes and can lead to
abnormal proteins being produced [16]. In addition, these
mutations can accelerate growth and induce uncontrolled cell
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divisions that can result in anomalous chromosome segrega-
tion and changes in chromosome number [17].

As genes encode proteins and proteins dictate cell function,
the monitoring of these dynamics may lead to a better under-
standing of the regulatory events involved both in health and
disease conditions, including cancer treatment. Thus, assess-
ment of molecular mechanisms underlying cellular events
coupled with environment, and lifestyle for each person is a
pivotal approach called precision medicine.

Guided by this knowledge, several researches have been
carried out to extract information from genomic data. These
studies and analyzes improved the understanding of genetic
networks in the development of human diseases and allowed
us to discover new genes associated with these diseases [18].

A common way to inspect genomic data is using gene
expression profiles. Gene expression profiling measures the
expression level of mRNAs in a cell population at a cer-
tain time [19]. The expression profile is often represented
by array-based techniques and provides a high-throughput
approach to analyze thousands of genes simultaneously.
In this format, it can be correlated to pathological diagnosis,
clinical outcomes, or even therapeutic response [20].

A gene expression data set may be considered an n × l
matrixM, where each rowMi. represents expression levels of
a set of n genes (G = g1, . . . ., gn), the columnsM.j represent
expression profiles of a set of l samples S = (s1, . . . , sl) at
different conditions, and each element mi,j is the expression
level of gene gi (1 ≤ i ≤ n) on sample sj (1 ≤ j ≤ l).

In this work we use public gene expression levels together
with clinical markers as input for ML models in order to
classify cancer patients as low or high risk.

B. RELATED WORK
There are several researches applying ML algorithms in can-
cer prognosis prediction or to identify new characteristics
that can be used to understand such a complex disease. The
general idea is to induce predictive models from collections
of patients’ data with known outcomes, which can then be
used in the analysis of new patients’ data. Here we present a
compendium of work related to this research.

A novel simulation-based approach to identify subgroups
of Multiple Myeloma patients that might benefit from a treat-
ment of interest is presented in [6]. The study considers both
bortezomib [21] and lenalidomide [22] treatments.

They consider 10,581 gene features as input to ML models
using techniques such as random forests [23] and support vec-
tor machines (SVM) [15]. No clinical features are considered.
All data were collected from the MMRF Research Gate [24]
and Gene Expression Omnibus (GEO) Database [25]. Exper-
imental results evidence that their solution can be helpful to
estimate whether a patient will benefit or not from a given
treatment. Authors also stated that predicting non treatment
benefit has equal importance to predicting treatment benefit,
and both can give useful information towards personalized
medicine.

A novel transfer learning-based process based on ML
techniques such as SVM, XGBoost [26] and Deep Boost-
ing [27] aiming to classify patients of Multiple Myeloma
(MM), triple-negative breast cancer, and breast cancer as
treatment sensitive or resistant is proposed in [28]. The study
was limited to bortezomib treatment. The data sets were
obtained from the Affymetrix Human Genome U133A Array
platform and GEO database. The authors successfully used
gene expression data to generate predictions of drug response,
and reported a superior performance of their approach com-
pared to baseline approaches.

The Quadratic Phenotypic Optimization Platform (QPOP)
is presented in [29], which aims to optimize treatment combi-
nations to effectively treat bortezomib-resistantMM.Authors
state that bortezomib is present in 58% of clinically used
therapies, having shown overall response rates as high as 93%
in newly diagnosed patients. QPOP results present an R2 of
0.803 in the regression problem of predicting effective drug
combinations that optimized treatment efficacy.

In [30] a studywith 1,181MMpatients is reported. Authors
explore the relationship among different abnormalities. Their
results provide evidences that only a set of abnormalities clas-
sified as high-risk do not contain all necessary information to
predict Multiple Myeloma prognostic.

