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ABSTRACT Insulator failure is one of the important causes of railway power transmission accidents. In the
automatic detection system of railway insulators, the detection and classification of insulator faults is a
challenging task due to the complex background, small insulators and unobvious failures. In this article,
we propose a railway insulator fault detection network based on convolutional neural network, which can
detect faulty insulators from images with high resolution and complex background. The insulator fault
detection network realizes the position detection and fault classification of the insulator by cascading the
detection network and the fault classification network. The method of cascading two networks can reduce
the amount of network calculations and improve the accuracy of fault classification. The insulator detection
network uses low-resolution images for position detection, and this method can prevent the detection network
from paying too much attention to the details of the image, thereby reducing the amount of network
calculations. The fault classification network uses high-resolution insulator images for fault classification.
The high-resolution images in this method have rich detailed information, which helps to improve the
accuracy of fault classification. The trained insulator detection network and the fault classification network
are cascaded to form an insulator fault detection network. The precision, recall and mAP values of the
insulator fault detection network are 94.10%, 92.88% and 93.46% respectively. Experiment shows show
that this network cascading method can significantly improve the accuracy and robustness of insulator fault
detection.

INDEX TERMS Convolutional neural network, target detection, railway insulator, fault classification,
cascade network.

I. INTRODUCTION
The insulator is located between the arm and the pillar in the
railway catenary, and has been exposed to the atmosphere
for a long time; it not only has to withstand wind and sun,
but also withstand strong electric field and strong mechanical
stress. Therefore, insulators are prone to failure, resulting in
reduced insulation strength, which threatens the normal oper-
ation of railway electrical systems. According to statistics
from relevant national departments, railway accidents caused
by insulator failures have increased year by year, and have
become the main factor leading to potential safety hazards
in the power system [1], so it is very important to detect
insulators. At present, the detection methods of insulators in
railways can be divided into two categories: power detec-
tion and non-power detection [2]. The principle of power

The associate editor coordinating the review of this manuscript and

approving it for publication was Fanbiao Li .

detection is to detect the leakage current of the insulator,
and use electrical methods to detect whether the insulator
has leakage current. This detection method is susceptible to
electromagnetic interference caused by arcs, which affects
the accuracy of judgment. The non-electricity detection is
based on the image information of the insulator, and the
method for processing image is used to detect the faulty
insulator. The advantages of this type of detection method are
non-contact, fast response and good linearity. The insulator
detection method in this article belongs to the non-electricity
detection method.

The non-electricity detection method uses image process-
ing technology to extract the characteristics of the insulator,
such as color, texture, shape, etc., to distinguish the insula-
tor and the background in the image. Zhang et al. [3] used
HIS model to identify tempered glass insulators and classify
them. Bharata Reddy et al. [4] used Discrete Orthonormal
S-Transform (DOST) and Adaptive Network-based Fuzzy
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Inference System (ANFIS) to identify the position of the
insulator and extract the color features, and then use K-means
clustering and Support Vector Machine (SVM) to classify
insulators. Li et al. [5] proposed a method for detecting insu-
lators based on texture. The method first uses contour projec-
tion to search for the position of the insulator in the image,
then obtains the characteristics of the insulator from the
image, and uses SVM for classification. Oberweger et al. [6]
proposed an algorithm based on local gradient descriptor
and local voting mechanism to detect insulators. The algo-
rithm also uses descriptors supported by elliptic space to
check whether the insulators are faulty. Wu et al. [7] pro-
posed a texture segmentation algorithm. The method first
divides the insulator image into multiple sub-regions with
smooth contours, and then uses Grey-Level Co-occurrence
Matrix (GLCM) to extract the texture features of the insulator,
with the contour of the insulator segmented by Grey level
co-occurrence integrated algorithm (GLCIA). Wang et al. [8]
proposed an insulator identification method that combines
shape, color and texture features. This method uses dominant
color components to identify insulators and detects insulator
drop-off defects through texture features. The above meth-
ods all require artificial design of insulator feature extrac-
tors, whose performance depends on the complexity of the
background and the image quality, and is not very robust
to complex and changeable background environments. For
different types of insulators, corresponding algorithms need
to be designed, andmore parameters need to be adjustedwhen
optimizing the algorithm.

