
Received July 13, 2021, accepted August 8, 2021, date of publication August 17, 2021, date of current version August 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104794

A Novel Genetic Algorithm-Based Methodology
for Large-Scale Fixed Charge Plus Routing
Network Design Problem With
Efficient Operators
SAMIRA DOOSTIE , (Graduate Student Member, IEEE), TETSUHEI NAKASHIMA-PANIAGUA ,
AND JOHN DOUCETTE
Donadeo Innovation Centre for Engineering, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Corresponding author: John Doucette (john.doucette@ualberta.ca)

This work was supported in part by the Natural Science and Engineering Research Council of Canada (NSERC) under Discovery Grant
2017-06198.

ABSTRACT In this paper, we present a novel approach that addresses the problem of large-scale network
topology design and routing. There are research works that used exact methodologies based on Integer
Linear Programming (ILP) models to develop potential solutions for this problem. However, this problem
is computationally NP-hard, thus solving it is hugely demanding on computational power for large-scale
networks, and in many cases, it is not even possible to generate a solution with a reasonable optimality
gap. This paper presents a hybrid algorithm based on the Genetic Algorithm with efficiently designed
genetic operators. This algorithm aims to design the topology of large-scale networks and generate a routing
configuration for a set of predefined traffic demands on the networks while keeping the total cost of design
and routing at a minimum. The results have been compared to an exact ILP model, a relaxed ILP model,
and a customized GA as benchmarks for validation purposes. These comparisons showed that the proposed
algorithm significantly outperforms the ILP solutions in all of the large-scale network configurations that
were used as case studies.

INDEX TERMS Genetic algorithm, large-scale network, optimal topology, routing.

I. INTRODUCTION
Optical transport networks have become widespread, and
they have a pervasive role in most typical interactions of mod-
ern society. When designing and building out such networks,
designers often assume static and known traffic demands and
a known and static topology. However, over time, changes
in traffic demands, or perhaps maintenance activities or
upgrades in some parts of the networks, may drive inevitable
topological changes that need to be implemented. To apply
these changes, the network’s topology needs to be restruc-
tured or redesigned.

The network design problem, in its general form, may
include (holistically or as several sub-problems) topology
design, demand routing and working capacity placement,
and survivability routing and spare capacity placement. The
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topology design problem seeks the optimal topology structure
for the networks considering various factors such as cost
or certain constraints on the connections among the nodes.
The traffic demand routing problem aims to route all of the
demands on the network by finding the optimal path for each
demand to minimize the total cost of the routing. These two
sub-problems can be modeled together in a single ILP as
the fixed charge plus routing (FCR) problem [1]–[4]. Given
a fixed set of nodes, the objective of the FCR problem is
to minimize the total cost of the network topology design,
demand routing, and working capacity placement. The FCR
problem is described in detail in Section I.C.

In the event of some failure, the survivability routing and
spare capacity placement problem provides alternative rout-
ing on which the network can reroute the affected traffic and
ensures sufficient spare capacity to accommodate that rout-
ing. There are several survivability mechanisms developed
for the restoration process of networks, including automatic
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protection switching (APS), survivable rings, span restora-
tion, path restoration, p-cycles, and shared backup path pro-
tection, to name a few [5].

A number of works in the literature considered the basics
of network topology design, routing, and survivability prob-
lems using various ILP models [6]–[11]. In addition, several
works incorporated heuristics-based approaches in combi-
nation with ILPs that also consider the survivable network
design problem [12]–[19]. Many of those ILP models or
heuristic approaches can find an optimal or near-optimal
solution to the specific problems they address, but challenges
often arise associated with their processing and/or solution
time, especially for large-scale networks [1] and [13].

In work presented in [1], the authors introduced a three-
step ILP-based heuristic approach for the mesh-restorable
network topology problem, determining the optimal topol-
ogy, working traffic and restoration routing, and working
and spare capacity allocation. This near-optimal approach
provided solutions with minimal optimality gaps in most
cases and is much faster than addressing the complete mesh
topology routing and sparing (MTRS) problem in a single
step [1]. There are additional works that explored the routing
and survivability problem for networks with known topolo-
gies. In [20], the authors presented a new heuristic routing
method (based on space reduction) as an improvement to
the mixed-integer linear programming (MILP) runtime for
large-scale optical network design. That approach is useful
for moderate-sized networks with topologies that are known
in advance. Another example of work that deals with known
topologies is the work of [21], which developed a heuristic
method for transporting demands on a shared-mesh protec-
tion network in the event of multiple failures. The work dis-
cussed in [22] introduced a two-level evolutionary method for
a survivable network topology design problem. The results
obtained showed 3% to 7% improvements in runtime relative
to those discussed in [1], but only networks with less than 30
nodes were tested.

In the network reconfiguration problem, traffic demands
may frequently change [23]–[25]. In [26], the authors pre-
sented an arc-chain formulation for the routing problem,
given the network topology for medium-size networks. They
employed column generation and a generalized upper bound-
ing structure to improve the ILP efficiency.

A. GENETIC ALGORITHM
Employing evolutionary approaches has been an effective
way to increase the efficiency of network design prob-
lems [27]. Specifically, heuristics and evolutionary algo-
rithms have been proposed as alternative solution approaches
for the FCR problem [28]–[30] to improve the runtime.
Genetic algorithms (GAs) are a meta-heuristic that has
received a lot of attention in recent years and have been
employed in solving a broad cross-section of mathematically
complex problems in diverse areas, including operational
research [31], healthcare management [32], agriculture [33],
path planning [34], and robotics [35], to name a few.