Evidences of correlation between a mutation called KRAS
and the colorectal patient resistance to cetuximab [31] treat-
ment are presented in [32]. That study was conducted with
thirty patients. Advances from this study are presented
in [33], which explores molecular features to predict treat-
ment outcome. The authors state that, through the application
of molecular analyzes, they found several new markers asso-
ciated with the prognosis and the treatment outcome.

A risk predictor for breast cancer based on Cox model [34]
and genetic variables is presented in [35]. The study consid-
ered more than 700 patients and used breast cancer sub-types
(luminal A, luminal B, HER2-enriched, and basal-like) as an
important feature to train the model. It concludes the sub-type
model predicted neoadjuvant chemotherapy efficacy with a
negative predictive value for pathologic complete response
of 97%. Furthermore, the sub-type feature added significant
prognostic and predictive information.

The study presented in [36] describes a novel in silico
screening process based on Association RuleMining (ARM).
It identifies molecular markers as candidate drivers of treat-
ment response, rather than clinical data, such as character-
istics of tumors. The authors argue that clinical data have
reached their limit and are insufficient to guide therapeutic
solutions or predict therapy response. The tests performed
in this study demonstrated that the association rule mining
process was able to highlight relevant molecular correspon-
dences to evaluate responsiveness to certain drugs.

In order to improve accuracy on risk prediction, MuLT
combines clinical markers and gene expression levels to
compose the patient description. Moreover, new representa-
tions of gene expression levels are created based on unsuper-
vised and self-supervised learning algorithms to find latent
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predictive information. These data are then used to distin-
guish low and high risk patients. Once MuLT defines treat-
ments as input, final predictors could also be used to simulate
optimal treatment in a personalized manner.

It is worth noting that MuLT can also be beneficial in other
application domains which require combining multiple data
sources. This is the case of credit risk assessment problems,
for instance, where the work [37] proposed a dynamic model
combining the use of customer profile data with politic-
economic factors.

III. PROPOSED APPROACH
The MuLT approach proposed in this paper is composed
of tree main modules: feature selection, feature extraction
and patient risk prediction. It takes clinical, molecular and
treatment data as input.

We will present an overview on MuLT in Section III-A.
In Section III-B, we detail the feature selection module.
In Section III-C, we provide information about each part of
the feature extraction module. Finally, in Section III-D we
describe the patient risk prediction module.

A. OVERVIEW
The MuLT approach has the following characteristics: i) it
takes multiple types of data available from the patients as
input, allowing to take into account different data representa-
tions; ii) it avoids noisy and irrelevant features by employing
a feature selection step; iii) it finds latent information on data
by feature engineering using unsupervised learning methods;
iv) it creates a more robust representation of the data using
an autoencoder; and v) it uses highly accurate ensemble
predictors. Figure 1 shows an overview of theMuLT approach
and components.

Briefly, MuLT takes clinical data (e.g., age, race, stage,
transplant), molecular data (e.g., gene expression levels),
and treatment as input. Then, it starts by executing the
Clinical Feature Selection (CFS) and Molecular Feature
Selection (MFS) components from the Feature Selection
module, which are responsible for filtering noisy and irrel-
evant input features. A Cross Feature Selection (XFS) algo-
rithm is used in this filtering (see details in the next section).
Using the subset of molecular features previously chosen,
the Feature Extraction module performs Patient Clustering
(PC), Gene Clustering (GC), and Gene Denoising (GD),
which aim to create gene expressed-based signatures able to
improve prediction accuracy. Finally, the Ensemble Predictor
(EP) component classifies cancer patients into risk groups via
a supervised ensemble learning method. All features previ-
ously selected and created are used as input to this classifier,
which outputs a continuous value between 0 and 1, namely
LowRisk Score (LRS), where low values for the LRS indicate
high risk patients, whilst high values are attributed to patients
with low risk.

From the architectural perspective, we define MuLT as
a composable approach that can be extended to embrace
different data types (e.g., images), to extract specialized

FIGURE 1. A MuLT instance, which uses clinical, molecular, and treatment
input features, performs two independent feature selection steps, three
automatic feature extraction steps and then predicts cancer patient risk
using a LightGBM ensemble.

information from raw data or to perform some train-
ing or inference regularization or normalization. Next all
modules and components of MuLT are described in more
details.