Compared with traditional image processing algorithms,
deep learning technology has the characteristics of auto-
matic feature extraction, strong adaptability and high upper
limit. Among various deep learning techniques, the Con-
volutional Neural Networks (CNN) have good translation
invariance and robustness, so they are widely used in
tasks such as target detection and image segmentation.
Many models based on convolutional neural networks have
achieved good results in target detection tasks, such as Faster
R-CNN [9], YOLO [10]–[12], and SSD [13]. These mod-
els have also been successfully applied to areas such as
autonomous driving, face recognition and cell detection, and
achieved good results. At present, some researches have used
the classic convolutional neural network model for insula-
tor fault detection. Zhang et al. [14] proposed a catenary
insulator detection model based on the GAN model. It can
be successfully trained with only normal insulator images.
Detect surface defects of real insulators. In the method pro-
posed by Varghese et al. [15], the GoogLeNet pre-trained
model is used for wire, tower and insulator detection, and
the output of the CNN model is processed by the method
of spectral clustering. Gao [16] proposed a CNN model
that combines target detection and image segmentation to
segment and classify insulator images from transmission
tower images. Liu et al. [17] combined the location informa-
tion of the catenary support components with the improved
SSD network and proposed a new detection method for the

catenary support components to achieve rapid positioning
of 12 components in the catenary. Kang et al. [18] proposed
a new insulator detection model based on the Faster R-CNN
model and deep multitask neural network (DMNN), which
can simultaneously segment insulators and indicate defect
detection. Huo et al. [19] improved the accuracy of cate-
nary insulator detection by adding deconvolution to faster
R-CNN. Insulators in railway catenary image data have the
characteristics of complex background, high damage rate
and unobvious failures, which increase the difficulty of
detecting insulator failures. And image target recognition
algorithms based on convolutional neural networks are all
general algorithms. If you want to better complete the task
of detecting catenary insulators, the algorithms need to be
improved.

In this article, a cascaded split detection network (CSDN)
for railway insulator detection and classification based on
convolutional neural network is established, which is mainly
composed of insulator detection network and fault classi-
fication network. The insulator detection network merges
the feature maps with different semantic information through
the feature fusion module [20], and then multiplies the fused
feature map with the attention map through the multi-region
adaptive module, so that the features in the feature map
are automatically enhanced [21]–[23], and finally the RPN
module [9] predicts the position information of the insulator.
In the fault classification network, we use the location infor-
mation of the insulators and the original contact net to obtain
high-definition insulator images, and then use the vgg16 net-
work to extract insulator features and classify the insulator
status. The network proposed in this paper is divided into two
steps during training. In the first step, the detection network
is trained using the detection data set, after the training is
completed, the detection network can accurately detect the
position of the insulator. In the second step, the classification
data set is used to train the fault classification network; after
the training is completed, the fault classification network can
correctly classify the insulators.

II. METHODOLOGY
The CSDN model we designed is shown in Figure 1, which
consists of a detection network and a classification net-
work. The detection network mainly includes three mod-
ules: amulti-layer fusionmodule, amulti-area self-adaptation
module, and a proposed area network. The detection network
realizes the output of the insulator position through the func-
tion of different modules. The classification network is com-
posed of 13 layers of convolutional layers and 3 layers of fully
connected layers. It performs feature extraction through the
convolutional layers to realize the classification of insulator
states.

When the detection network and classification network are
both trained, they are cascaded together to form our CSDN
model. The detection process of the CSDN model is shown
in Figure 1. First, input the reduced catenary image into
the detection network, and output the position information
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of the insulator. Secondly, input the W×H catenary image
and insulator position information into the crop layer, output
the cropped insulator image, and fill the insulator image
with black. Finally, input the cropped insulator image into
the classification network, output the predicted state of the
insulator, and draw the final result map.

In the CSDN model, the detection network uses the
reduced catenary image to detect the position of the insu-
lator, which greatly reduces the amount of calculation of
the detection network and improves the detection speed.
In the classification network, the classification accuracy is
improved by using insulator images with rich details. The
CSDN model realizes fast and accurate insulator position
positioning and status classification by connecting the trained
detection network and the classification network in series.

FIGURE 1. CSDN model testing process.

