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ABSTRACT Z-Numbers is a recent concept related to fuzzy logic where the restriction and reliability criteria
are characterized as fuzzy sets. Due to the potential of Z-numbers, this paper presents the development of
a fuzzy controller that combines the fundamentals of LAMDA (Learning Algorithm for Multivariate Data
Analysis) with the concepts of the Total Utility of Z-numbers, to establish an inference method to improve
the performance in a control system. The controller uses criteria from the sliding mode control (SMC)
and the Lyapunov concepts to guarantee robustness and stability respectively. The LAMDA method is
applied to compute a chattering-free control action which is applied to systems with model uncertainties
and variable dynamics. The fuzzy controller has been tested by simulation in two different tasks: 1) Control
of a process that consists of a mixing tank with variable dynamics, and 2) Trajectory tracking of a mobile
robot. The proposed approach provides suitable results at runtime and outperforms the results of the other
tested controllers in terms of performance, minimizing the deviation between the current system output and
the reference. Finally, a complexity analysis is presented to evaluate the feasibility in the implementation of
the proposal. The obtained results prove the suitability of using a LAMDA Z-number-based controller in the
tested systems.

INDEX TERMS Intelligent control, LAMDA, Z-numbers, robustness, fuzzy control.

I. INTRODUCTION
Uncertain systems are characterized by inexact and fuzziness
information, making their modeling and control difficult.
The classical deterministic models used to control these
systems are usually insufficient, which causes a decrease in
the performance since they depend on the precise estimation
of the parameters/variables of the models in their designs and
calibration. The design of controllers and the modelling of
its parameters to be implemented in systems (plants) with
variable dynamics (industrial processes or robotic systems),
are difficult due to the nonlinearities caused by vibrations,
frictions and uncertain characteristics of the environment.
These nonlinearities produce that the control system design
has insufficient precision and limits the effectiveness of the
controller. Several proposals have been developed in the
literature to control systems with nonlinear characteristics
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in uncertain models. The most outstanding ones are
the Sliding Mode Control (SMC) [1]–[4], the adaptive
control [5], [6], the predictive control [7]–[9], nonlinear
approaches [10]–[12], linear algebra approaches [13], [14],
and intelligent approaches like neural network con-
trollers [15]–[17] and fuzzy controllers [18]–[20], among
others.

Nowadays, the use of machine learning strategies in
the design of controllers has advanced considerably due
to the improvements that they can bring to systems
with uncertainties. For example, recent alternatives to the
conventional Global Sliding Mode Control structure for an
active power filter (APF) system are presented in [21], [22].
Its variants include a Recurring Feature Selection Neural
Network (RFSNN) for learning an uncertain function, and a
meta-cognitive fuzzy-neural-network (MCFNN) for dynamic
tuning of membership functions, respectively. In both
studies, the controller variants reach better performance and
robustness.

117714 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5756-4622
https://orcid.org/0000-0003-4194-6882
https://orcid.org/0000-0002-7436-3838
https://orcid.org/0000-0001-9777-128X


L. Morales et al.: Fuzzy SMC Based on Z-Numbers and LAMDA

Specifically, the Fuzzy Logic Control (FLC) has been
applied in a large number of complex systems with good
results and easy implementation. FLC presents a very
good performance in plants in which the model is not
exactly known [23]–[26], being a suitable method to design
robust controllers capable, with satisfactory behavior against
uncertainties [27]. The FLCs involve a set of heuristic rules
to calculate the control output for the plant. For the rules-
definition, expert knowledge about the system is required [28]
to define the largest number of system operating conditions.
The FLCs are considered within the group of intelligent
controllers since they do not require an exact plant model.
This artificial intelligence method has been used for many
purposes in control theory, as plant modeling and control,
scaling gains adaptation, system performance improvement,
among others [29]. Lately, with the appearance of the
Z-numbers, it is possible to develop fuzzy controllers that
handle the constraint and reliability concepts, in order to
improve the performance of the system by reducing the
deviation between the reference and the current system output
signal [30], [31].

Within fuzzy systems, the Learning Algorithm for Multi-
variable Data Analysis ‘‘LAMDA’’ [32] has been proposed.
This method, originally designed to work in the classification
and clustering context, has focused on the identification
of functional states of a system. Several works have
focused on the identification of the functional state using
LAMDA as tool [33]–[37]. Initially, the algorithm computes
the Marginal Adequacy Degree (MAD), a parameter that
measures the contribution of the descriptors of an object
to each cluster/class, with fuzzy probability functions like
the Binomial or Gaussian functions [34]. Then, using fuzzy
aggregation operators, the MADs in each class are combined
to obtain as result the Global Adequacy Degree (GAD),
a parameter that quantifies the membership degree of any
individual to each class of the system [38]. Finally, LAMDA
identifies and assigns the individual (object) to the most
suitable class where the maximum GAD is computed [32],
or in the case that the individual does not resemble a class
enough, it is sent to the Non Informative Class (NIC).

Recently, we use the advantages of LAMDA to make
it work in control systems, proposing an inference stage
that uses the GADs to calculate the controller output. The
class-based LAMDA controller has been validated in two
different systems: the temperature regulation of a mixing
tank [39], and in the regulation of humidity and temperature
of a complex Heating, Ventilation, and Air-Conditioning
(HVAC) system [40], presenting an excellent performance
if we consider that the mathematical model of the plant is
inexact or variable. In reference [41], we have proposed and
formalized an Adaptive LAMDA for control and modeling of
systems, modifying the LAMDA structure with the addition
of layers operating similar to neural networks, but with
the advantage of having a fixed number of layers whose
calibration is not trivial. This method has a training phase to
set initial values for the controller, and an application phase

that consists of online learning to update the estimated model
and compute the control action. This controller has proven
to be adequate where the system dynamics are uncertain and
complex [42]. Finally, our latest work [43] focuses on the
formalization of a LAMDA algorithm for control based on
the fundamentals of the Lyapunov theory and the Sliding-
Mode Control (SMC), to guarantee stability and robustness
of the overall system. The method is called LAMDA-SMC
(LSMC) and takes advantage of LAMDA features to design
a chattering-free controller. LSMC has been tested in the
field of control of chemical processes, demonstrating that it
is stable in the control of systems with model uncertainties.

On the other hand, Zadeh [44] has proposed the
Z-numbers, an extension of the fuzzy numbers composed
of two fuzzy elements: constraint and reliability. In a
Z-number, the first component is used to characterize the
uncertain information, and the second component is used to
characterize the reliability (confidence) in the information.
As it is analyzed in [31], the reliabilities of the fuzzy values
of the variables in the set of rules are an issue in the modeling
of the fuzzy systems, affecting the accuracy of the decision-
making process. Taking into consideration the uncertainties
in the process to be controlled, the concept of Z-number can
be more effectively used for the design of control algorithms,
which is the object of study of this paper.

A. RELATED WORKS
Currently, Z-numbers are studied in different application
fields, such as: decision making, economics, optimization,
risk assessment, prediction and rule-based systems char-
acterization with imprecise information. Thus, one of the
applications is in fuzzy reasoning to handle imperfect
information characterized by the combination of fuzzy and
probabilistic uncertainties in If-Then Rules systems [45]. The
idea of converting a Z-number in a classic fuzzy number
without losing information is rather significant for many
applications. Kang et al. [46] present a proposal to solve
this issue based on the Fuzzy Expectation of a fuzzy set,
through a simple procedure that can be applied to triangular
and trapezoidal membership functions, but remaining open to
research the application in Gaussian functions.