B. FEATURE SELECTION
In order to design our feature selection module, we estab-
lished three main requirements: i) choose features that are
helpful to discriminate low and high risk patients; ii) avoid
features with redundant information; and iii) avoid features
that only segregate a particular set of patients (i.e, biased
features).

Let X be a matrix composed of features at columns and
patients at rows, where each element xij describes the value
of a feature M associated with a patient p. Let y be a vector
associating a risk class (i.e., either low or high) to a patient
p. Algorithm 1 receives as input X and y, and generates two
independent sets of patients (i.e., rows ofX) based on clinical
outcome y. The ComputeOrRetrieveKS function takes values
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Algorithm 1 Pseudocode of the Feature Selection Algorithm
1: function FEATURESELECTION(X, y, α, β)
2: EF ← {} F Set of excluded features
3: AF ← {} F Set of analyzed features
4: SF ← NAMES(X) F Set of selected features
5: for all i ∈ SF do
6: AF ← AF ∪ {i}
7: pi← COMPUTEORRETRIEVEKS(X∗i, y)
8: if pi > α then
9: EF ← EF ∪ {i}
10: else
11: for all j ∈ SF \ AF do
12: pj← COMPUTEORRETRIEVEKS(X∗j, y)
13: if pj > α then
14: EF ← EF ∪ {j}
15: else
16: pc← PEARSON(X∗i,X∗j)
17: if pc > β then
18: if pj ≥ pi then
19: EF ← EF ∪ {j}
20: else
21: EF ← EF ∪ {i}
22: S ← SF \ EF
23: X′← X∗S
24: return X′

of a feature X∗i of all patients, splits them into low and high
risk groups described by vector y and computes the p-value
of a Kolmogorov–Smirnov (KS) test [38]. For each feature
X∗i, the Algorithm 1 computes the KS test in order to quan-
tify the distance between the empirical distribution functions
of low and high risk groups assuming a significance level
α = 0.05. Features with p-value greater than α are excluded.
After that, Algorithm 1 computes a pairwise linear correlation
between the remainder features, excluding a feature X∗i if it
has a Pearson correlation coefficient greater than a threshold
β = 0.75 with any feature X∗j (∀i 6= j) with smaller p-value.
Then, it outputs a matrix X′ associating patients to selected
features.

Algorithm 1 addresses the requirements i and ii, and in
order to address requirement iii we split our data set rows
in three similar parts balancing the number of low and high
risk patients in each part. Then, we apply our algorithm to
each combination of data subsets, returning the intersection
between results. We called that final algorithm XFS.

XFS is independently applied over clinical features (CFS
component) and molecular features (MFS component). CFS
and MFS return matrix X′c associating patients to selected
clinical features, and matrix X′g associating patients to
selected molecular features, respectively.

C. FEATURE EXTRACTION
In order to create a better representation [39] of can-
cer patients, we use self-supervised and unsupervised ML

methods to find latent information in the raw molecular
data. In the following sections, we detail the Patient Clus-
tering (PC), Gene Clustering (GC) and Gene Encoding (GE)
components.

1) PATIENT CLUSTERING
Previous studies [40], [41] have shown that ability to classify
patients based on gene expression profile stratifies those with
different outcomes. Thus, we proposed a PC Component to
detect clusters of patients with similar molecular profile by
using the k-means clustering algorithm [42]. k-means is a par-
titional clustering algorithm, whose purpose is to split a set of
samples into k non-empty disjoint sets S = {S1, S2, . . . , Sk},
that is, all Si 6= ∅ and Si ∩ Sj = ∅, for i 6= j.
PC takes as input the matrix Xg and applies k-means for

partitioning the patient data into varying numbers of clusters
k = 2, 3, . . . , 50. Equation 1 presents the objective function
of k-means, which tries to cluster points such that the distance
of each element to the centroid of its nearest cluster Si is
minimized.