A. DETECTION NETWORK
As shown in Figure 2, the detection network is composed of a
multi-layer fusion module, a multi-area adaptive module and
an RPN module, and its function is to detect the position of
the insulator. The multi-layer fusion module is composed of
5 blocks and a fusion layer, and its function is to synthesize
and output image semantic information of different levels
output by different blocks to form a feature map with rich
feature information. The multi-region adaptive module is
composed of a down-sampling layer, a convolutional layer,
and an up-sampling layer, and its function is to adaptively
strengthen the feature map output by the multi-layer fusion
module, so that the insulator characteristics in the image are
enhanced. The RPN module is composed of RPN, ROI and
FC, and its function is to judge the position of insulator in
the feature map, so that the detection network can accurately
locate the insulator.

1) MULTI-LAYER FUSION MODULE
The function of the multi-layer fusion module is to enrich
the information of the feature map and improve the per-
formance of the detection network. As shown in Figure 2,
the multi-layer fusion module structure consists of five
Blocks and a concatenate layer. Block1 and Block2 are

FIGURE 2. Schematic diagram of detection network. B1 represents
block1, B2 represents block2 and so on, Down represents
down-sampling, X represents feature map, X’ represents feature map
after multi-region adaptation, C represents the channel number of
feature map, H represents the height of feature map, W represents the
width of the feature map, ⊗ Represents multiply pixel by pixel, loc_info
represents location information.

composed of two convolution layers and a maximum pooling
layer respectively, Block3 and Block4 are composed of three
convolutional layers and a maximum pooling layer respec-
tively, and Block5 is composed of two convolutional layers.
In the multi-layer fusion module, the size of the convolution
kernel is set to 3×3, the step size is set to 1, the pooling layer
size is both 2 × 2, and the step size is 2. When detecting,
first input the reduced contact net image to the block for
convolution operation. Then, the output characteristic maps
of Block1 to Block4 are down-sampled respectively. Finally,
the different features are merged together in the concatenate
layer.

All the convolution kernels in the multi-layer fusion mod-
ule are smaller in size. Such a small-sized convolution kernel
has the characteristics of fewer parameters and less calcu-
lation, which can increase the speed of the detection net-
work. In the convolutional neural network, the abstraction
degree of features extracted from different network depths
is different. When the network is shallow, features such as
texture and details can be extracted, and when the network is
deep, features such as contour shape can be extracted [24].
In the multi-layer fusion module, we merge the outputs of
different depth networks together to enrich the semantic
information contained in the feature map. In order to maintain
the consistency of the feature map size before the feature
map fusion, we down-sample the output feature maps of
Block1 to Block4. In network training, migration learning
can reduce the time of network training [25], so the weight
of the vgg16 pre-trained model on ImageNet is used when
initializing the convolutional layer in the multi-layer fusion
module [26].

2) MULTI-REGION ADAPTIVE MODULE
The function of the multi-region adaptive module is to make
multiple regions in the feature map adaptively optimize the
features. The structure can be seen from Figure 2, which
consists of a down-sampling layer, two convolutional layers
with a size of 1×1, and an up-sampling layer.When detecting,
the feature map x with the size of W×H×C is first input
into the down-sampling layer, and after the processing of the
down-sampling layer, the size of the feature map x becomes
4×4×C. Then, the output feature map of the down-sampling
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layer is sent to the two convolutional layers with a size of 1×1
to calculate the attention map. Sigmoid function and ReLU
function are used as activation functions respectively in the
first and second convolution layers. Finally, the calculated
attention map is multiplied pixel by pixel with the feature
map x after the up-sampling layer.

When calculating the attention map, we use the average
pooling layer to perform average pooling in multiple regions
of the feature map. Compared with global average pooling
and global maximum pooling [27], [28], multi-region average
pooling can retain more details in the feature map. In order
to ensure the size consistency of the attention map and the
feature map when multiplied, we up-sample the attention
map.

3) RPN MODULE
The function of the RPN module is to propose a region
proposal for the feature map for the position regression of
the insulator. The structure can be seen from Figure 2, which
consists of an RPN, a layer of ROI and two fully connected
layers. In the RPN module, the cross-entropy loss function
is used as the loss function to distinguish anchors from the
foreground or the background. The expression is as follows.

Lclsp
(
p∗i , pi

)
= −

1
N

∑
i

[
p∗i log (pi)+

(
1−p∗i

)
log (1− pi)

]
(1)

In formula (1), p∗i represents the probability of positive and
negative samples, p∗i is 1 for positive p∗i samples, and 0 for
negative samples. pi Represents the probability of predicting
that the anchor belongs to the foreground. The loss function
expression usedwhen returning from the anchor to the precise
region proposal is as follows.