Due to the novelty of working with Z, Aliev et al. [47]
presents an initial proposal of basic operations that allow the
treatment of uncertain information. Multi-Criteria Decision
Making (MCDM) under uncertain environments has been
studied in [48]–[51], in order to take into consideration
efficiently the reliability information. Too, the conversion
from a Z-number to a crisp number is useful in fuzzy
decision-making and risk assessment. For this, [46] proposes
to compute the centroid of the interval-valued of the fuzzy
set with the Karnik-Mendel algorithm. Z-numbers also have
been used for system state detection, especially failure
modes in an aircraft turbine [52]. This paper demonstrates
the viability of the proposed method using the reliability
criterion. Finally, the Total Utility (TU) of a Z-number [53]
is a new concept used to measure the total effects of a
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Z-number, and can be used to determine the ordering of
Z-numbers with the aim to be applied in MCMDs under
uncertain environments. The advantage of this method is to
be able to work with triangular, trapezoidal and Gaussian
membership functions, considerably expanding its field of
application, which could be used by LAMDA.

In control systems, there are few works that have focused
their efforts on applying the concepts of Z-numbers in the
design of controllers. Recently, Abiyev et al. [31], [54]
presented a fuzzy inference system with Z-number for an
omnidirectional robot. In these works, the fuzzy inference
system is designed for controlling the angular and linear
speeds of a robot soccer, independently. The proposed Z-rules
are an extension of the classical fuzzy rules that consider the
reliability of the constraint, but in all the rules is used the
same reliability (Usually) to compute the control action.
The inference method is based on distance measures of fuzzy
sets, which takes the concepts of the α-cuts applied to the
antecedent part, where the deviation of the input signals
from the fuzzy values of the variables are determined. The
proposed controller is tested and compared with other fuzzy
methods, presenting interesting results. In [30], the same
procedure is applied for a dynamic plant control where the
response of the proposed controller is compared against
the response of a conventional fuzzy controller, demon-
strating the suitability of the controller in dynamic plants.
Shalabi et al. [55] present the same procedure in the control of
automotive air-spring suspension systemwhere the technique
is combined with genetic algorithms to estimate the optimal
control gains and switching levels of the air volumes. Finally,
the authors of [56] present the trajectory tracking of a
wheeled robot, combining the reliability and constraint in
multi-input/multi-output rules. The antecedent reflects the
instantaneous distance measurements and the orientation
gaps, and the consequent is obtained by interpolative
reasoning and the graded mean integration method. The
authors highlight that this approach avoids the complexity of
encoding error gradients, and it is able to cope with missing
observations.

B. CONTRIBUTION AND ORGANIZATION
OF THE PAPER
The main motivation in this paper is the formalization of an
LSMC controller based on Z-number (Z-LSMC) in order to
reduce performance decay problems due to uncertainties in
the modeling of the system. For this, we propose the use
of the Total Utility of Z-numbers to obtain a more abrupt
control action in the presence of large errors between the
desired output and the reference, and smooth control actions
as the error is minimized to improve the performance of
the controller. This paper presents as the main contributions,
the following:

• The development of a controller based on Z-numbers,
whose inference mechanism is combined with the
LAMDA fundamentals.

• The formalization of a controller that uses the
class concept, considering the criteria of restriction
and reliability, combined with the concept of Total
Utility.

• The definition of Z-rules is based on different reliability
values to modify the control action using the deviation
between the system output and the desired reference,
unlike works presented in [30], [31], [55], [56].

• The design of a fuzzy sliding-mode controller in
which the control actions of the conventional SMC are
calculated with the LAMDA method, in order to get a
chattering-free controller.

• The controller stability analysis.
• A comparative performance analysis with previous
results of the LSMC controller.

The Z-LSMC proposal is tested and validated by simula-
tions in two continuous nonlinear systems: 1) regulation of a
mixing tank with variable dynamics, and 2) trajectory track-
ing of a mobile robot, applying the controller to the dynamic
part for the linear and angular velocity, independently.

This paper is structured as follows. In Section II is
presented the background of LAMDA and a brief review
of the Total Utility of Z-number. Section III defines the
concepts used for the design of the Z-LSMC approach, such
as the definition of the Z-rules of LAMDA and the reasoning
process for the inference mechanism. Section IV presents
the simulation results of the proposed algorithm using
Matlab and VREP software. Finally, Section V describes the
conclusions of this paper.

II. BACKGROUND
This section presents a brief description of the mathematical
foundations to make LAMDA work as a controller as well
as summarizes the Z-number theory used to improve the
controller design.

A. LAMDA AS CONTROLLER
LAMDA is a classification/clustering algorithm that calcu-
lates the similitude measure between the descriptors that
characterize a object O =

[
o1; . . . ; oj; . . . ; ol

]
∈ R, and

the ‘‘m’’ classes C = {C1; . . . ;Ck ; . . . ;Cm}, to determine
the class to which the object belongs. For that, LAMDA
computes the Global Adequacy Degree (GAD).

In LAMDA, the descriptors are normalized ōj ∈ [0, 1],
to operate in the same subspace. To normalize the descriptor
oj, it is required to know the maximum (ojmax) and the
minimum (ojmin) values of the descriptor:

ōj =
oj − ojmin

ojmax − ojmin
(1)

Then, it is computed the MAD. The MAD determines the
similitude of each descriptor of the object with the equivalent
descriptor in a class k . The MADs are computed using
probability density functions, e.g., the Gaussian [34]. In the
case of the Gaussian function, it needs the average of the
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descriptor j that belongs to the class k (ρk,j), defined as:

MADk,j = e
−

1
2

(
ōj−ρk,j
σk,j

)2

(2)

ρk,j =
1
nk,j

nk,j∑
t=1

ōj(t) (3)

where nk,j and σk,j are the number of elements and the
standard deviation of the descriptor j in the class k ,
respectively. The parameter σk,j is calculated as:

σ 2
k,j =

1
nk,j − 1

nk,j∑
t=1

(ōj(t)− ρk,j)2 (4)

The values ρk,j and σk,j are calculated during the training.
Besides, a non-informative class NIC is generated with
ρNIC,j = 0.5 and σNIC,j = 0.25. Objects not identified in
any classes are sent to the NIC, which is the main LAMDA
feature with respect to other algorithms.

Combining the MADs with fuzzy logic operators is com-
puted the GAD. The GAD is a measure of the membership
degree of the object O to each class k . The GADs are the
product of linear interpolations of the S-norm and the T-norm,
as the Dombi operator:

S (a, b) = 1−
1

1+ p

√(
a

1−a

)p
+

(
b

1−b

)p (5)

T (a, b) =
1

1+ p

√(
1−a
a

)p
+

(
1−b
b

)p (6)

where p ≥ 1 calibrates the sensitivity, and a, b are the MADs
of the class k determined with the Dombi function.

The GAD of the normalized object Ō in each class k is
obtained as:

GADk,Ō
(
MADk,1, . . .MADk,m

)
= δT

(
MADk,1, . . . ,MADk,m

)
+ (1− δ) S

(
MADk,1, . . . ,MADk,m

)
(7)

where δ ∈ [0, 1] is the exigency value. Values close to 1 make
a stricter algorithm and values close to 0 make a permissive
algorithm.

In the control context, LAMDA identifies the current state
of the system and brings it to the desired state through the use
of the GADs computed by (6). The desired state is where the
error and its derivatives are equal to zero. For this purpose,
it is required to define rules based on the system knowledge,
concepts taken from the traditional FLCs. The expression that
represents the fuzzy logic inference considering the LAMDA
classes is:

Rule(k) : IF o1 is F
p
1 and . . . oj is F

q
j . . . and ol is F

r
l

THEN yk is γk (8)

where oj is the object descriptor taking values in the universe
of discourseUj. yk takes values of the universe of discourseV .