J (Xg) = arg min
S

k∑
i=1

∑
xj∈Si

d(xj, µi) (1)

where µi is the centroid of cluster Si and xj is an element
from cluster Si. From a random set of k centroids, the k-means
algorithm greedily assigns elements to their nearest centroids,
which can then be updated. The cluster assignments and
centroids’ update steps are repeated until there are no changes
in the clusters or a given maximum number of iterations is
reached. The assignment of a patient xj into a cluster Si at a
given iteration t can be described by Equation 2.

S(t)i =
{
xj : d(xj, µ

(t)
i ) ≤ d(xj, µ

(t)
l ) ∀l 6= i} (2)

In order to define the number of clusters of patients, that is,
the k value in k-means, we use the silhouette metric (sil) [43],
defined by Equation 3.

sil(x) =

{
(b(x)− a(x))/max(a(x), b(x)), if |Sx| > 1
0, if |Sx| = 1

(3)

where Sx represents the cluster assigned to x,

a(x) =
1

|Sx| − 1

∑
y∈Sx,x 6=y

d(x, y)

and

b(x) = min
z6=x

1
|Sz| − 1

∑
y∈Sz

d(x, y), ∀ Sx 6= Sz

Taking the silhouette coefficient, the number of clusters
k is optimized according to Equation 4, which selects a k
value that provides high average silhouette and is penalized
by standard deviation in order to better balance the variations
and sizes of the clusters.

arg max
k

sm(S)− σ (sm(S))
σ (cs(S))+ 1

(4)
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where sm(S) and cs(S) give, respectively, the silhouette met-
ric of all samples in the partition S and the number of elements
in each cluster Si ∈ S.

Finally, the PC component outputs a new matrix L with
the Euclidean distances between each patient and each of the
clusters’ centroids in the chosen partition S.

2) GENE CLUSTERING
The GC component aims to detect pairwise relationships
among genes who are co-expressed into cancer-relevant sig-
naling pathways [44]. Consecutively, GC has the purpose of
defining gene clusters and generating an integrated measure
from them.

GC takes as inputXg
T , that is, the transpose ofXg, and first

applies Principal Component Analysis (PCA) [45] to reduce
data dimensionality and obtain a linear combination of the
patient features which represent better the data variance. Let
r(·) be a function that retrieves the number of rows of amatrix,
only the first l = max(2, b0.1r(Xg)c) principal components
are kept, as defined by Equation 5.

xi = Xg
′
−

i−1∑
j=1

Xg
′wjwT

j (5)

where wj = arg max||w||=1 d(xj,w) and xi is a principal
component [39], [45].

Taking the reduced data set formed by the first l principal
components, GC clusters the genes using the same k-means-
based procedure employed by the PC component. Finally, GC
returns a matrix E = (eij) ∈ Rn×k associating each patient i
to the average of expression level h(·) of genes in a cluster
Cj, where n is the number of patients (sample size), k is the
number of clusters, and

eij =
1
|Cj|

∑
s∈Cj

h
(
Xg∗s

)
.

3) GENE ENCODING
The GE component aims to create a noise-resilient repre-
sentation of the molecular features [46]. This background
noise arises during the gene expression quantification pos-
sibly obtained under sample preparation or in the sequencing
step.

GE takes Xg
′ as input and it is founded on a Deep Denois-

ing Autoencoder (DDA) [47], a specialized dense neural
network based on self-supervised learning and composed of
an input layer, encoder and decoder layers and an output layer.
The encoder layer transforms a corrupted vector x′ into a
hidden representation y and a decoder layer maps back y to a
reconstructed vector z ∼ x′.