Lregp
(
p∗i , ti, t

∗
i
)
=

1
N

∑
i

[
p∗i Lreg

(
ti, t∗i

)]
(2)

In formula (2), p∗i represents the probability of positive and
negative samples, and it is 1 for positive samples and 0 for
negative samples. Only positive samples return to the bound-
ing box. ti Represents the predicted Bounding Box coor-
dinate, and t∗i the coordinate of Ground Truth Bounding
Box. Lreg() represents the Smooth L1 loss function, and the
expression is as follows.

Lreg
(
ti, t∗i

)
=

{
0.5

(
ti − t∗i

)2 ∣∣ti − t∗i ∣∣ < 1∣∣ti − t∗i ∣∣− 0.5 otherwise
(3)

The Smooth L1 loss function is used when calculating the
loss of the prediction box. The Smooth L1 loss function has
the following two characteristics: (a) When the difference
between prediction box and Ground truth is too large, the gra-
dient value will not be too large; (b) When the difference
between the prediction box and Ground truth is small, the
gradient value is small enough. Convolutional neural network
training requires stability and can be trained to high accuracy.
The gradient value is an important factor that affects the

stability of network training. If the gradient value is too large,
the training will be unstable and it is difficult to achieve high
accuracy. So based on our requirements for network training
and the characteristics of the Smooth L1 loss function, we use
the Smooth L1 loss function when calculating the loss of the
prediction box

B. FAULT CLASSIFICATION NETWORK
The function of the classification network is to classify the
status of the insulators. In this network, the status of the insu-
lators can be divided into: normal, damaged and missing. The
structure of the classification network is shown in Figure 3,
which is divided into a clipping layer, a feature extraction
layer and a prediction layer. The output of the catenary image
and the detection network (the position information of insu-
lators) is used as the input of crop layer. In the crop layer,
the position information of the insulator is amplified first,
and then projected into the catenary image to intercept the
insulator image, and then the insulator image is adjusted to
360 × 360 pixel size using the method of filling, and then
input into the feature extraction layer. In the feature extraction
layer, Vgg16 network [29] is used to extract the insulator
features and classify the insulator state. There are three inputs
in the Prediction layer: insulation position information, insu-
lator state classification and catenary image. The output of
the predict layer is a catenary image marked with insulator
position and insulator state information.

FIGURE 3. Schematic diagram of fault classification network.

Joining the classification network can improve the accu-
racy of insulator state classification. The input image of the
classification network is a high-definition insulator image,
which contains rich detailed information of the insulator and
is beneficial to improve the accuracy of the network. In the
classification network, the vgg16 network with a deeper net-
work structure is used to extract the insulator features. The
extracted features contain high-level semantic information
such as contours and shapes, which are beneficial to image
classification.

When training the fault classification network, vgg16 is
trained using the classification data set alone. After the
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training is completed, the crop layer and prediction layer are
added. The cross-entropy loss function is used as the loss
function in the fault classification network, and its function
expression is:

L = −
1
N

N∑
i∈M

[
yi log pi + (1− yi) log (1− pi)

]
(4)

In formula (4), M represents the collection of images in
the training set, yi represents the label, the value of positive
samples is 1, and the value of negative samples is 0. pi Indi-
cates that the output value of the softmax layer is between
0 and 1. When the difference between the predicted value
and the label value increases, the gradient of the cross-entropy
loss function will also increase, and the parameter adjustment
amplitude will increase accordingly to achieve the purpose of
rapid convergence when the parameters are updated

III. EXPERIMENTAL RESULTS
In this section, The proposed network will be evaluated by
detecting images taken by high-definition cameras. First,
the main contents of the experiment include the description of
the data set, the evaluationmethod and the experiment setting.
Then, according to the experimental results, the influence of
the model or the network is analyzed and conclusions are
drawn. In the experimental settings, two experiments were
carried out, namely, the performance test of the detection
network and the test of different input sizes of the detection
network, verifying the influence of the multi-layer fusion
module, the multi-region adaptive module and different input
sizes on the insulator detection network. In addition, a fault
classification network test experiment was set up to test
the performance of the fault classification network. Finally,
a CSDN performance test experiment was carried out to
compare the performance of our detection network and the
current mainstream detection network in railway insulator
fault detection and classification tasks. The results of the
above experiments are detailed in C.