The fuzzy set Fj =
{
Fqj :q = 1, 2, . . . ,Q

}
belongs to Uj,

the fuzzy set γk belongs to V , and Rule(k) is the rule applied
to the class k .
The LAMDA inference mechanism uses the GADs of each

class and the first order Takagi-SugenoKang (TSK) inference
method [57]. In (8), γk is a singleton value specified for
class k . Thus, the control output for LAMDA is computed
as:

u = 0
m∑
k=1

γkGADk,Ō (9)

0 =

∣∣∣∣∣ argmax (γk)∑m
k=1 γkGADk,argmax(Ō)

∣∣∣∣∣ (10)

where u is the output of the controller, 0 is an adjustment
parameter that works as a saturator and γk is the weight
parameter applied in the class k .

The controller output of LAMDA depends on the weights
γk applied to each GAD and depends on the centers ρk,j,
which are established in the training stage (design). The
LAMDA controller has a defined number of nodes that
depend on the fuzzy sets (generally the same number ‘‘c′′)
of each descriptor. The number of classes in LAMDA is
m = cl . Layer 1 has lc nodes, layer 2 has m nodes, and layer
3 has 1 node. The NIC is not used for the LAMDA controller
because all the objects O are assigned to one predefined
class.

B. Z-NUMBERS
A Z-number is a pair of fuzzy numbers defined as:

Z = {(Az,Rz) |µAzε [0, 1] , µRzε [0, 1]} (11)

where Az is the restriction (constraint) on the values of the
observation x, and Rz is the reliability metric of the first
fuzzy number in the space of y. For simplicity, Az and Rz
are considered Gaussian fuzzy numbers defined by a binary
(ρ, σ ), where ρ is the center of the function and σ is the
width of the function. E.g., Fig. 1 shows the membership
functions of Az and Rz where it is appreciated how the
parameters ρ, σ modify the position and shape of the curve,
respectively.

A conventional fuzzy if-then rule presented in (8) for two
inputs and one output can be stated as:

IF o1 is F
p
1 and o2 is F

q
2 THEN y1 is γ1 (12)

where F1, F2 are fuzzy sets and γ1 is a singleton function.
In the case of Z-numbers, it is convenient to express

a generalization of the basic if-then rule in terms of
Z-valuations as follows:

IF o1 is
(
Azp1,Rz

p
1

)
and o2 is

(
Azq2,Rz

q
2

)
THEN y1 is (γ1,R1) (13)

where Azp1, Rz
p
1, Az

q
2, Rz

q
2, are the fuzzy sets of the Z-number,

γ1 is the restriction, and R1 is the reliability of the consequent
for the Rule 1.
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FIGURE 1. Membership functions of the Z-number Z = (Az, Rz) with
Az = Gauss(0.1, 0.25), Rz = Gauss(0.6, 0.07).

Some examples of the characterization of the Z-rules are:
• If the price of oil is likely high and the price of the
refining process is commonly high, then the price of
gasoline is very likely high.

• If the demand for luxury items is surely high, then
consumers have very likely more purchasing power.

As seen in the examples, the application of Z-numbers
is focused on modeling uncertain information from the real
world. More examples of the real applications of Z-numbers
are described in detail in [44]. In the case of control systems,
there is a potential field of application of these concepts that
we consider can improve the performance of the controller.

C. TOTAL UTILITY (TU)
The TU of Z-numbers is potentially useful to simplify the
Z-number applications in fuzzy decision making tasks. The
concept of TU is derived from the presentation of Z-numbers
without subjective judgment as is stated in [53]. Such a
simplification of the Z-numbers is of great importance when
it is required to represent the restriction and the metric
reliability in a single parameter, which can be useful in the
design of intelligent controllers.

The procedure to compute is detailed as follows: let the
mathematical expressions of the membership functions forAz
and Rz defined as [53]:

µAz (x) = e
−

1
2

(
x−ρ1
σ1

)2
(14)

µRz (y) = e
−

1
2

(
x−ρ2
σ2

)2
(15)

where −1 ≤ ρ1 ≤ 1 is the center of the peak of the curve
µAz (x), σ1 > 0 is its standard deviation used to control the

width of the bell, 0 ≤ ρ2 ≤ 1 is the position of the center
of the peak of the curve µRz (x), and σ2 > 0 is its standard
deviation.

If the α-cut, α = µAz(x), then x is computed as:

x = ρ1 ±
√
−2σ 2

1 lnα;

Az∓ (α) = ρ1 ∓
√
−2σ 2

1 lnα (16)

If the β-cut, β = µRz(y), then y is computed as:

y = ρ2 ±
√
−2σ 2

2 lnβ;

Rz∓ (β) = ρ2 ∓
√
−2σ 2

2 lnβ (17)

The Total Utility of a Gaussian Z-number is computed
as [53]:

TU (Z ) =
∫ 1

0

∫ 1

0

∫ 1/2

−1/2

∫ 1/2

−/22

[
A1
2
+ xA2

]
e−A

2
2

×

[
R1
2
+ yR2

]
e−B̃

2
2dδ (18)

With dδ = dxdydαdβ and:
A1 = Az− (α)+ Az+ (α) (19)

A2 = Az+ (α)− Az− (α) (20)

R1 = Rz− (β)+ Rz+ (β) (21)

R2 = Rz+ (β)− Rz− (β) (22)

Solving (18):
TU (Z )

=

∫ 1

0

∫ 1

0
e−Ã

2
2e−B̃

2
2

∫ 1
2

−
1
2

∫ 1
2

−
1
2

(
A1
2
R1
2
+
A1R2
2

y

+
A2R1
2

x + A2R2xy
)
dxdydαdβ

=

∫ 1

0

∫ 1

0
e−A

2
2e−R

2
2
A1
2
R1
2
dαdβ

= ρ1ρ2

∫ 1

0

∫ 1

0
e
−

(
2
√
−2σ 21 lnα

)2

e
−

(
2
√
−2σ 21 lnβ

)2

dαdβ

=
ρ1ρ2(

1+ 8σ 2
1

) (
1+ 8σ 2

2

) (23)

In some applications, the Z-numbers can be represented
with the restriction and reliability of two singleton functions.
In order to compute the TU of this kind of Z-numbers,
we propose Theorem 1.
Theorem 1: The total utility of a fuzzy number with two

singleton functions is equal to the product of the functions
TU (Z ) ≈ ρ1ρ2.

Proof: According to (23), the TU is calculated based on
the centers and variances of the two fuzzy numbers. From (14)
and (15), if σ1 ≈ 0 and σ2 ≈ 0, then the Gaussian functions
behave similarly to singleton functions (impulsive response
in the centers ρ1 and ρ2), therefore:

TU (Z ) = TU (Az,Rz) =
ρ1ρ2(

1+ 8σ 2
1

) (
1+ 8σ 2

2

)
=

ρ1ρ2(
1+ 8×02

) (
1+ 8×02

) ≈ ρ1ρ2 (24)
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D. EXTENSION OF LAMDA WITH Z-NUMBERS
The potential use of the Z-numbers combined with the
concepts of TU has been detailed in Section II. Here,
we consider its application with the LAMDA theory to design
an intelligent controller.