A number of works in the literature initially employed
GA-based approaches for network design problems [36]–[39].
They employed basic genetic operators such as single-point
crossover and random binary flip mutation, which can result
in generating infeasibilities in the offspring. In general,
their results were not compared against any deterministic
benchmark to verify the optimality gap. In [40], a GA-based
approach for digital-data-network design was presented.
They encoded a binary string as their chromosome structure
and employed uniform crossover and random swap mutation
as their genetic operators. Their GA starts with a random
initial population, and they have considered only the fixed
cost of topology design and did not consider the cost of work-
ing traffic flow assignment in their model. The comparison
between the presented GA-based approach and a tabu search
in [40] showed that the results are almost the samewith regard
to the network design cost and the processing time. The
work in [41] and [42] employed genetic algorithms to design
minimum-cost networks that are restorable against single-
span failures. They considered a fixed network topology and
defined a set of pre-enumerated routes for transferring the
working traffics (i.e., working routes) and restoring every
working route (i.e., backup routes) in the event of single-span
failures. Thework in [41] presented aGA-based algorithm for
minimizing the network cost while protecting it against single
failures for a network with a predefined topology. Their chro-
mosome structure consists of a string of working and backup
paths for every traffic demand. They employed single-point
crossover and random replacement mutation. Their results
showed smaller costs and much longer processing runtimes
in comparison to tabu search. In [42], the authors presented
a GA-based algorithm for capacity and routing assignment
on a network with fixed (known) topology and subject to
single failures. Their aim was to minimize the total working
and backup capacities on the network. Their chromosome
structure consists of a set of working and backup routes
for every traffic demand and they employed single-point
crossover and random replacement of paths as their mutation
operator.

GAs have also been used as an interim step of hybrid
solution approaches, for example, to limit the search space
for an ILP’s initial solution. In [43], a hybrid ILP-GA
approach was used to find a minimum-cost set of preselected
cycles on a fixed-topology network design problem with
200 nodes. They defined their chromosome’s structure as a
set of pre-enumerated cycles within the network topology and
employed single-point crossover and random swap mutation
as their genetic operators. The authors in [44] presented
an approach to design large-scale optical networks using a
customized GA (CGA) to find a near-optimal design. They
considered a binary string as their GA chromosome structure
to represent the network’s topology. In their chromosome
structure, 1 represents the existence of a span in the network
and 0 otherwise. They used a single-point crossover and
a random binary flip mutation as their genetic operators.
As mentioned by the authors in [44], the utilized random
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operators can easily generate infeasible solutions (i.e., dis-
connected network topologies). Thus, they employed a repair
operator that detected the infeasibilities and repaired them.

B. RESEARCH GAPS AND CONTRIBUTIONS
We have identified several shortcomings that commonly arise
in the existing literature and developed an Improved Genetic
Algorithm (IGA) in a manner that seeks to overcome the
following common weaknesses:

1) Weakness: Generating a high-merit initial population is
time-consuming, due to the stochastic nature of the process
and subsequent repair actions that are often required to trans-
form infeasible solutions into feasible solutions.

Response: In our work herein, we designed our GA to
ensure that the solutions generated for the initial population
are connected network topologies; hence, they are inherently
feasible (Section II.B.1).

2) Weakness: Genetic operators (typically crossover and
mutation) are often inefficient if great care is not given when
designing them, specifically for the chromosome structure
that frequently results in offspring in need of repair.

Response: In our work herein, we designed crossover and
mutation functions that seek to satisfy the problem’s con-
straints, thus avoiding the need for a computationally expen-
sive repair process (Sections II.B.1.1 and II.B.1.2, II.B.2.2,
and II.B.2.3).

3) Weakness: The complete parameter space of the control
parameters (e.g., crossover and mutation rates) is vast, and
although the precise settings for those parameters can have a
very significant effect on the convergence rate of the GA and
the subsequent processing time, many GAs in the literature
do not specify any particular efforts to tune those parameters.

Response: In our work herein, we have carefully ana-
lyzed and tuned these parameters for the GA-based approach
(Section II.B.3).

4) Weakness: The validation of the results of the non-
deterministic approaches is an important step for analyz-
ing their effectiveness. Many GA’s in the literature were
only compared against other GAs or other non-deterministic
approaches.

Response: In ourwork herein, we have validated our results
using an ILP model as a benchmark, which can find the opti-
mal solution for cases where the complexity of the problem
allows an ILP model to be used (Sections III.A and III.B).

C. THE FIXED CHARGE PLUS ROUTING (FCR) PROBLEM
The network design problem that we are addressing in this
work is the FCR problem [1], where we seek to jointly
optimize the topology and working routing (and subsequent
working capacity allocation) to serve all traffic demands.
Although the FCRproblem does not originatewith us, wewill
present the full ILP herein, for completion.

In the FCR problem, by optimizing the topology, we are
aiming to establish the number of the required spans with the
least cost possible and by the working routing optimization,
we are seeking the cheapest working routes between the end

nodes of every traffic demand for transferring the traffic.
Two cost components define the total cost of a designed
network:

1) The fixed cost (Fij) is the cost of establishing the span
between nodes i and j.

2) The capacity cost (Cij) is the cost of transferring one unit
of the traffic on the span between nodes i and j. For simplicity,
hereafter, we refer to the span between nodes i and j as span
ij. Based on the defined cost components, the total cost of
a network with a set of established spans and routed traffic
demands over those spans is calculated using (1).