Our DDA architecture serializes an input layer, three
encoder layers, two decoder layers, and one output layer.
Encoder and decoder layers have b0.5mc, b0.4mc, b0.3mc,
b0.4mc, and b0.5mc units, respectively, where m is the num-
ber of attributes in Xg

′. It is optimized by minimizing the
Mean Squared Error (MSE) between z and uncorrupted data

x regularized by Tikhonov regularization [14] defined as
λWTW, where λ = 0.001 is the regularization factor,
and W is the weight matrix of the whole DDA network.
x′ is corrupted by adding a value from a random variable
R ∼ N (0, 1) with a probability of 0.75. DDA is trained by
AdaGrad algorithm [48] with a learning rate of 0.001 and a
batch size of 250 samples. For each learning iteration an R is
regenerated.

Finally, GE outputs a matrix Ge associating patients to
encoded values generated by the deeper encoder layer inDDA
computed from uncorrupted Xg

′.

D. PATIENT RISK PREDICTION
The final module of MuLT, namely PRP, takes as input the
concatenation X = (Xg

′
| Xc

′
| L | E | Ge | T).

LightGBMs [49] embedded to the Bootstrap Aggre-
gating (bagging) [50] meta-algorithm are used to model
the individual patient LRS. The training is composed of
two parts. First, the training data is split into two folds
and a hyper-parameter optimization using the Bayesian
optimization (BO) algorithm [51] is applied to define model
parameter values to improve generalization and accuracy.
One fold is used to train the model, and another to estimate
the log loss defined by Equation 6.

L(y, ŷ) = −
1
N

N∑
i=1

yi log(ŷi)+ (1− yi) log(1− ŷi) (6)

where y is a vector of expected risk classes and ŷ is the
estimated one.

The hyper-parameter optimization process returns the
LightGBM parameters with the minimum average log loss
in 50 independent iterations. Taking the optimized parame-
ters, the training data set is then split into three folds. An inde-
pendent TS predictor is created based on each pairwise
fold. Training is stopped after one iteration without log loss
improvement, or after 100 iterations. Final TS score is defined
via the average of TS scores computed by each predictor. It is
important to note that all the processes previously described
are applied only on the data available for training the models.

Finally, PRP outputs amatrixY associating patients to their
LRS.

IV. EXPERIMENTAL EVALUATION
We conducted a series of experiments in order to analyze our
approach in different cancer data sets and to compare it with
existing ML classification methods.

A. DATA SETS
Experiments were performed using four independent and
public cancer data sets gathered from the GEO database,
an international repository that freely distributes genomic
data sets. GEO is supported by the National Center for
Biotechnology Information (NCBI) at the National Library of
Medicine (NLM) [25]. Table 2 presents the cancer type, num-
ber of samples, number of molecular features (i.e., genes),
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TABLE 2. Summarized description of the cancer data sets used to driven
experiments. All data sets are publicly available at GEO Database via
Dataset ID.

number of clinical features (e.g., age, gender, treatment,
progression-free survival), percentage of missing values, per-
centage of female patients, and main references of each
selected data set.

GSE135820 is composed by patients with high-grade
serous ovarian tube cancer (HGSOC), and was originally
used to develop and validate the gene expression sub-type
predictor called PrOTYPE [52]. The original data set con-
tains 4,077 samples, with 16 clinical features and 513 genes.
Patients have an average Overall Survival (OS) of 1,618 days
and an average age of 60.3 (range 21-93) years. There are
1,314 samples marked as alive, 2,668 as dead and 95 as unde-
fined. We cleaned it by removing samples with missing Vital
Status (VS), age, or cancer stage. We removed features that
promote feature leakage [55], have more than 5% of missing
values or that have no predictive information (e.g., hospi-
tal information, year of diagnosis). After these adjustments,
we ended up with a data set composed by 3,798 samples, and
nomissing values. Risk groups were defined based onOS and
VS. We defined patients as low risk (1) if OS ≥ OS and as
high risk (0) otherwise.