As a starting point, we consider the Gaussian functions
used to calculate MAD as presented in (2). This expression is
similar to the one presented in (14). Therefore, the restric-
tion in the case of LAMDA corresponds to MAD, thus
µAz = MADk,j. Also, it is necessary to measure the
reliability parameter for µR, a procedure that will be detailed
later in the document. If we have the two parameters of a
Z-number, then it is feasible to compute the Total Utility of
each class of the control system. LAMDA must identify the
current state of the system to bring it to the desired state.
For this purpose, it is necessary to define the rules for each
class, similarly to the conventional FLCs. The systematic
expression that generalizes (13) for the k-rule of the Z-fuzzy
inference mechanism with LAMDA is denoted as:
Rule(k) : IF o1 is Z

p
1 and . . . oj is Z

q
j . . . and ol is Z

r
l

THEN yk is Z k (25)

where oj is the descriptor j of the object O. yk belongs to the
universe of discourse V . Zqj = (Aqj ,R

q
j ) denotes de Z-number

for the descriptor j and the fuzzy set q, Z k = (γk ,Rk ) is the
consequent Z-number, and Rule(k) is the rule for the class k .
In the context of LAMDA, we propose to use Z-number

concepts to improve the controller response, thus rewriting
(25) in terms of LAMDA for two inputs (descriptors) we
have:
Rule(k) : IF o1 is

(
MADk,1, µRz1

)
and o2 is(

MADk,2, µRz2
)
THEN yk is (γk ,Rk ) (26)

The Total Utility is used to compute the new centers of the
MADs and is used at the output to recalculate the weights
applied to the GADs, making them adaptable as a function of
the sliding surface s and ṡ, which are the descriptors of the
proposed approach as detailed in section III.

III. Z-LSMC DESIGN
To design the Z-LSMC, it is considered an uncertain
nonlinear continuous SISO (Single-Input Single Output)
system with external bounded disturbances, as:

ẋi (t) = xi+1 (t) , ∀n = 1, 2, . . . , n− 1

ẋn (t) = A (X , t)+ b (X , t) u(t)+ d (t) (27)

where:X (t) = [x1 (t) , . . . ,xn (t)]T =
[
x (t) , . . . , x(n−1) (t)

]T
εRn is the state vector, the functions A (X , t) and b (X , t)
are not exactly known nonlinear continuous and bounded.
The control input is u(t) ∈ R, d(t) ∈ R represents the
disturbance b (X , t) is a lower and upper bounded function
such as 0 < b < |b (X , t)| < b̄.
A (X , t) and d(t) are supposed bounded:

|A (X , t)| ≤ βA; |d (t)| ≤ βd (28)

where the bounds βA, βd are positive.

The goal of a control system is to calculate a control
law for X (t) to track an n-dimensional desired trajectory

Xd (t) = [xd1 (t) , . . . , xdn (t)]T =
[
xd (t) , . . . , x

(n−1)
d (t)

]T
,

considering the external disturbances in the system and the
model uncertainties.
The error is computed as:

E (t) = Xd (t)− X (t)

= [xd1 (t) , . . . , xdn (t)]T − [x1 (t) , . . . , xn (t)]T

= [e1 (t) , . . . , en (t)]T =
[
e (t) , . . . , e(n−1) (t)

]T
(29)

Thus, for any Xd (t), the tracking error vector must satisfy
the Euclidean norm:

lim
t→∞
‖E (t)‖ = ‖Xd (t)− X (t)‖ = 0 (30)

The SMC fundamentals establish to choose a continuous
surface in order to the system can slide towards Xd (t). In this
work is used the surface proposed in [58]:

s (t) =
(
d
dt
+ λ

)n ∫
e (t) dt (31)

where λ is a positive parameter.
We choose the sliding surface presented in (31), because,

given the initial condition presented in (30), the problem of
tracking Xd (t)−X (t) = 0 is equivalent to that of remaining
on the surface s(t) for all t > 0. Indeed, s(t) = 0 represents a
linear differential equation whose unique solution is e(t) = 0,
given initial conditions of (30). Thus, the problem of tracking
the n-dimensional vector X (t) can be reduced to that of
keeping the scalar quantity s(t) at zero, as shown below.

The advantage of the sliding surface, which as seen in (31)
has an integral part, is that it helps to correct errors in the
steady-state effectively without adding additional integrators
to the controller output.

In Z-LSMC, LAMDA is used to calculate the control action
(composed by the continuous and discontinuous part uc and
ud , respectively) of conventional SMC through the procedure
from (1)-(10).

Developing (31):

s (t) =
dn−1e (t)

dt
+ rn−1λ

dn−2e (t)
dt

+ rn−2λ2
dn−3e (t)

dt

+ . . .+ r1λn−1e (t)+ λn
∫
e (t) dt (32)

where {rn−1, rn−2, . . . , r1} are the coefficients obtained by
solving the polynomial presented in (31).

The first derivative of (32) is:

ṡ (t) = e(n) (t)+ rn−1λe(n−1) + . . .+ r1λn−1ė (t)+ λne (t)

= e(n) (t)+
n∑
i=1

rn−iλie(n−i) (33)

From (30), the n-derivative (e(n) (t)) of the error is:

e(n) (t) = ẋdn (t)− ẋn (t)

= ẋdn (t)− A (X , t)− b (X , t) u− d (t) (34)
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As observed in (33) and (34), it is required to compute
a control action u to satisfy e(n) (t) → 0. Based on
the SMC fundamentals, u is composed of a discontinuous
control action to move the states of the system to s(t),
and a continuous control action to retain the system on the
selected surface [1]. The calculation of the continuous and
discontinuous control actions is described below.

A. CONTINUOUS CONTROL ACTION
Considering the continuous control action as u = uc, then
replacing (34) in (33), it is obtained:

ṡ (t) = ẋdn (t)− A (X , t)− b (X , t) uc − d (t)

+

n∑
i=1

rn−iλie(n−i) (35)

Based on (35), it is required to compute uc to fulfill
ṡ (t) = 0, for this, it is necessary to identify the sign of b (X , t)
(or the gain of the system) linked to the input uc to define the
classes of LAMDA. Equation (35) shows that if b (X , t) > 0,
then ṡ(t) increases as uc decreases, and vice-versa.

Five classes in the range of [−1,1] for ṡ (t) are defined,
this supported by the scalability analysis that we performed
in [43] where has been shown that selecting three or
seven classes does not significantly affect the performance
of controllers based on LAMDA, and the only required
consideration is an adequate calibration of the scaling gains.
The proposed classes for ṡ(t) are: Positive Big (PB = 1),
Positive Small (PS = 0.5), Zero (ZE = 0), Negative
Small (NS = −0.5), and Negative Big (NB = −1). With
these classes are defined the rules to obtain the normalized
continuous control action unc. In order to calibrate the
controller, the scaling gain k1 is placed at the input ṡ (t), and
the scaling gain kc at the output as:

uc = kcunc ⇒

uc = kcZLSMC (ṡ) ; kc > 0 (36)

The rule table of uc considering the value of ṡ(t)
as shown in (35) is presented in Table 1, considering
Ck = (γk ,Rc) ; ∀k = {1, 2, . . . , 5}.

For the computation of the continuous control action,
the classes per descriptor and themembership functions of the
reliability are presented in Fig. 2. Note that for the reliability
part the absolute value of ṡ is used. In [31] is proposed the
establishment of three classes to represent reliability in a
simple and complete way for control systems. These are: ‘‘S’’
for ‘‘sometimes,’’ ‘‘U ’’ for ‘‘usually,’’ and ‘‘A’’ for ‘‘always’’.

To define the rules in Table 1, when b (X , t) > 0, and based
on (35), it is noted that ṡ(t) decreases as uc increases, and vice-
versa.With this analysis are defined the rules in order to fulfill
ṡ(t) = 0. For instance, if ṡ(t) is NB, then a big negative (NB)
uc is required to increase rapidly ṡ(t), and the reliability |ṡ(t)|
is assigned with a value sometimes ‘‘S’’ whose center is in
0.6. This causes the center calculated with the Total Utility
to move to the left, which in fuzzy control means a more
abrupt control action that causes a rapid decreasing of ṡ(t).