Cost =
∑
ij∈A

(Fij× δij+Cij×wij) (1)

Here, A is the set of all the possible spans connecting the
nodes, δij is a binary decision variable which has the value
of 1 if span ij exists in the topology and 0 otherwise, and wij
is the total number of the traffic units on span ij. The goal is to
minimize the total cost mentioned above subject to the traffic
demand constraints, as described in (2) through (6) [1]. The
ILP model of the FCR problem, which aims to minimize the
value of (1), contains (1) to (6).∑

nj∈A

wrnj = d r ∀r ∈ D, n = O[r] (2)

∑
jn∈A

wrjn = d r ∀r ∈ D, n = T [r] (3)

∑
in∈A

wrin−
∑
nj∈A

wrnj = 0 ∀r ∈ D, ∀n /∈ {O[r],T [r]} (4)

wij =
∑
r∈D

wrij ∀ij ∈ A (5)

wij ≤ w∞ · δij; δij ∈ {0, 1}; ∀ ij ∈ A|i < j

(6)

Here, wrij represents the number of working traffic flows
for demand r on the span ij, and d r represents the number
of flow units of demand r . Also, O[r] and T [r] represent
the origin and destination nodes of demand r , respectively.
Equations (2) and (3) ensure that the total flow from the
demand’s origin node to the destination node is precisely
equal to the demand units. Equation set (4) makes sure the
demand units pass entirely through the intermediate nodes.
Equation set (5) places enoughworking capacity on each span
to carry the flows of overlapping demands. Equation set (6)
makes our decision variable maintain their structure through-
out the solution, whether they are binary or integer.

The FCR problem has been shown to be NP-hard [1].
Although the problem can be solved efficiently for rela-
tively small networks by an appropriate commercial ILP
solver (e.g., GurobiTM, [45]), it is generally too computa-
tionally complex for large-scale networks [1]. Solving the
FCR problem on a suite of test case networks as represented
in Table 1 ranging in size from 40 nodes to 150 nodes,
we observe the runtime behavior documented in Table 2.

114838 VOLUME 9, 2021



S. Doostie et al.: Novel GA-Based Methodology for Large-Scale FCR Network Design Problem

II. PROPOSED METHODOLOGY
In solving the Fixed Charge plus Routing problem, the size
of the set of candidate spans for the network’s topology is
considerable and selecting an optimal subset of those can-
didate spans is a massive combinatorial problem; as stated
above, FCR is an NP-hard problem. Herein, we employ GA
to solve the Fixed Charge plus Routing problem for large-
scale network design.

A. GENETIC ALGORITHM BUILDING BLOCKS
In GA, a population of candidate solutions, or individuals,
is evolved into subsequent generations in an iterative fashion
until some termination criterion is met. The first step in a GA
is the generation of an initial population of individuals. This
is often done via some random or pseudo-random process.
In the context of the FCR problem, this could be done via
random selection of eligible spans to achieve full connectiv-
ity, for example, upon which we would then apply shortest
path routing for working capacity allocation. Each individual
is then evaluated with respect to some measure, typically the
objective function of the optimization problem; this is the
individual’s fitness.
A selection process is then used to select some subset of the

population, called parents, upon which genetic operatorswill
act. The two most common genetic operators are crossover
and mutation. In a crossover, the properties or characteristics
of two or more individuals are combined in some fashion
to produce one or more new individuals, called offspring.
In mutation, one or more properties or characteristics of an
individual are changed in some way to create offspring.

The properties of an individual are represented by a chro-
mosome, which consists of a set of genes. In general, a chro-
mosome is a string of data that fully encodes the properties of
an individual solution to the problem. For the FCR problem,
the chromosomes used would typically include genes that
represent whether the various eligible spans are present in the
solution. As an example, the network shown in Fig. 1 (where
dark lines represent spans that are present in the solution
and the light blue colored spans are not present) could be
represented by the chromosome shown.

A general schematic of an individual chromosome with
four genes and a population is depicted in Fig. 2 and Fig. 3,
respectively. The individuals in the initial population can be
evaluated using their fitness values. For GA to evolve the
chromosomes and generate future populations with better
fitness, the breeding process should be utilized. The breeding
process in GA is facilitated by a set of genetic operators and
results in the generation of a new set of chromosomes which
will be parts of the next population.

The two classes of genetic operators are named crossover
and mutation, which are responsible for deriving new chro-
mosomes from the already existing ones in the population. A
crossover operation takes the chromosomes of two or more
individuals from the population and combines their genes in
some fashion to generate two or more new solutions. In this
process, the selected individuals are called parents, and the

FIGURE 1. A GA chromosome representation of a network, including two
genes as the established spans and their working capacities.

FIGURE 2. The general structure of an individual chromosome with its
four constituent genes that are named A1, B1, C1, and D1.

FIGURE 3. The general structure of a population including five individuals.

newly generated individuals are called offspring. The off-
spring resulted from a crossover operator inherit genes from
both parents. On the other hand, mutation usually takes one
individual’s chromosome and applies a set of operations on its
genomes to make some alterations and create a new offspring.
The new offspring resulted from a mutation operator may
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have some of its ancestor’s features and information in its
new genes. Therefore, by applying the genetic operators to
the current members of the population, the current popula-
tion members will breed among each other and generate a
new population. If the chromosome structure and the genetic
operators are well designed, we will observe an improvement
in the populations’ fitness in every iteration. This iterative
algorithm will stop when it meets termination criteria such
as a specific individual’s fitness, passing a certain number
of iterations, or a specific runtime. Fig. 4 shows a crossover
operation applied on two chromosomes (chromosomes 5 and
3 from the population from Fig. 3) by swapping two genes
between them. The resulted offspring inherited two genes
from each parent. Fig. 5 demonstrates a general mutation
process on a selected individual. In this mutation, the second
and fourth genes of the chromosome are exposed to some
alterations, and as a result, their old structure as B2 and
D2 has been replaced by B’2 and D’2, respectively.

FIGURE 4. The general procedure of a basic crossover between two
individual’s chromosomes.

FIGURE 5. The general procedure of a fundamental mutation on two
genes of an individual’s chromosome.

To illustrate the general GA procedure, a high-level pseudo
code of GA has been described in Fig. 6.