A. DATA SET PREPARATION
All catenary images are provided by China Railway Group
Co., Ltd. for the monitoring and testing of catenary. The pixel
size of the catenary image is 3968× 2976, and the number is
1100, each image containing at least three insulators. In the
entire data set, the weather in the image includes sunny,
cloudy, and rainy days, and the background includes hills
and plains. Among them, 1000 images are used to make the
detection data set and classification data set, and the other
100 images are used to make the evaluation data set. The
detection data set is used to train, verify and test the detection
network; the classification data set is used to train, verify and
test the classification network; the evaluation data set is used
to evaluate the performance of the CSDN.

The 1000 contact net images with a pixel size of 3968 ×
2976 are reduced to 500 × 375 images, and then the data
set is expanded by the method for mirror transformation and

brightness adjustment to make the detection data set. Mirror
transformation and brightness adjustment cannot only expand
the data, but also simulate the real railway environment. After
data expansion, the test data set is composed of 4000 catenary
images with a pixel size of 500 × 375; the test data set is
divided into training set, validation set and test set. Part of
the image of the detection data set is shown in Figure 4 a.

FIGURE 4. Part of the image in the data set. (a) The picture is the
detection data set, (b) the picture is the classification data set.

The insulator coordinate information of the training set in
the detection data set is enlarged and projected back to the
original catenary image with a size of 3968× 2976, and then
the insulator image is intercepted to make a classification
data set. A total of 2,000 insulator images were intercepted,
including 1,851 insulators in normal state, 81 insulators dam-
aged, and 68 insulators missing. Because the insulator is
damaged and the number of missing images of the insulator
is small, it will cause data imbalance, which will affect the
network performance. Therefore, the method for data expan-
sion (such as mirroring, rotation and brightness adjustment)
is used to expand the images of damaged insulators and
missing insulators to reduce the impact of data imbalance.
After the data set is expanded, the total number of images in
the classified data set is 2447. Since the intercepted insulator
images are inconsistent in size and cannot be input into the
classification network, the images in the classification data
set are filled with 360× 360 images. Part of the image of the
prepared classification data set is shown in Figure 4 (b). The
evaluation data set consists of 100 original catenary images
with a pixel size of 3968× 2976, which are used to evaluate
the performance of CSDN. The specific image data division
of the detection data set, classification data set and evaluation
data set is shown in Table 1.

TABLE 1. Data set division.

B. IMPLEMENTATION
The parameters of the detection network in this article are set
as follows: the basic size of anchors is (64, 128, 256), and
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the scaling ratio of anchors is (0.5, 1, 2); the initial learning
rate is 0.001, the momentum is 0.9, the training batch is 64,
the IOU threshold in the RPN module is 0.6, and the NMS
threshold is 0.7. In the multi-layer fusion module, the weights
of vgg16 on ImageNet are used to initialize the convolutional
layer, and other convolutional layers in the detection network
are initialized with He initialization [30]. In order to evaluate
the performance of the detection network, four widely used
metrics are applied, namely AP, Recall, Precision and PR
curves. Considering that the railway companies pay different
attention to AP, Recall and Precision, we have introduced the
APR indicator [31]. The calculation formula of APR is:

APR = 0.5 ∗ AP+ 0.3 ∗ Recall + 0.2 ∗ Precision (5)

Different weights represent the different emphasis of the
railway company on recall, precision and average precision.
Compared to the precision, the railway company cares more
about the recall. This is because the false positives can be
easily excluded in the limited images while the false negatives
need to look through all the inspection data for manual check.

The parameters of the classification network are set as
follows: the initial learning rate is 0.005, the momentum
is 0.9, the training batch is 128, and the number of iterations
is 6,000. All convolutional layers are initialized using HE.