FIGURE 2. a) Membership functions for the MADs of ṡ
(
t
)
, b) reliability

of
∣∣ṡ(t)

∣∣.
TABLE 1. Table of rules for the input ṡ(t).

If ṡ(t) isNB, then the error and its derivatives are close to zero,
which requires a small positive control action uc to decrease
slowly ṡ(t). Also, in order to obtain a smoother control action,
the reliability is assigned a value usually ‘‘U ’’ whose center
is in 0.8. Finally, if ṡ(t) = 0 (ṡ(t) = ZE), then no control
action is required because it is the desired condition. Thus,
uc = ZE and the reliability is assigned a value always ‘‘A’’
whose center is in 1. Therefore, when ṡ(t) is close to zero,
then the control action is smoother.

As shown in Table 1, by using the value |ṡ(t)|, the same
previous analysis is valid for the classes PB and PS.

On the other hand, when b (X , t) < 0 and based on
(35), it is noted that ṡ(t) decreases as uc decreases, and ṡ(t)
increases as uc increases. Therefore, as observed in Table 1,
only the sign of the restriction changes and the criterion to
define reliability is the same for the case b(X , t) > 0.

In the Z-LSMC, we only have two descriptors at the input
of LAMDA, therefore, (2) is computed for s and its derivative,
that is j = 1 for ṡ and j = 2 for s. The calculation of the new
class centers is made based on the TU k,j(Z ) applied to the
descriptor ṡ, replacing the LAMDA restriction and reliability
in (23) to obtain:

TU
(
MADk,1,R1

)
=

ρk,1cR1(
1+ 8σ 2

k,1

) (
1+ 8σ 2

R1

) (37)

where R1 = Gauss(cR1 , σR1 ) is the reliability of theMADk,1.
Unlike works that address the control with Z-numbers

[30], [31], [56], we do not define the reliability at the output,
we compute its weight value as is proposed in [46]:

Rc =

∫ 1
0 |ṡ|µR1(|Ṡ|)∫ 1
0 µR1(|Ṡ|)

(38)
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TABLE 2. Table of rules for the inputs s(t) and ṡ(t) with b
(
X , t

)
> 0.

From (24), we use the weight of the reliability Rc and the
singleton values γk . The Total Utility of the Z-number at the
output can be denoted as:

γ kRc = γk × Rc (39)

Then, the output of the control action unc, based on (9),
(10) and (39), is computed as:

unc =

∣∣∣∣∣ argmax (γk)∑m
k=1 γkGADk,max(Ō)

∣∣∣∣∣
m∑
k=1

γ kRcGADk,Ō (40)

B. DISCONTINUOUS CONTROL ACTION
To compute ud , the following Lyapunov function is selected:

V (s(t)) =
1
2
s(t)2 (41)

The first derivative of (41) is:

V̇ (s(t)) = s (t) ṡ(t) (42)

To guarantee stability, Lyapunov theory establishes to
satisfy the condition:

s(t)ṡ(t) < 0 (43)

Replacing (35) in (43), considering only u = ud :

s (t) ṡ (t) = s (t)

(
ẋdn (t)− A (X , t)− b (X , t) ud − d (t)

+

n∑
i=1

rn−iλie(n−i) < 0

)
(44)

Based on (44), to fulfill s(t)ṡ(t) < 0 is required to
calculate ud . Five classes are defined for the inputs ṡ(t) and
s (t) based in the scalability analysis presented in [43], and
three classes for the reliability as presented in [31]. Due
to the normalization of the classes in a range of [−1,1] is
computed und . Thus, the scaling gain k2 is added at the input
s(t), and kd at the output as:

ud = kdund H⇒

ud = kdZLSMC (s, ṡ) ; kd > 0 (45)

For the computation of the discontinuous control action
based on Z-numbers, we address the case b (X , t) > 0 since
in the opposite case (b (X , t) < 0), only the sign of the classes
changes in the restriction part, as detailed in the definition of
rules of Table 1. The centers of the Z-classes are presented
in Table 2, considering Ck = (γk ,Rd ) ; ∀k = {1, 2, . . . , 25}.

FIGURE 3. a) Membership functions for the MADs of ṡ
(
t
)
, b) reliability

of
∣∣ṡ(t)

∣∣, c) Membership functions for the MADs of s
(
t
)
, d) reliability

of
∣∣s(t)

∣∣.
For the discontinuous control action, the classes per

descriptor and the membership functions of the reliability
are presented in Fig. 3. Note that for the reliability part,
the absolute values of ṡ and s are measured, since we consider
giving more weight when |ṡ| and |s| are far from zero.

In the Z-LSMC, for the discontinuous control action,
we use the two descriptors at the input of LAMDA. Therefore,
(2) is computed for s and its derivative, that is j = 1 for ṡ and
j = 2 for s. Then, the calculation of the new class centers is
made based on the TU k,j(Z ) as:

TU
(
MADk,1,R1

)
=

ρk,1cR1(
1+ 8σ 2

k,1

) (
1+ 8σ 2

R1

) (46)

TU
(
MADk,2,R2

)
=

ρk,2cR2(
1+ 8σ 2

k,2

) (
1+ 8σ 2

R2

) (47)
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To compute the reliability at the output, we compute its
weight value as is proposed in [46]:

Rd = argmax

∫ 1
0 |ṡ|µR1(|Ṡ|)∫ 1
0 µR1(|Ṡ|)

,

∫ 1
0 |s|µR2(|s|)∫ 1
0 µR2(|s|)

 (48)

It is proposed to choose the maximum value of the two
reliabilities to obtain a more aggressive control action if the
surface or its derivative are far from zero to take the system
faster towards the reference.

To define the rules of Table 2, the following analysis has
been considered:
• If s(t) is positive and ud decreases, then s(t)ṡ(t) increases
and vice-versa.

• If s(t) is negative and ud decreases, then s(t)ṡ(t)
decreases and vice-versa.

From the previous examination, it is proposed to com-
pute the discontinuous control action ud that guarantees
s(t)ṡ(t) < 0. As has been described for uc, the case of the
discontinuous control action is similar, that is, S is associated
as reliability to classes PB and NB, U to classes PS and NS
and A to class ZE , in order to generate abrupt control actions
when the surface and its derivative are far from the desired
value, and smooth control actions when they are close to zero.

From (24), we use the weight of the reliability Rd and
the values γk . The TU of the Z-number at the output can be
denoted as:

γ kRd = γk × Rd (49)

Then, the output of the control action und , based on (9),
(10) and (49), is calculated as:

und =

∣∣∣∣∣ argmax (γk)∑m
k=1 γkGADk,max(Ō)

∣∣∣∣∣
m∑
k=1

γ kRdGADk,Ō (50)

As presented in (37)-(40) for the continuous control action
and in (46)-(50) for the discontinuous control action, the
application of Z-Numbers causes to obtain a control action
that adapts to the characteristics of the sliding surface s(t) and
its derivative s(t). This is achieved through the calculation
of the Total Utility, which allows obtaining a more abrupt
control action in the presence of large errors between the
system output and the reference, and smooth control actions
as the error is minimized and close to zero.