B. IMPROVED GA OPTIMIZATION ALGORITHM
In our work, we developed a GA-based optimization
approach that consists of two well-designed GAs. The first
GA is referred to as the Initial-Population-Generator, or
IPG-GA, and is based upon the concept of the Travelling
Salesman Problem (TSP) [46]. In TSP, the goal is to find

FIGURE 6. Basic GA pseudocode.

the shortest cycle that passes through all nodes once and only
once, i.e., the shortest Hamiltonian cycle [47]. Taking inspi-
ration from the TSP, IPG-GA generates a set of Hamiltonian
cycles as feasible but sub-optimal network topologies. The
generated network topologies are considered as the set of
initial feasible solutions to the network topology design and
routing problem. The structure of the IPG-GA chromosome
is depicted in Fig. 7. Here, the genes store the order of the
selected nodes, which consequently represent the spans that
form a Hamiltonian cycle as the network topology. Based on
the installation cost of every selected span, the total topology
cost of the network is calculated as the fitness function value
of the individual. The details of the IPG-GA are discussed
below, in Section II.B.1.

Once a sub-optimal solution for the IPG-GA is achieved, a
routing function is called to route all of the demands on the
current network. The second GA, which we call the Master-
GA, is responsible for simultaneously improving the topology
of the network and routing the demands. The structure of the
chromosome for the Master-GA is depicted in Fig. 8. The
genes encode the spans selected in the solution as binary
values (1 if the span is selected, and 0 otherwise). A routing
function routes all of the demands and assigns the related
working capacities on the spans encoded in the genes, and
determines the total working capacity that arises on each
span. Aswith the IPG-GA, the fitness function is the total cost
of the individual, though that cost now also includes capacity
costs. The details of the Master-GA are discussed below,
in Section II.B.2. The high-level steps of the IGA, including
both IPG-GA and Master-GA, are presented in Fig. 9.

The proposed IGA algorithm includes two genetic algo-
rithms: IPG-GA andMaster-GA. The IPG-GA generates a set
of sub-optimal Hamiltonian cycles as bi-connected network
topologies. In other words, IPG-GA provides the Master-GA
with a set of bi-connected network topologies that are of
relatively good fitness. However, as the cyclic topology of
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FIGURE 7. Structure of the chromosomes in IPG-GA that demonstrates a
genetically coded Hamiltonian cycle as the network topology.

networks does not necessarily represent the optimum net-
work topology in terms of the network topology and routing
cost, we implemented the Master-GA to evolve the network
topologies further. The detailed steps of the proposed IGA
algorithm and its operators have been described in the follow-
ing sections. Following a convention in some of the literature
([36], [39]–[42], [44]), the setting of the parameters wasmade
according to our pre-assessment analyses.

FIGURE 8. Structure of the chromosome in Master-GA that demonstrates
the complete topology of the network and assigned working capacities to
the established spans in the network.

1) IPG-GA
As mentioned above, the well-known TSP seeks to find the
shortest path in a network by visiting all nodes once and only
once; in network design and routing problems, the shortest
path is often the lowest cost one. As we seek to minimize the
total cost of network design, the optimal solutionwould be the
cheapest network topology. In the discussion above, we intro-
duced the IPG-GA, which is responsible for generating a set
of sub-optimal Hamiltonian cycles where optimality refers to
the cost of the cycles. The IPG-GA starts with developing
a set of Hamiltonian cycles among the nodes by generating

60 random ordered sets of all nodes resulting in 60 cycles in
each generation. To generate newmembers for the next gener-
ation from the current one, IPG-GA benefits from two genetic
operators: crossover and mutation. In each generation, 65%
of the population undergoes mutation, and 65% undergoes
crossover. The IPG-GA proceeds for 60 iterations, and as it
proceeds iteration by iteration, the total cost of the cycles
in the upcoming generations either will be the same as the
current generation or will be less. Thus, the sub-optimal set
of Hamiltonian cycles will be achieved in the last generation
of the IPG-GA. The set of developed sub-optimal cycles
represent the topology of the networks. However, the traffic
demands have not been routed over the network, and thus,
the working capacities have not been assigned to the net-
works’ spans yet. For every cycle in the final generation of
IPG-GA, we used an assignment algorithm that routes all
of the traffic demands between their origin and destination
nodes. For every traffic demand whose end nodes are directly
connected by a single span in the network, a number of work-
ing traffic units equal to the traffic demand are assigned to that
span. The other traffic demands’ end nodes are on the cycle,
but they are not directly connected by a single span in the
network. In other words, these end nodes partition the cycle
into two incomplete cycles, either of which can be considered
as a route for the demand. The traffic should be routed over
the spans on either side of the cycle. To decide over which
side of the cycle a demand should be routed, we calculate the
total capacity cost of traffic routing on the spans on either side
and choose the one with the least total cost. Once for every
cycle from the last generation of the IPG-GA, all of the traffic
demands have been routed, we obtained an initial population
to be fed into the Master-GA for further improvement in the
topology design and routing cost. The pseudocode of IPG-GA
is shown in Fig. 9.

a: IPG-GA CROSSOVER
In IPG-GA, the chromosome structure is based on a random
order of all of the nodes. Every two consecutive nodes rep-
resent a span. The set of all of the spans associated with
the set of the random order of the nodes is stored as the
genes of the chromosome. We employed two crossover func-
tions to be applied to 65% of the current population in each
iteration. First, we selected crossover parents using uniform
random selection. Based on our pre-assessment analysis, both
two-point and single-point crossovers generated diversity in
the population. However, the two-point crossover was more
effective compared to the single-point crossover. Thus, for
every pair of selected parents, we applied either single-point
crossover with 0.25 probability or two-point crossover with
0.75 probability.

In single-point crossover (depicted in Fig. 10(a)), a nodal
index was selected using a uniform random process to be the
crossover point, where we partition the chromosomes of both
parents into two parts. Two new offspring are generated by
combining the first part of one parent with the second part of
the other parent and vice versa.
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FIGURE 9. Proposed IGA Pseudocode including the IPG-GA and
Master-GA.