Three metrics were used to evaluate the performance
of the classification network, namely Precision, Recall and
F1- Score. The calculation formula of F1-Score is:

F1 =
2Precision ∗ Recall
Precision+ Recall

(6)

C. EXPERIMENTAL RESULTS
1) MULTI-LAYER FUSION MODULE
The model of the detection network is shown in Figure 2.
In this section, the influence of the multi-layer fusion module
and the multi-region adaptive module on the detection net-
work are tested through experiments. For this, four models
are trained separately: MF_0, F_3, MF_5 and MFA. In the
three detection network models of MF_0, MF_3 and MF_5,
the three numbers 0, 3, and 5 indicate the number of blocks
fused in the fusion module, and none of these three detection
network models contain a multi-region adaptive module. The
MFA detection network model includes a multi-layer fusion
module, a multi-region adaptive module and an RPNmodule,
and the output of all blocks is fused in the multi-layer fusion
module. The four models are trained using the same training
set of the detection data set, and the model is output after
training for 2000epoch, and then tested on the test set. The
test results are shown in Table 2 and Figure 5.

It can be seen from Table 2 that MF_5 and MF_3 are
improved in Precision, Recall, AP and APR compared with
MF_0, indicating that the method of fusing the feature maps
output by different blocks can improve the performance of the
detection network. This is because the feature maps output by
different convolutional layers contain different levels of infor-
mation, and fusing these different feature maps together can

TABLE 2. Test results of different models.

FIGURE 5. PR curves of different models.

FIGURE 6. Test results of the detection network.

enrich the semantic information of the feature maps. Com-
pared with MF_3, the performance of MF_5 has improved
but not much, indicating that the feature map extracted by
the previous convolutional layer has a low contribution to
improving the performance of the detection network. Com-
pared with the other three models, MFA has the best per-
formance in the four indicators of Precision, Recall, AP and
APR, and the improvement of Recall is the largest, indi-
cating that the multi-region adaptive module improves the
performance of the detection network. This is because in the
multi-region adaptive module, we multiply the attention map
with the original featuremap, which can strengthen the region
of interest of the network and retain smaller features. The
Time indicator is the time it takes to test each image, and the
Time of the four model tests of MF_0, F_3, MF_5, and MFA
increase in turn. This is because the more complex the model,
the more time it takes to detect.
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The Precision-recall curve is shown in Figure 5. It can be
seen that the Precision of the MF_0 model remains above
90% when the recall changes from 0 to 87%; The Precision
of MF_3 and MF_5 models remained above 90% when the
recall range was 0 to 90%, and the Precision of MFA model
remained high when the recall range was 0 to 95%. This
shows that the multi-region adaptive module improves the
detection network performance more than the multi-layer
fusion module. Since the MFA model achieves a good com-
promise between high precision and high recall, and can
accomplish the insulator detection task well, the MFA model
will be used as our detection network.

Figure 6 is a partial test result of the MFA model on
the test set, where the number above the red box represents
the score of the insulator. It can be seen from Figure 6 that the
scores of the insulators are all above 99% and the positions
of the frames are more accurate. Figure (a) is an image
taken on a sunny day and Figure (b) is an image taken on
a rainy day. It can be seen from the detection results that the
detection network performs very well under different weather
conditions, and that Figures (b) and (e) both contain two
different types of insulators. It can be seen from the detection
results that the detection network has a good detection effect
for different types of insulators, and that the background
in figure (c) is relatively simple in the sky and the background
in figure (f) has protective walls, plants and hills. It can be
seen from the inspection results that the inspection network
performs well regardless of its complex background or single
performance.

It can be seen from the above experimental results that
the AP value and APR value of our designed detection net-
work are 94.23% and 94.50% respectively, and they have
good detection results for different types of insulators under
different weather backgrounds. It shows that the detection
network we designed can well complete the task of detecting
the position of the railway catenary insulator.

2) DETECTION NETWORK IMAGE INPUT TEST OF
DIFFERENT SIZES
We use images with long side lengths of 500, 400, 300, and
200 to train the detection network, and also change the long
side lengths of the images in the test set to 500, 400, 300,
and 200 respectively. The test results of the impact of the test
image size on the detection network are shown in Table 3 and
Figure 7. It can be seen from Table 3 that when the input size
is 200, AP and APR are 35.82% and 37.97%, respectively,
which are both low, because the smaller the image size,
themore difficult it is to detect insulators. In Table 3, when the
input size is increased from 200 to 500 in turn, both AP and
APR values increase sequentially, and when the input size is
500, AP is 94.23%, APR is 94.50%;therefore, we set the input
size of the test network to 500. It can be seen fromTable 3 that
when the size is increased from 200 to 500, the detection
time also increases from 49.1ms to 82.7ms, indicating that
the larger the image size, the longer the detection time.