C. OVERALL CONTROL ACTION
Traditional SMC schemes such as the one proposed in [1],
require the sign function to reach the sliding surface for
the discontinuous action calculation. However, this function
is smoothed through the addition of a parameter in the
denominator δ, which removes robustness to the controller.
In our scheme, using rules, we compute the discontinuous
control action until reaching the sliding surface, as shown
in (50), through the classes of LAMDA defined by its
descriptors, which maintains robustness in the closed-loop.
Thus, our method based on LAMDA avoids the utilization of

FIGURE 4. Flowchart for the design procedure of Z-LSMC.

the function ‘‘sign’’. Finally, the control action of Z- LSMC
is calculated as:

u = kcZLSMC (ṡ)+ kdZLSMC (s, ṡ) (51)

The flow chart of the controller design is shown in Fig. 4,
where the stages that allow the calculation of the control
action are presented sequentially. The general steps (red
highlighted boxes) in the scheme are a) the definition of
the sliding surface, b) the definition of rules and, c) the
calculation of the control action using LAMDA.

The Z-LSMC scheme is presented in Fig. 5, in which
is observed: the blocks of the continuous (ZLSMCc(ṡ)) and
discontinuous (ZLSMCd (s, ṡ)) outputs, the descriptors used,
and the scaling gains.

D. STABILITY ANALYSIS
Considering the Lyapunov function in (41) and its first
derivative presented in (42), the aim is to satisfy the condition
V̇ < 0 [59]. Therefore, replacing (35) and (51) in (43) it is
obtained:

V̇ = s (t)

(
ẋdn (t)− A (X , t)− b (X , t)

× (kcZLSMC (ṡ)+ kdZLSMC (s, ṡ))− d (t)

+

n∑
i=1

rn−iλie(n−i)
)
< 0 (52)

To demonstrate the stability of the Z-LSMC, the functions
A (X , t) and the disturbance d(t) are supposed bounded as
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FIGURE 5. Block diagram of the Z-LSMC.

stated in (28). Also, the change of the reference ẋdn (t) and the
derivatives of the error

∑n
i=1 rn−iλ

ie(n−i) must be assumed
continuous and bounded [27]. Otherwise, they would be
indeterminate and it would not be possible to guarantee the
stability of the system.

|ẋdn (t)| ≤ βdn,

∣∣∣∣∣
n∑
i=1

rn−iλie(n−i)
∣∣∣∣∣ ≤ βe (53)

where βdn and βe are unknown positive constants.
Theorem 2: Considering the system of (27), with u(t) as

controller output defined in (51), and (kc + kd ) > βdn +

βe− (βd + βA), then the error vector converges to the sliding
surface.

Assuming for simplicity b (X , t) = 1, without loss of
generality for systems in which b (X , t) > 0 (because our
controller only requires to know the sign of the function
b (X , t)), from [28] and Table 2, it is demonstrated that
kdud = kd |s| and kcuc = kc |s|. Thus, replacing the
inequalities (28) and (53) in (52):

V̇ = s

(
ẋdn (t)− A (X , t)− kcZLSMC (ṡ)

− kdZLSMC (s, ṡ)− d (t)

+

n∑
i=1

rn−iλie(n−i)
)

≤ βdn |s| − βA |s| − kc |s| − kd |s| − βd |s| + βe |s| (54)

V̇ ≤ βdn |s| − βA |s| − kc |s| − kd |s| − βd |s| + βe |s|

=
[
−(kc + kd )+ (βdn + βe − βd − βA)

]
|s| (55)

Therefore, if the scaling gains are (kc + kd ) > βdn + βe −

(βd + βA), then it is concluded that the reaching condition
s (t) ṡ (t) < 0 is always fulfilled. Therefore, the proof is
completed. The theorem is valid if b (X , t) < 0, as detailed
in [43].

As a summary of the Z-LSMC design, the following steps
are identified:
• Estimate the system order for the sliding surface of (31)
• Recognize the sign of b(X , t).
• If b (X , t) > 0, then use Table 1 to compute uc with the
procedure from (36)-(40), and use Table 2 to compute
ud with the procedure from (45)-(50).

• If b (X , t) < 0, then use Table 1 and change the sign of
the restriction (first parameter of the Z-number) in the
consequent of Table 2.

• Calibrate the scaling gains of Z-LSMC.
The Z-LSMC scaling gains (k1, k2, kc, kd ) have not a

formalized equations for proper calibration, and we will
consider its mathematical formalization in a future work.
However, the parameter λ can be calibrated with the method
presented in [1]. For the scaling gains calibration, this work
uses the heuristic method, based on trial and error. This
tuning procedure is one where general rules are followed
to obtain approximate or qualitative results according to the
system requirements [28]. The Z-LSMC controller has been
calibrated based on the measurement and reduction of the
Integral Square Error ‘‘ISE’’. This index is used because it
integrates the square of the error over time, penalizing large
errors more than smaller ones. Therefore, the controller that
obtains the minimum index performs the best.

IV. SIMULATIONS AND RESULTS
The Z-LSMC is validated and tested in two different SISO
nonlinear continuous systems: A. Regulation of amixing tank
with variable dynamics, a process in which it is required
to work on a desired operating point maintaining the fixed
reference. Being a system with high non-linearity due to
the variation of its parameters, it is an ideal case to apply
disturbances that change the output of the system, allowing
us to evaluate the ability of the controller to bring the system
towards the reference. B. Trajectory tracking of a mobile
robot, this case only focuses on evaluating the performance
of the controller when the trajectory changes smoothly
and abruptly, for which several trajectories are established.
It should be noted that for the design of the controllers,
the same number of membership functions (classes) is
maintained in both simulations. However, the rules change
for b(X , t) < 0 and b(X , t) > 0. Five rules have been
established per descriptor (detailed in sections III.1 and III.2)
for the two simulations since, based on the sensitivity
analysis presented in [43], a good response of the controller
is observed without excessive computational load. Finally,
the prior gains (k1, k2, kc, kd ) are tuned through a heuristic
calibration.

Finally, the results are validated through comparisons
with the PID, SMC [1], LAMDA-PID [40], and the LSMC
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controller [43]. LAMDA-PID and LSMC are recent con-
trollers, which serve as the basis for the design of the
Z-LSMC proposal. The PID controller has been consid-
ered because it is the best known worldwide, capable
of controlling a large number of systems in real appli-
cations, which is why it is interesting to observe its
performance in systems with variable dynamics. The SMC
has been considered because it is a controller with robust
characteristics with very good behavior in systems with
variable dynamics and whose theoretical foundations are
also used in the context of the design of the Z-LSMC
proposal.

FIGURE 6. Scheme of the process with the mixing tank.

A. CASE STUDY 1: MIXING TANK PROCESS
This system consists of the mixture of two liquids in a tank as
shown in Fig. 6. The volume of the tank varies freely without
overflowing. In the tank are mixed a hot water stream W1(t)
with a cold water stream W2(t), which is controlled with a
valve. At the outlet of the tank, the mixture is transported
by a water stream W3 (t), which is required at the desired
temperature. At a distance of L = 125[ft] from the tank
outlet, is installed a temperature transmitter, which operates
between 100[◦F] and 200[◦F]. The pipe length L generates a
time delay (dead time) in the measurement.

For the system analysis, the following considerations are
accepted:
• The tank output and the pipe are insulated.
• The liquid inside the tank varies and does not overflow.
• The liquids inside the tank are well mixed.
• The foremost disturbance isW1(t).
The approximate modelling of the mixing tank is described

by the following dynamics:

• Manual actuator (valve)

W3 (t) = 11.8685CVL3
√
h3 (t) (56)

• Mass balance of the liquids inside the tank:

W1 (t)+W2 (t)−W3 (t) = A3
dh3 (t)
dt

(57)

TABLE 3. Steady-state values at the operating point of the process.