Similarly, in a two-point crossover (depicted in Fig. 10(b)),
we select two crossover points (using the same approach as
for single-point crossover) and partition the chromosomes of
both parents into three parts. Two new offspring are subse-
quently generated by exchanging the middle part of one par-
ent with the middle part of the other, and vice versa. In some
cases, the crossover process creates an infeasible solution,
where some nodes appear twice in a chromosome, and other
nodes are absent. A repair mechanism follows the crossover
to check for such incidents and swaps duplicate nodes with
absent nodes. A schematic of this process is shown in Fig. 10.
The first time a duplicate member appears in the offspring,
it is replaced by a duplicate member of the other offspring.
The one-by-one correspondence for this replacement is based
on the indices of the duplicate members in the second part on
the parents. As an example, let us consider the two parents
represented in Fig. 10(a), assuming the partitioning point is
after the fifth member. The common members between the
second part of the second parent and the first part of the
first parent are 5 and 2. Similarly, the common members
between the second part of the first parent and the first part

of the second parent are 1 and 4. Considering the found
duplicate members in the offspring, the first time members
5 and 2 appear in the first offspring, they are replaced by
1 and 4, respectively. Similarly, the first time members 4 and
1 appear in the second offspring, they are replaced by 2 and 5,
respectively.

b: IPG-GA MUTATION
We utilized three different mutation functions: (1) two genes
chosen by a uniform random process are swapped, (2) two
genes are chosen by a uniform random process, and the entire
sequence of genes between them (inclusive) is reversed,
and (3) one gene chosen by a uniform random process is
removed and inserted in a new location chosen by a uni-
form random process. Parent selection was made using the
same approach described above for crossover. For each par-
ent selected for mutation, we use the first function with
0.25 probability, the second with 0.50 probability, and the
third with 0.25 probability. The three mutation functions are
illustrated in Figs. 11(a), 11(b), and 11(c), respectively.

2) MASTER-GA
The output of IPG-GA (i.e., its last generation) is a set of
high fitness Hamiltonian cycles. Each of these cycles rep-
resents a feasible network topology that would satisfy the
basic connectivity constraints of the FCR problem. However,
these cycles will not necessarily include the optimal topology.
Thus, the Master-GA is employed to improve this set of
topologies and converge to a near-optimal solution. We chose
the top 65% of the chromosomes from the last iteration of
the IPG-GA to be considered as the initial population for
the Master-GA. The pseudocode of Master-GA is shown in
lines 13-22 of Fig. 9.

a: MASTER-GA-ASSIGNMENT FUNCTION
In Master-GA, first, the topology of the network evolves
using the genetic operators. Then using the assignment func-
tion, all of the demands are routed over the network’s topol-
ogy, and the required working capacities are allocated on
the spans. We designed an improved Dijkstra’s routing and
assignment function to route the traffic demands and assign
working capacities to spans based on the proposed routing
operator in [44].

Given a set of traffic demands to be routed between their
origin and destination nodes and the cost associatedwith rout-
ing the demands over every span in a network, Dijkstra’s algo-
rithm [48] finds the minimum-cost route for every demand
between its origin and destination nodes. The assignment
function employs an improved Dijkstra’s algorithm to find
the minimum-cost routes for every demand on the network.
The cost of every route is determined based on the fixed cost
of span establishment for every span along the route, plus
the cost of transferring the traffic units on the spans along
the route. Therefore, the cost matrix is comprised of both
the span establishment and per-unit traffic routing costs, and
once the demand is routed on the network, the fixed cost
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FIGURE 10. IPG-GA crossover operators; (a) Single-point crossover, (b) two-point crossover.

of the spans that form the route will be set to zero for the
remaining demands; for already established spans, the cost
matrix in Dijkstra’s algorithm will only include the per-unit
cost of routing the traffic.

In addition to the dynamic cost matrix for routing, the order
of routing the demands have also been adjusted for routing.
Demands have three components: 1) origin node, 2) des-
tination node, and 3) the units of the traffic demand (d r ).
Here, they are sorted in descending order of their demand
unit values; demand relations with the most demand units
(i.e., with maximum d r ) are routed before those with fewer
demand units.

b: MASTER-GA-CROSSOVER
We employed two crossover functions to be applied to 55%
of the current population in every iteration. The percentage
of 55% has been selected based on a comprehensive set of

analyses that showed us the best crossover rate is between
50% and 60%. A detailed description of our analysis has
been provided in Section II.B.3. For a crossover operation,
we needed two parents to be selected from the population.
For every parent to be selected, we performed a tournament
selection with a tournament size of 10. According to our
pre-assessment analysis, tournament selection resulted in bet-
ter objective function values compared to random selection.
In tournament selection, the best solution among a set of
randomly selected solutions will be selected for crossover
and mutation, and having both the randomness and elitism
mechanisms can lead to a better result as opposed to only
random selection. We repeated this process until 55% of
the population was selected as crossover parents. For every
pair of selected parents, we applied master-crossover1 with
0.1 probability or master-crossover2 with 0.9 probability.
The master-crossover1 function takes two members of the
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FIGURE 11. IPG-GA mutation operators; (a) swapping elements,
(b) reversing a part of the chromosome, (c) moving an element from its
position to a new position in the chromosome.

population as parents and randomly removes 20% of the
spans from both of them using uniform random selection.
For each removed span, one span from the set of existing
spans in the second parent was appended to the first parent
such that the newly-appended span has one node in common
with the removed span from the first parent. The procedure of
the master-crossover1 function has been illustrated in Fig. 12.
This crossover generates new offspring using new combina-
tions within the already installed spans. Thus, it increases
the diversity of the population within the visited areas of the
search space. In other words, it promotes the exploitation
ability of the search algorithm.