GSE68465 contains data about lung adenocarcinoma,
the most common type of lung cancer. These data were
originally used on a study of survival prediction in lung
adenocarcinoma [54]. It has 462 samples, with 16 clinical
features, and 22,283 gene features. There are 220 patients
marked as female, and 19 as undefined. The average age is
64.4 (range: 33-87) years and 64.9% of all patients have a
positive smoking history. We removed samples with missing
VS or months to first progression, and deleted the first pro-
gression or relapse, and months to last clinical assessment to
avoid data leakage issues. Patients were marked as low risk
(1) if months to last contact or death is greater than or equal
to its mean and as high risk otherwise.

GSE94873 contains data about advanced melanoma
patients. It was used to identify blood-based features that can
predict clinical response and one year survival on patients
treated with Tremelimumab [53]. This data set is composed
by 720 samples, with 7 clinical features and 169 genes. There
are 438 male patients. The average age is 54.9 (range: 18-90)
years, and there are 398 patients marked as dead and
322 as alive.We removed tissue and immunotherapy response

features, once the former has constant value and the latter
promotes feature leakage. Once this data set does not contain
a survival time-based feature, patients were marked as low
risk (1) if VS equals to alive and high risk (0) otherwise.

We stress that there is no universal boundary to categorize
low and high risk cancer patients, mainly because cancer is
a heterogeneous disease consisting of many different sub-
types, and low and high risk categorization can vary as a
function of the research or clinical decision-making pro-
cess objectives. Our experiments considered boundaries from
averages of time-based features or vital status features in
order to address the fundamental concept that longer survival
time is associated with lower risk factors.

Finally, in order to ensure reproducibility, we implemented
a set of algorithms that download a data set directly fromGEO
Database and structure it into two tables, one for clinical and
other for molecular data.

B. EVALUATION METHODOLOGY
In order to directly compare MuLT performance, we defined
four baseline approaches, which are a MuLT variant
by removing the feature extraction module and replac-
ing EP component by either KNN, LightGBM, MLP,
and SVM methods preceded by a hyper-parameter opti-
mization. In addition, we perform experiments using the
5-fold cross validation methodology [56]. Table 3 presents all

TABLE 3. Complete list of hyper-parameters optimized by BO algorithm
in our experiments described per method.

VOLUME 9, 2021 115459



L. Venezian Povoa et al.: MuLT Approach for Distinguishing Low and High Risk Cancer Patients

hyper-parameters per method optimized by the BO algorithm
in our experiments.

We perform an independent experiment for each data set,
which starts by splitting entire data set into five disjoint parts.
The splitting process shuffle samples and generates parts with
similar numbers of patients per risk group. Consecutively,
an experiment consists of five rounds, each of which uses
four parts as training data and one part as testing data. Each
round employs a different part as testing data. Final results
of an experiment are described by the average performance
metrics across the rounds.

We evaluated and compare our approach by three differ-
ent perspectives. Classification performance driven by Area
Under the receiver operating characteristic Curve (AUC) [57]
metric, residual analysis [58], and classification complexity
reduction [59] obtained by MuLT when compared to raw
data only. We chose these perspectives because accuracy
and residuals together can provide a detailed understanding
of generalizability and bias avoidance while classification
complexity reduction analysis can provide a clear view of the
benefits of combining different feature types.

All experiments were conducted into a server with 32 GB
of RAM, 12 i7 cores of 2.20 GHz each, and a GPU NVIDIA
GeForce GTX 1050 Ti with 4 GB GDDR5 of dedicated
memory and 768 cuda cores.

V. RESULTS AND DISCUSSION
In this section, we present the main results and discuss our
findings.

A. CLASSIFICATION PERFORMANCE
Figure 2 presents the classification performance obtained by
the different algorithms in terms of AUCmetric. The reported
values correspond to the average of the measures obtained
for five independent CV rounds, according to the evaluation
methodology described in Section IV-B.