TABLE 3. Performance test results of different input sizes of the
detection network.

FIGURE 7. Test results of detecting different size inputs of the network.

Figure 7 shows the PR curves of models trained with differ-
ent input sizes on the test set. It can be seen that the detection
network trained with an image size of 200 performs poorly,
that the performance of the detection network becomes better
as the image size increases, and that the detection network
trained with an image size of 500 performs best.

From the above experimental results, it can be seen that as
the size of the input image of the detection network increases,
the network detection effect becomes better, and the detection
time is also increasing. In order to balance the network detec-
tion effect and detection time, we set the long side size of the
input image of the detection network to 500.

3) FAULT CLASSIFICATION NETWORK TEST
The model of the classification network is shown in Figure 3.
In this section, the training set in the classification data set
will be used to train the classification network. The trend
of loss and accuracy during training is shown in Figure 8.
Figure 8 (a) shows the loss change curve during the training of
the classification network. It can be seen from the figure that
the loss of the classification network is continuously decreas-
ing. When the loss of the classification network is reduced
to less than 0.1 after 5000steps of training. Figure (b) in
Figure 8 shows the accuracy of the classification network dur-
ing training. From Figure (b), it can be seen that the accuracy
of the network after 500step training reaches 0.9 or more,
and after 6000step training, the accuracy can reach 0.95 or
more. Figure 8 shows that the classification network con-
verges and performs better for insulator state classification.
Insulators can be divided into three states: normal, damaged
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TABLE 4. Test results of classification network on the test set.

FIGURE 8. Shows the results of the classification network training after
6000 steps. (a) Is the loss curve after 6000 steps, and (b) is the accuracy
curve after 6000 steps.

and missing. The test results of the classification network for
different states are shown in Table 4.

Table 4 shows the performance of the classification net-
work on the test set. From Table 4, it can be seen that the
F1-Score of the normal type of insulator is 96.09%,
the F1- Score of the damaged type of insulator is 90.66%,
and the F1-Score of the missing type of insulator is 88.52%.
The main reason for the lower F1-Score of the classification
network for the damaged andmissing states is that the number
of insulator images in the damaged and missing states in the
training data set is small.

From the above experimental results, it can be seen that the
classification network has a good classification effect for the
three states of insulators, and the F1-Score of the three states
is above 88%, which can be competent for the classification
task.

4) CSDN PERFORMANCE TEST
Connect the trained detection network and the classification
network to form the CSDN, and use the evaluation data set
to evaluate the CSDN. In order to evaluate the impact of
insulator background images on the performance of CSDN,
20 images with backgrounds of vegetation, buildings and sky
were selected from the evaluation data set, and the trained
CSDN was used for testing. The test results are shown
in Table 5, and some test diagrams are shown in Fig. 9.

TABLE 5. Test results of CSDN under different backgrounds.

As shown in Table 5, when the background of the insulator
is all sky, the mAP value reaches 93.88%, which is the high-
est mAP value among the three background images. The
background is the insulator image of vegetation, and the
mAP value is 93.12% during the test. The background is
the insulator image of the building, and the mAP value is
91.50% during the test, which is the lowest score among the
three background images. The test results show that when
the background image of the insulator is vegetation or the
sky, it has a small impact on the CSDN model, and when the
background is a building, it has a greater impact on the CSDN
model.

FIGURE 9. Test results of the CSDN model in different contexts.

The background of the insulator in Figure 9 (a) is vegeta-
tion, the background in (b) is all sky, and the background in
(c) is buildings, and the light intensity is also different in the
9 results. In the figure (a), the background of the three images
is vegetation, and the light intensity increases from left to
right. It can be seen from the detection effect that the insulator
is accurately detected and the state is correctly classified.
In the figure (b), the background of the three images is the sky,
and the light intensity increases from left to right. It can be
seen from the detection effect that the insulator is accurately
detected and the state is correctly classified. In the figure (c),
the background of the three images is the background, and
the light intensity increases from left to right. It can be seen
from the detection results that a few insulators have not been
detected. This is because the color of the background is
too close to the color of the insulator, which increases the
difficulty of network detection. It can be seen that the light
intensity has a small impact on the network, but the image
background has a greater impact on the detection model.