The master-crossover2 function takes two selected parents
from the population and forms a set of spans that are absent
in both of the parents (i.e., the set of all of the eligible spans
except those in at least one of the parents). Then, using uni-
form random selection, master-crossover2 removes a random
percentage of the spans between 50% and 90% of the parent’s
spans individually. We selected this range (50 and 90) based
on our pre-assessment analysis, during which we found span
removal percentages greater than 50 and less than 90 resulted
in higher convergence rates. For each parent, from the set
of absent spans, the master-crossover2 selects 10% of spans
to be appended to that parent using uniform random selec-
tion. An illustration of master-crossover2 for one attempt of
span removal and span appending process has been shown
in Fig. 13. In this example, the span between nodes 5 and 6
(i.e., span 56) and span 25 have been removed from parents
1 and 2, respectively. Then, from the set of absent spans, one
span has been selected using uniform random selection to be
appended to each offspring. As this crossover generates new
offspring using absent spans (spans that were not installed
in the selected parents yet), it increases the diversity of the
population by exploring new areas of the search space.

c: MASTER-GA-MUTATION
We utilized four different mutation functions:

1) The most expensive span in the selected parent was
replaced with another span with the least cost such that it has
one end node in common with the replaced one. From the
ascending ordered set of spans (i.e., sorted from the minimum
to maximum cost), the first span that has an end node in
common with the removed span will be added to the network.

2) Using uniform random selection, 40% of the spans in the
network were selected. For every selected span, if the nodal
degree of each end node of the span was greater than 2, that
span was removed.

3) From the set of existing spans in the network, a randomly
selected percentage of the spans between 20% and 50% of
the spans were removed using a uniform random selection
process.

4) From the set of absent spans in a selected parent, 20%
of them were selected using uniform random selection and
appended to the offspring.

Parent selection was done using the same approach
described above for crossover. For each parent selected for
mutation, we use the first function with 0.2 probability,
the second with 0.3 probability, the third with 0.25 proba-
bility, and the fourth with 0.25 probability. Based on our pre-
assessment analysis, we found the effects of the four mutation
functions on the convergence rate of the algorithm almost
the same with observing small improvement from the second
mutation function compared to the first one. The first two
mutation functions are illustrated in Figs. 14(a) and 14(b),
respectively.

Although the mutation functions increase the exploration
ability of the algorithm, there is a chance they would gen-
erate partitioned network topologies and hence, infeasible
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FIGURE 12. Master-GA, master-crossover1 function; Dashed spans in the
parents are to be removed while the dashed spans in the offspring are
inherited from the parents.

FIGURE 13. Master-GA, master-crossover2 function; (a) two parents with
indicated spans to be removed, (b) the set of absent spans in both of the
parents, and (c) the generated offspring.

solutions. As most of the designed genetic operators try to
keep the offspring feasible, the small chance for generating
infeasibilities is associated with the randomness of selections.
To avoid an unnecessary computational cost, the infeasible
chromosomes did not go through the fitness evaluation pro-
cess and were removed from the population. Moreover, as we
initiated the Master-GA using a fully feasible population

FIGURE 14. Master-GA mutations; (a) Cost-based mutation; the
double-lined span is the newly installed span in the offspring, (b) Nodal
degree-based mutation; the total nodal degree has been indicated next to
every node, and the dashed-spans are the ones with highest
nodal-degree end-nodes.

from IPG-GA, in the worst-case scenario, even if all of the
offspring are infeasible, we would still have a sub-optimal
feasible solution to our problem.

3) CONTROL PARAMETERS
There is a set of input parameters that directly control
the efficiency of the algorithm. These parameters directly
affect the processing time and the convergence rate of the
algorithm. Setting up these parameters below a threshold
can weaken their effects on the efficiency of the algorithm
for converging toward the optimum solution while setting
them up above that threshold can cause elongated processing
times, which degrades the computational efficiency of the
algorithm.

We performed a comprehensive set of analyses for tun-
ing these control parameters for the presented IPG-GA and
Master-GA separately. The parameters have been analyzed
over 1440 separate runs (i.e., 20 runs per scenario). We ana-
lyzed a variety of crossover and mutation rates between
0.3 and 0.8. To select the best crossover and mutation
rates, there must be a trade-off between the fitness value
improvement and runtime increase. Our pre-assessment anal-
ysis showed that for every 10% increase in crossover and
mutation rates of the IPG-GA, the average runtime increased
by 2.6% and 2.1%, respectively. For example, by increasing
the crossover rate of the IPG-GA from 0.6 to 0.7 when the
mutation rate was fixed at 0.5, the runtime increased by
2.2%. Also, for every 10% increase in crossover and mutation
rates of the Master-GA, the average runtime increased by
8.6% and 13.9%, respectively. Thus, we have to select the
crossover and mutation rates that result in the best fitness
value improvement while avoiding elongated runtimes.
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The average fitness values for every combination of
crossover and mutation rates of the IPG-GA are depicted
in Fig. 15 and Fig. 16. For fixed values of mutation rate,
by increasing the crossover rate of the IPG-GA from 0.5 to
0.6, the average fitness value improves by 1.5%, while
by increasing the crossover rate beyond 0.6, according to
Fig. 15, the fitness value improvements almost plateau (less
than 0.5%). Moreover, for fixed values of crossover rate,
by increasing the mutation rate of the IPG-GA from 0.5 to
0.6, the average fitness value improves by 0.3%, while by
increasing the mutation rate above this value, the average
fitness value improvement is less than 0.2%. Thus, based on
the trade-off between the average fitness value improvement
and runtime increase, the best threshold for the crossover and
mutation rates in the IPG-GA were found between 0.6 and
0.7.

FIGURE 15. Average fitness value improvement with respect to various
crossover rates of the IPG-GA, while the mutation rates are fixed.

Similarly, the average fitness values for every combina-
tion of crossover and mutation rates of the Master-GA are
depicted in Fig. 17 and Fig. 18. For fixed values of the
mutation rate, by increasing the crossover rate of the Master-
GA from 0.4 to 0.5, the average fitness value improves by
0.2%, while by every 10% increase in the crossover rate
beyond 0.5, the average fitness value improvement is less

FIGURE 16. Average fitness value improvement with respect to various
mutation rates of the IPG-GA, while the crossover rates are fixed.

than 0.1%. Moreover, for fixed values of the crossover rate,
by increasing the mutation rate of the Master-GA from 0.5 to
0.6, the average fitness value improves by 1.8%, while by
increasing the mutation rate to higher values, the average
fitness value improvement is less than 0.3%. Thus, for the
Master-GA, the best threshold for the crossover rate was
found between 0.5 and 06, while the best threshold for the
mutation rate was found between 0.6 and 0.7.