• Energy balance of the liquids inside the tank:

W1 (t)Cp1T1 (t)+W2 (t)Cp2T2 (t)−W3 (t)Cp3T3 (t)

= A3Cv3
d (h3 (t)T3 (t))

dt
(58)

• Pipe delay

T4 (t) = T3 (t) (t − t0 (t)) (59)

• Time delay of the system (dead time)

t0 (t) =
LA%
W3 (t)

(60) (60)

• Temperature transmitter

dTO (t)
dt

=
1
τT

[
T4 (t)− 100

100
− TO (t)

]
(61)

• Dynamics of the control valve:

dVp (t)
dt

=
1
τVp

[
u (t)− Vp (t)

]
(62)

• Valve dynamics

W2 (t) =
500
60

CVLVp (t)
√
Gf1Pv (63)

The nomenclature presented from (56)-(63) in corresponds
to Cp: liquid heat capacity, [Btu/lb− ◦F], Cv: liquid heat
capacity [Btu/lb− ◦F], h3: tank content level [ft], A: mixing
tank cross-section

[
ft2
]
, T1 (t): hot flow temperature [◦F],

T2 (t): cold flow temperature [◦F], T3 (t): liquid temperature
inside the tank [◦F], T4 (t): temperature T3 (t) considering the
delay t0 [◦F], t0: dead time [min], %: density of the contents
of the mixing tank

[
lb/ft3

]
, CVL : valve flow coefficient[

gpm/psi1/2
]
, TO(t): transmitter output signal from 0 a 1

[p.u], Vp (t): valve position 0 (closed), 1 (open), u (t): the
fraction of controller output (0 to 1) [p.u], Gf : specific
gravity, 1Pv: pressure drop across the valve [psi], τT :
temperature sensor time constant [min], τVp : control valve
time constant [min], A: pipe cross-section

[
ft2
]
. Table 3

details the parameters of the system in steady-state at the
required operating point.

Camacho and Smith [1] propose to model this nonlinear
chemical processes with an approximation of a first-order-
plus dead time (FOPDT) system. Following the procedure
presented in [60], as an example are observed the changes
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FIGURE 7. K and t0 variations as function of the control action u(t).

of the characteristic parameters (K , and t0,) varying the
signal u(t) applied to the actuator that controls W2(t)
in successive step changes as shown Fig.7. Here, it is
observed that the dynamics of the plant vary ascending (blue)
and descending (red) over the entire range of u(t). This
characteristic increases the nonlinearity of the system, which
makes the modeling difficult for the design and calibration of
a conventional model-based controller.

The Z-LSMC controller design is based on the procedure
in subsection II.D. At the operation point, the system has been
approximated to a FOPDT, as presented in [1]:

X (s)
U (s)

=
Ke−tos

τ s+ 1
(64)

For example, the parameter identification for u(t) = 0.478
gives the characteristic values: =−0.89, τ = 0.92min,
t0 = 3.65min.

Modeling t0 using a first-order Taylor series approxima-
tion [1] is:

e−tos ∼=
1

t0s+ 1
(65)

Replacing (65) in (64):

X (s)
U (s)

∼=
K

(τ s+ 1) (t0s+ 1)
=

K
τ t0s2 + (τ + t0) s+ 1

(66)

Solving (66) in the time domain:

τ t0ẍ + (τ + t0) ẋ + x − Ku = 0 (67)

The system model in state-space, where x1 = x, is:

ẋ1 = x2

ẋ2 = −
(τ + t0)
τ t0

x2 −
1
τ t0

x
1
+

K
τ t0

u (68)

From (68) it is a second-order system (n = 2). Thus, from
(31), s(t) is:

s (t) =
(
d
dt
+ λ

)2 ∫
e (t) dt

= ė (t)+ 2λe(t)+ λ2
∫
e (t) dt (69)

The first derivative of (69) is:

ṡ (t) = ë (t)+ 2λė (t)+ λ2e (t) = 0 (70)

For n = 2 in (29):

ë (t) = ẋd2 (t)− ẋ2 (t) (71)

Substituting (68) and (71) in (70):

ṡ (t) = ẋd2 (t)+
(τ + t0)
τ t0

x2 +
1
τ t0

x1 −
K
τ t0

u+ 2λė (t)

+ λ2e (t) = 0 (72)

Fig. 7 shows that the gain of the process is negative K < 0
for the complete range of u(t), so, b (X , t) < 0. The rule tables
change the sign of the consequent restriction (first parameter)
with respect to Tables 1 and 2, as stated in the fourth point
of the summary for the design procedure of the Z-LSMC.
Figs. 8 and 9 present the implemented rules for the continuous
and discontinuous control actions for the mixing tank.

FIGURE 8. Classes and rules for uc based on ṡ(t) for the mixing tank.

FIGURE 9. Classes and rules for ud based on ṡ(t) and s(t) for the mixing
tank.

To validate the Z-LSMC, different controllers are tested
in this case study. A PID, SMC [1], LAMDA-PID Refer-
ence [56] recommends the design of a PID when t0 > τ/4.
The controller parameters have been calibrated considering
the method of Dahlin synthesis, obtaining KC = −0.17,
τI = 1 and τD = 1.7. The SMC has been tuned by
the procedure in [1], these are: λ0 = 0.60, λ1 = 1.55,
KD = 0.25, δ = 0.71. All the LAMDA proposals have been
calibrated empirically with the ISE (Integral Square Error)
minimization criterion. LAMDA-PID has been tuned with
the parameters kp = 0.25, ki = 0.4, kd = 2.5×10−5,
the LSMC and Z-LSMC have the parameters λ = 1,
k1 = 2.5×10−5, k2 = 0.25, kc = 5 and kd = 0.58. For these
last two controllers, the parameters are the same to make a
just comparison.
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FIGURE 10. (a) Change of W1, (b) change of dead time t0.

FIGURE 11. (a) Comparative desired temperature T, (b) control actions.

The change of W1 (see Fig. 10a) is considered as the
disturbance of the system. It varies from 250[lb/min] to
125[lb/min] in different time periods. The changeW1 affects
the dynamics of the process. Fig. 10b shows the behavior of
t0 produced by the changes ofW1 in the open-loop system.
The controllers SMC, PID, LAMDA-PID, LSMC, and

Z-LSMC, to regulate the mixing tank considering the
disturbances presented in Fig. 9a are simulated in the software
Matlab (Simulink). Fig. 11a shows the temperature outlet of
the system, and Fig. 11b presents the control actions obtained
by each proposal in order to make a qualitative analysis of the
results.

Fig. 10a shows that Z-LSMC controls the desired
temperature effectively in the shorter time, with a small
overshoot, especially when W1 decreases to 125[lb/min],

while the controllers LSMC and LAMDA-PID are stable but
oscillatory, the PID is unstable, and the SMC does not reach
the reference during the simulation time.

It is observed that Z-LSMC presents an interesting behav-
ior with respect to the other proposals, since in the disturbance
at t = 450 min, the algorithm is able to reach the reference
quickly with a minimum overshot compared to LSMC. These
proposals present the best responses in the regulation task;
however, it can be noted that Z-LSMC improves, even more,
the performance of the LSMC controller as shown in the
zoom of Fig. 11. The images present in detail the temperature
outlet and the control actions for the last disturbance, in which
it is observed that the overshot of Z-LSMC (0.04%) is
much lower than that of Z-LSMC (2.36%), which is a great
advantage since the actuator will consume less energy to
reach the reference.

The LAMDA-PID regulates the process effectively with
a moderate presence of oscillations for the last disturbance,
but it is robust enough to keep the system stable. The
SMC reaches the reference for the first three changes of
W1. At time t = 250 min, the response of this controller
is slow, but it achieves its aim. In the disturbance at
t = 450, the controller considerably decreases its perfor-
mance and degrades, without reaching the reference. Finally,
the PID controller becomes unstable without reaching the
reference.

FIGURE 12. Values of the performance indexes of each controller.