In this comparison, MuLT outperforms the other baseline
algorithms on the three analyzed data sets. The LightGBM
method is the second best. The observed difference between
MuLT and LightGBM is higher for the GSE68465 data set.
This can be explained by the facts that GSE68465 has a
smaller sample size, more missing values, and more over-
lapping classes as described in Table 2. As result, algorithms
that do not generate a more resilient representation of data
have a higher tendency to incorrectly classify patient risk
for more complex data sets. Considering absolute numbers,
the higher MuLT predictive performance observed in our
experiments provides the correct risk classification for more
than 150 cancer patients, and the MuLT time consumption
was 2.3 times higher in the worst case.

We can furthermore observe that ensemble-based
approaches (i.e., LightGBM, MuLT) were able to provide
better accuracies than non-ensemble baselines for patient risk
classification. Other aspect that we can observe in Table 4 is
the number of selected features for each data set. Once again
GSE68465 has a latent characteristic compared to the other

data sets, containing a higher number of selected features.
This fact impacts in a dimensionality challenge for the classi-
fication task, which could indicates another important MuLT
capability.

TABLE 4. Number of selected features in each data set. The counts
encompass the union of molecular and clinical features among CV rounds.

Finally, a direct performance comparison with related
algorithms [6], [28] was not applicable, as it requires to be
reproducible and evaluated under the same conditions of
our proposed algorithm (i.e., data set composition, response
variables, data distributions, train-validation-test partition).
However, when comparing MuLT architecture to these algo-
rithms we can highlight its composability, which makes
MuLT easier to be extended with new functionalities and
modules focused on representation transformation based on
specific characteristics of each feature type and via different
learning methods, thus taking advantage of potential hidden
information in the raw data.

B. RESIDUAL ANALYSIS
In our experiments, binary classes were estimated using a
continuous value between 0 and 1. Based on these predic-
tions, we computed residuals e = y−ŷ, and theMean Squared
Error defined by MSE = 1/n

∑n
i=1(yi − ŷi)

2, where e is the
residual from an inference, y is the actual patient risk (i.e.,
0 for high and 1 for low risk class), ŷ is the estimated class,
and n is the sample size.

Figure 3 presents the residuals associated with each
method applied in each data set coloring high and low
risk points differently. It also presents the associated MSE
and a linear regression curve of residuals estimated from
LRS with its coefficient of determination R2 = 1 −∑

(e− ē)2/
∑

(e− ê)2, where ē is the average residual, and
ê is the residual estimated from LRS.
R2 represents a goodness-of-fit, measuring it by values

between 0 and 1, where 0 represents a random model and
1 a perfect one. MuLT performed better than all methods for
GSE135820 and GSE68465 data sets and performed second-
best for GSE94873 where SVM take the best R2. We can
observe that residuals are not easy to predict in all data sets.
For a linear regression, it is expected that the variable to be
predicted follows a normal distribution, and for residuals it
is expected mean zero once it is not desirable big difference
between expected and predicted values. But in our results ks
tests give p-values equals zero when testing e ∼ N (0, 1) for
all methods and data sets.

In a complementary perspective, we can observe that
MuLT generated smaller MSE when compared to all other
methods in studied data sets. This observation was verified by
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FIGURE 2. AUC resulting from each method applied to the three cancer data sets used in this study.

testing the alternative hypothesis of MuLT’s MSE being less
than MSE generated by other methods. The t-test provides a
p-value lower than 3× 10−3, which is a strong evidence that
our alternative hypothesis is true when assuming a signifi-
cance level of 5%.

These results reinforce the predictive performance gains
obtained by MuLT, mainly in the GSE68465 data set that
has higher classification complexity in terms of sample size,
amount of missing data, and overlapping of the classes
(see Table 2).

C. CLASSIFICATION COMPLEXITY ANALYSIS
Once MuLT builds different data representations for a given
data set, we evaluate in this section how this impacts the
overall classification complexity of the underlying cancer risk
prediction problem. For such, we employ a set of measures
devoted to estimate the hardness level of a classification
problem based on data characteristics, aka data complexity
measures [59]. A set of feature-based complexity measures
was extracted for the original (raw) data sets and their MuLT
processed counterparts. The objective is to compare the hard-
ness level required to solve the classification problem before
and after the multiple data representations from MuLT are
extracted.