FIGURE 17. Average fitness value improvement with respect to various
crossover rates of the Master-GA, while the mutation rates are fixed.

FIGURE 18. Average fitness value improvement with respect to various
mutation rates of the Master-GA, while the crossover rates are fixed.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
We now compare the results from the proposed IGA
against those from the benchmark ILP model described
by (1) through (6), a relaxed form of that ILP, and a cus-
tomized GA (CGA) based on [44] for the network topology
design and routing problem. We used a Microsoft Windows
Server 2012 R2 Standard x64-based PC, Intel(R) Xeon(R)
CPU E5-2650 v3 running at 2.30 GHz with 128 GB RAM
to solve the IGA in python 3.7 [49] and the ILP models using
Gurobi 8.1.0 [45].

In this study, we employed 22 different test case networks
ranging in size from 40 nodes to 150 nodes [40], [43],
[50], [51]. Following some sources in the literature, we refer
to the networks with 80 and 100 nodes as ‘‘medium-sized’’
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and 120 and 150 nodes as ‘‘large-scale’’ networks [40]. The
unit cost of transferring the traffic over the spans (C) for
test cases 1 through 4 was calculated based on the Euclidean
distance between the end nodes of every span and the span
establishment cost (F) is a factor of C . However, in the
network design process, the cost of span establishment and
the cost of transferring one unit of traffic on a span might not
have such a direct relationship. For example, if a portion of
a distance between two nodes is located undersea, the span
establishment cost between those two nodes may not be the
exact factor of their Euclidean distance. Therefore, based
on the various environmental and financial circumstances,
the cost factors can change. As we wanted to perform a
comprehensive analysis of the presented algorithm, we have
considered the second set of test cases with more general cost
factors. For the test cases 5 to 22, the cost factors (i.e., the span
establishment cost and the unit cost of transferring the traffic
over the spans), the number of the traffic demands, and the
magnitude of every traffic has been selected randomly using
uniform random selection process. The upper bound and
lower bound values of the unit cost (C) were selected between
10 and 100. Similarly, the values of the span establishment
cost (F) were selected between 100 and 1000. Moreover,
the demand magnitudes (d r ) were selected randomly with a
magnitude between 1 and 100. The details of the test case
configurations such as number of nodes, number of possible
spans, and number of traffic demands for every test case have
been tabulated in Table 1.

B. VALIDATION OF THE RESULTS
We employed both the ILP model and the presented IGA
for solving the network topology design and routing problem
on various test cases. The IGA results such as runtimes and
fitness values are obtained as the average of twenty sets of
runs for each network, individually. The results obtained are
tabulated in Table 2 where the normalized costs are calculated
by dividing the IGA fitness (i.e., objective function) value
by the objective function values of the ILP and relaxed ILP
models, respectively. The normalized costs (IGA/ILP) repre-
sents the optimality of the IGA’s solution, where the optimal
(minimum) network design cost is obtained from the FCR
problem’s ILP model presented in Section I.C.

It can be seen from Table 2, as the number of nodes in
a network increases, the ILP runtime becomes progressively
increased such that by doubling the number of nodes of the
test cases from 40 to 80, the average ILP runtime increases
by almost 30 times. The ILP runtime for larger networks
(e.g., test cases 14 to 22 with more than 100 nodes) is quite
prohibitive. For instance, the ILP solver could not improve
the found solution for test case 14 after more than 100 hours
of running. However, for the same test case, the IGA can get
to a reasonable optimality gap within a significantly shorter
time (i.e., up to 40% better objective function value compared
to ILP, within less than 5 hours). If a designer needs to solve
the problem just once, then long runtimes might be of little
consequence on a build that takes years. However, when

network designers analyze various demand matrices and look
at many multiple scenarios to determine which design will
work best for every scenario, they can run the network design
problem a great many times to determine the good configura-
tion. As the design process of large-scale networks can take
weeks or months for large scenarios, having a sub-optimal
solution within reasonable processing time might be a good
trade-off.

Based on the obtained results, it can be seen that the
proposed methodology can outperform the ILP both in terms
of runtime and objective function value, specifically for large-
scale networks. The IGA’s CPU process times vary between
0.1 hours and 10.7 hours. For networks with more than
80 nodes, the performance of IGA in terms of the processing
time and the objective function value is 100% of the time
more efficient than the ILP.

TABLE 1. Test case configurations.

For large networks, as the ILP has prohibitive runtime,
we solved a relaxed version of the ILP as well in order
to get a lower performance bound for the network design
and routing cost. In the relaxed version of the ILP model
(R-ILP), the integrality constraints on the decision variables
are removed. In other words, the number of working traffic
flows on every span that primarily needed to be an integer
value in the original ILP model can take any real value
in the relaxed ILP model. Although relaxing the integral-
ity constraints, reduces the computational complexity of the
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problem, the found solution does not necessarily represent
the optimal feasible solution to the original problem. The
optimal solution of the relaxed ILP model only represents a
lower performance bound on the network design and routing
cost. Meaning that in a minimization problem such as ours,
the optimal solution to the original ILP model will not be
smaller than the optimal solution provided by the relaxed ILP
model.

Considering this trade-off between the computational com-
plexity and the performance bound, we compared our results
against the relaxation of the original ILP, as well. The relative
objective function values that represent the ratio of the IGA
objective function value to the relaxed ILP solution, have
been reported in Table 2. Where we were able to solve the
original ILP to an optimal solution, the gaps between the
original ILP and the relaxed ILP were 19%, 17%, and 20%
on average for 40-node, 60-node, and 80-node networks,
respectively (average optimality gaps were calculated among
all test cases for each size).