In order to further test the performance of CSDN, we com-
pared the trained CSDN model with the detection meth-
ods in the literature [17], [18], and also compared with the
classic target detection framework: Faster R-CNN, SSD and
YOLOv3. The models in the literature [17], [18] and the
classic target detection framework all use the data set in
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TABLE 6. Comparison results of CSDN and different models.

this article for training and testing. Table 6 summarizes the
comparison results.

As shown in Table 6, the mAP and APR values of the
CSDNmodel on the evaluation data are 93.46% and 93.41%,
respectively, which are better than other comparative models.
It shows that the detection network and the cascade method
of detection network and classification network proposed in
this paper are beneficial to improve the effect of insulator
position detection and state classification. The detection time
of an image in the CSDNmodel is 231ms. Compared with the
SSD and YOLOv3 designed based on the one-stage method,
the test time is not much different. The main reason is that
the CSDN model reduced the original catenary image with
a size of 3968 × 2976 to 500 × 375 for detecting the posi-
tion of the insulator, which greatly accelerated the speed of
detecting the position of the insulator. At the same time,
the insulator position information is used to obtain a more
informative insulator image from the original catenary image,
and VGG16 is used for classification to ensure the accuracy
of the insulator state classification. As shown in Table 6,
in the CSDNmodel, the larger the input image size, the better
the detection effect, but the detection time will also increase.
The reason is that high-resolution input images contain more
detailed information, which is conducive to the classification
of the network, but also increases the amount of network
calculations. It can be seen from Table 6 that the Faster
R-CNN and Faster R-CNN+DMNN models designed based
on the two-stage method have higher mAP and APR values,
but the detection time is longer. The detectionmodel designed
based on the one-stage method has a short detection time, but
both mAP and APR values are low. The CSDN model we
designed is better than the detection model designed based on
the two-stage method in both mAP and APR values, and the
detection speed is also close to the detection model designed
based on the one-stage method.

Figure 10 shows a partial detection result diagram of
CSDN. The red box in the figure indicates that the insulator
state is normal, the green box indicates that the insulator
state is damaged, and the yellow box indicates that the insu-
lator state is missing. In Figure 10 (a), (b) and (d), insu-
lators in two states are normal and damaged respectively;
Figure (c) insulators in two states, missing and normal. It can

FIGURE 10. CSDN test results on the evaluation data set, the red box,
green box, and yellow box in the figure represent normal, damaged, and
missing insulators.

be seen from the above experimental results that the precision
value, recall value, mAP value and APR value of CSDN
are 94.10%, 92.88%, 93.46%, and 93.41% respectively,
which are higher than the other three models, indicating that
our network is in contact with railways The grid insula-
tor fault detection task has a high accuracy rate and good
robustness.

IV. CONCLUSION
In this paper, we have designed an insulator detection and
fault classification network based on deep convolutional neu-
ral networks to check the status of insulators in railway
catenary images taken by high-definition cameras. In order to
solve the problem that the original image pixels are too large
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to directly compress the insulator details, we propose a CSDN
detection framework. In our proposed detection framework,
two convolutional network connection methods are used to
detect the position of the insulator and classify its state. First,
the reduced image is used to train the detection network so
that the detection network can quickly and accurately detect
the position of the insulator. Then, the insulator position
information detected by the detection network is used to
project back to the catenary image to intercept the insulator
image to train the classification network. After the two net-
works are trained, they are connected together to form our
CSDN detection framework. In our detection framework, the
detection network input is a reduced contact network image,
which can speed up detection and ensure detection accuracy.
In the detection network, we have added a multi-layer fusion
module to integrate different levels of semantic information
to improve the precision of the detection network, and also
added a multi-region adaptive module for adaptive optimiza-
tion of features, which improves the recall rate of the detec-
tion network. The trained detection network has achieved
94.23% of the insulator detection AP and 94.50% of the APR.
In our detection framework, for the classification network,
the insulator images intercepted in the catenary image are
used for training, which improves the accuracy of classifi-
cation. The trained classification network has F1-Scores of
96.09%, 90.66%, and 88.52% for normal, damaged and miss-
ing states, respectively. The trained detection network and
the classification network are connected to form our CSDN
detection framework, with the test result of the detection
framework on the evaluation data set being 93.46% and the
PRA being 93.41%. In future work, the data set needs to be
further expanded so that themodel can identify more catenary
failures.
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