The classification complexity measures employed, imple-
mented in a tool named pyMFE [60], are:

• Fisher’s discriminant ratio (ft_f1): measures the over-
lap between the values of the features in the different
classes. Lower ft_f1 values are obtained for simpler
data sets, in which the individual input features are able
to discriminate the classes well, considering the usage
of hyper-planes perpendicular to the features’ axes to
separate the classes.

• Directional-vector Fisher’s Discriminant Ratio
(ft_f1v): it is similar to ft_f1, but seeks for a vector
which can separate the classes after the examples have
been projected into it. With this procedure, the hyper-
planes used to separate the data can be oblique in
relation to the features’ axis. Low ft_f1v values are
obtained when a linear hyper-plane is able to separate
the data. In this case, the classification problem can be
considered simpler compared to the need of a non-linear
decision boundary.

• Volume of Overlapping Region (ft_f2): this measure
computes the overlap of the distributions of the fea-
tures values within the classes, taking the minimum
and maximum values they assume for observations of
different classes. The higher the ft_f2 value, the greater
the amount of overlap between the classes considering
the features’ values and, consequently, the greater the
classification complexity of the problem regarding the
volume of overlapping aspect.
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FIGURE 3. Residuals associated to predicted values for each association between method and data set.

• Maximum Individual Feature Efficiency (ft_f3): this
measure estimates the individual efficiency of each fea-
ture in separating the classes. Low values are obtained
for problems where few examples lie in an overlapping
region of the classes for at least one input feature.

Considering the results shown in Figure 4, we can see that
MuLT data representation has lead to feature spaces with
reduced overlapping between the classes as compared to the
usage of the original data, for all data sets. The lower the
overlapping of the classes, the easier is their separation. This
is a clear advantage of the MuLT representation compared to
the most common direct usage of the raw data.

VI. FINAL REMARKS AND FUTURE WORK
In this final section, we first present final remarks of our work
and then give directions on future work.

A. FINAL REMARKS
Wehave proposed a novelMulti-Learning TrainingApproach
named MuLT for distinguishing low and high risk cancer
patients, based on clinical and molecular features. MuLT is
composed by different algorithms in order to improve data
representation and to find hidden information. Each compo-
nent has an specific goal based on data characteristics, taking
into account patient genetic profile, discovery of relevant
groups of genes, amount of uncertainty in the data capture

FIGURE 4. Measures of classification complexity reduction obtained by
MuLT. These values were computed by −(1 − ftMuLT/ftraw), where ftraw is
the metric computed from raw data, and ftMuLT is the metric computed
from raw data combined with MuLT feature extraction.

process, and high dimensionality. From the architecture per-
spective, our approach enables an easy combination of meth-
ods used in each component and an extensible structure which
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can be complemented based on new technical or biological
requirements.

Our experiments considered three different and inde-
pendent public data sets, and evaluated and compared
MuLT along three different perspectives: classification per-
formance, residual analyses, and complexity reduction.
We observed that MuLT had the best classification perfor-
mance, being particularly advantageous when the data set
has a high volume of missing data, high overlap among risk
classes, and less available information. MuLT also gets a
lower average error and its inner modules are capable of gen-
erating new features from raw data that reduced classification
complexity w.r.t. feature overlapping.

B. FUTURE WORK
Our plan for future work focus on extendingMuLT by adding
medical images as input data, creating specific modules to
treat that kind of data. We are also interested in two important
aspects of our approach. First, wewant to getmore insight and
knowledge on the gain obtained by each module individually,
identifying local and global gains in the training process,
overfitting reduction and bias reduction. This is motivated
by the fact that in incipient studies we identified that MuLT
could avoid bias in particular genetic profile, clinical condi-
tions, or treatments. Finally, we foresee a potential utiliza-
tion of MuLT in simulation processes that could be helpful
to driven laboratory researches or clinical decision making
protocols in a real medical setting related to cancer treatment.
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