As a third benchmark, we compared our IGA against
the CGA [44]. The crossover and mutation operators were
implemented according to [44], and their rates were set to
the suggested values in [44]; we refer the interested reader
to reference [44] for more details. For every test case,
we ran the CGA twenty times and reported the average
runtimes and normalized costs in the 4th and 8th columns of
Table 2.

Due to the randomness of the operators, the objective
function values are comparable to or worse than our IGA,
while the runtimes are up to four times longer. Specifi-
cally, for test cases 1 and 2 (40-node networks), the nor-
malized costs (IGA/CGA) are 1; however, CGA runtimes
are almost four times longer than IGA runtimes. More-
over, as the test case sizes increase (moving from 40-node
networks toward 150-node networks), the general trend
of normalized costs (IGA/CGA) is descending. This com-
parison shows that IGA outperforms the CGA for larger
networks.

The comparison between IGA and CGA shows that the
employed basic genetic operators such as a single-point
crossover and a random flip mutation cannot improve the
objective function value as efficiently as the problem-specific
operators introduced in this paper. Specifically, as the net-
work size grows, the complexity of the search space (e.g.,
the number of decision variables and constraints) increases
drastically. Thus, the effectiveness of such basic opera-
tors would decrease. Moreover, the basic genetic operators
can easily produce infeasible solutions. Therefore, a time-
consuming repair operator should be implemented to correct
the infeasible solutions. Thus, CGA runtimes are longer than
the proposed IGA.

Fig. 19 to Fig. 26 in the appendix illustrate the per-
formance of the proposed IGA for all of the test cases.
The obtained solutions from the IPG-GA are assigned the
required working traffic to accommodate all the demands.
The completed network topologies with routed demands are

TABLE 2. Comparison between the proposed IGA and benchmarks
(objective function value and processing times) for various network sizes.
R-ILP shows the relaxed ILP and CGA shows customized GA based on [44].

then utilized as the initial population for the Master-GA.
Fig. 19 to Fig. 26 represent the progress rate of theMaster-GA
as the complete solution to the network design and routing
problem.

The costs are normalized to the best cost achieved from
the benchmark ILP model. Note that in the larger test cases,
the first iteration of the IGA already outperforms the bench-
mark, though we continue iterating to achieve better results.
In Fig. 19 through Fig. 26, the solid data points represent
the average of the normalized network design costs over
twenty sets of IGA runs. The error bars represent one standard
deviation among the twenty sets of runs.

IV. CONCLUSION
In this paper, we have presented an Improved GA-based algo-
rithm for the large-scale network design and routing problem.
In the presented algorithm, the concept of TSP has been
employed to create a set of initial feasible and bi-connected

1The ILP solver was not able to improve the found solution even after
100 hours of running.
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FIGURE 19. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 1 and 2.

FIGURE 20. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 3 and 4.

FIGURE 21. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 5-7.

solutions (i.e., network topologies). The set of sub-optimal
initial feasible solutions have been created using the IPG-GA
algorithm. Then, a routing function routes all of the traffic
demands on the network topologies that have been obtained

from the last iteration of IPG-GA. The obtained population
of network topologies is fed to the Master-GA for further
topology and routing improvements in an iterative fash-
ion. We have developed two sets of well-designed genetic
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FIGURE 22. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 8-10.

FIGURE 23. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 11-13.

FIGURE 24. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 14-16.

operators (crossovers and mutations) for breeding new solu-
tions from the initial ones. These operators try to maintain the
feasibility and diversity of the solutions.

One of the main contributions of this research work is
that the proposed IGA starts with a set of feasible solutions.
Thus, even in the very first iteration of the algorithm, we have
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FIGURE 25. Performance of proposed IGA in terms of the normalized total cost of network design vs. the
number of iterations of Master-GA for test cases 17-19.

FIGURE 26. Performance of proposed IGA in terms of the normalized total cost of network design vs. the number
of iterations of Master-GA for test cases 20-22.

network topologies that are bi-connected. The bi-connectivity
of the initial solutions is the result of their cyclic structure.
Using TSP, a set of Hamiltonian cycles has been generated
for the initial population of the IPG-GA. Although the initial
solutions were feasible for this problem, they were not opti-
mal. Therefore, using the IPG-GA, the set of initial feasible
solutions was improved iteration by iteration to get a set
of optimal cycles that can be used as sub-optimal network
topologies for the Master-GA. As the Master-GA starts with
a set of initial feasible solutions, the convergence rate of the
algorithm will be more than the case the initial population is
generated randomly. Moreover, as the initial feasible solution
in this research is bi-connected, the constraints for employ-
ing the restoration mechanisms can be incorporated in the
algorithm too.

We presented well-designed crossover and mutation oper-
ators that try to keep the solutions feasible and decrease the
total network design cost while increasing the diversity of
the populations. Moreover, we conducted a comprehensive
set of experiments to tune the genetic operators’ rates. The

higher the genetic operators’ rates, the higher the diversity
of the population and the higher the runtime. Thus, to reach
a trade-off between the population diversity and runtime, a
suitable rate for crossover and mutation rates in both the
IPG-GA and Master-GA was obtained.

The proposed algorithm resulted in higher fitness levels
and runtime for all test cases with 100 nodes and more.
Moreover, for 9 test cases of moderate size, there have been
optimality gaps of almost 18%, with runtime improvements
as high as 75% compared to the ILP.

For larger test cases where the ILP solution encoun-
tered prohibitive runtimes, in order to provide a better
analysis of the IGA’s performance, we performed a relax-
ation of the original ILP (R-ILP) to obtain a lower bound
on the network design and routing cost. We then com-
pared the IGA results against the obtained solutions from
R-ILP.

APPENDIX
See Figures 19–26.
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