From a quantitative point of view, the bars of
Fig. 12 presents the values of overshoot, settling time (in
a window of 2% of the reference), IAE (Integral Absolute
Error) and ISE at time 450 min (the worst condition),
to compare the performance of each controller. The IAE index
integrates the entire absolute error over time reflecting the
cumulative error, and the ISE integrates the square of the error
over time in order to penalize the large errors more than the
smaller ones. Thus, the controller with the minimum indices
performs the best control.

The results in Fig. 11, show that the method with the best
performance is Z-LSMC in all the indices. In the case of
PID, the controller is unstable, for this reason, its settling
time and overshoot are indeterminate (ind), being this the
controller with the worst performance. In terms of overshoot,
Z-LSMC is considerably the best (0.04%). The ISE and
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IAE are consistent with the settling time (0.28h) and with
the overshoot because they are the minimum, which shows
that the error converges to zero faster without the need for
a recalibration of the controller, as in the cases of PID
and SMC. This is valid to a lesser degree for LSMC and
LAMDA-PID.

FIGURE 13. Unicycle-like mobile robot parameters.

B. CASE STUDY 2: TRAJECTORY CONTROL
OF A MOBILE ROBOT
The complete mathematical representation of the unicycle-
like mobile robot involves the kinematic and the dynamic
model. For the control of the platform, we implement a
cascade scheme with two controllers: to control the kinematic
model, is proposed a feedback linearization method based on
the robot kinematics, and the dynamic model is controlled
with the Z-LSMC and the other proposals, to make the
comparative analysis. Fig. 13 shows the robot scheme, with
the linear velocity v and angular velocity ω. Besides ψ is
the robot orientation, h is the interesting point with rx , ry
coordinates in the X − Y plane, a is the distance among h
and the midpoint B that connects the wheels, and the radius
of the wheels is r1.

1) KINEMATIC CONTROLLER
This controller is designed considering the kinematic model
of the robot defined as [61]: ṙx(t)ṙy(t)

ψ̇(t)

 =
 cosψ(t) −asinψ(t)
sinψ(t) acosψ(t)

0 1

[ v(t)
ω(t)

]
(73)

For the coordinates of the interest point [rx , ry]T , the con-
trol law is defined as [61]:[
vcref (t)
ωcref (t)

]
=

[
cosψ (t) sinψ (t)

−
1
a
sinψ (t)

1
a
cosψ (t)

]

×

 ṙxref + lx tanh
(
kx
lx
r̃x(t)

)
ṙyref + lytanh

(
ky
ly
r̃y(t)

)
 (74)

where r̃x (t) = rxref (t) − rx(t), and r̃y (t) = ryref (t) − ry(t)
are the trajectory errors in the X and Y axis, respectively,

kx and ky are the gains, lx , ly ∈ R are saturation
parameters, the tanh(·) function limits the control action [62],
a > 0, and

[
vcref (t) ω

c
ref (t)

]T
are the outputs of the kinematic

controller [63].
For the stability analysis, it is assumed a perfect velocity

tracking vcref (t) ≡v (t) and ω
c
ref (t) ≡ω (t). By replacing (74)

in (73), it is obtained:

[
˙̃rx
˙̃ry

]
+

 lx tanh
(
kx
lx
r̃x(t)

)
lytanh

(
ky
ly
r̃y(t)

)
 = [ 00

]
(75)

Let h (t) =
[
rx (t) ry (t)

]T , h̃ (t) = [ r̃x (t) r̃y (t) ]T , then
˙̃h(t) =

[
˙̃rx (t) ˙̃ry (t)

]T
. Thus, (75) is rewritten as:

˙̃h (t) = −

 lx tanh
(
kx
lx
r̃x (t)

)
lytanh

(
ky
ly
r̃y (t)

)
 (76)

In [63], for the kinematic control is proposed the Lyapunov
function V (t) = 1

2 h̃
T
(t) h̃ (t) > 0, which is positive definite.

The Lyapunov function first derivative is:

V̇ (t) =
1
2
h̃
T
(t) ˙̃h (t)

= −r̃x (t) lx tanh
(
kx
lx
r̃x (t)

)
−r̃y (t) lytanh

(
ky
ly
r̃y (t)

)
(77)

Equation (77) is negative definite. Thus, the stability of this
controller is guaranteed if: kx > 0, ky > 0, lx > 0 and ly > 0,
then h̃→ 0 for t →∞.

2) DYNAMIC CONTROLLER
For the dynamic controller design, the dynamic model is
considered as uncertain. The identification and design of the
controller are based on obtaining the approximation of a
reduced-order model using the reaction curve method. The
dynamic controller receives the linear and angular references,
and computes the control actions to reach them. Fig. 14 shows
the robot signals when a step input is applied to the linear and
angular velocities; these responses look like FOPDT models.

The parameter identification performed for both graphics
of Fig. 14 gives the following parameters for the linear speed:
Kv = 1, t0v = 0.144 sec., τv = 0.224sec.; and for the angular
velocity: Kω = 1,t0ω = 0.0856sec, and τω = 0.116sec.

It is important to highlight that the Linear and Angular
velocities are independent of each other, as established
in [64], which is a characteristic of this type of robot, for
which independent Z-LSMC controllers can be used. If they
are not independent, the use of decouplers is required, which
in this case study is not necessary.

The design process of the Z-LSMC for the linear and
angular velocities is similar. In order to summarize the
procedure, the linear velocity is detailed as follows.
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FIGURE 14. Step response of velocity: (a) Linear (b) Angular.

Consider the first order plus dead time for the linear speed
with the form of (64):

Xv(s)
Uv(s)

=
Kve−t0vs

τvs+ 1
(78)

Using the first-order Taylor series approximation for the
t0v:

e−t0vs ∼=
1

t0vs+ 1
(79) (79)

Substituting (79) into (78):

Xv (s)
Uv (s)

∼=
Kv

(τvs+ 1) (t0vs+ 1)

=
Kv

τvt0vs2 + (τv + t0v) s+ 1
(80)

Solving (80) in the time domain:

τvt0vẍ + (τv + t0v) ẋ + x − Kvu = 0(81) (81)

Rewriting the system in state-space, with x1 = x:

ẋ1 = x2

ẋ2 = −
(τv + t0v)
τvt0v

x2 −
1
τvt0v

x
1
+

Kv
τvt0v

u (82)

Equation (82) is similar to (27). Then, it is feasible the
methodology used to design a stable Z-LSMC as detailed in
section II.D.

Observing (82), the linear velocity is second order system
(n = 2). From (31), s(t) is defined as:

s (t) =
(
d
dt
+ λ

)2 ∫
ev (t) dt

= ėv (t)+ 2λev(t)+ λ2
∫
ev (t) dt (83)

The first derivative of (83) is:

ṡ (t) = ëv (t)+ 2λėv (t)+ λ2ev (t) = 0 (84)

For n = 2 in (29):

ëv (t) = ẋd2 (t)− ẋ2 (t) (85)

Replacing (82) and (85) in (84) we have:

ṡ (t) = ẋd2 (t)+
(τv + t0v)
τvt0v

x2 +
1
τvt0v

x
1
−

Kv
τvt0v

u

+ 2λėv (t)+ λ2ev (t) = 0 (86)

The parameter identification has shown that Kv
τvt0v

> 0, then
b (X , t) > 0. We use the classes shown in Tables 1 and 2.
Fig. 15 presents the classes for uc. For instance,
if ṡ (t) = −0.5, then the Class 2 is activated (γ2 = −0.5)
to fulfill ṡ(t) = 0.

FIGURE 15. Classes and rules for uc based on ṡ(t), for the linear speed of
the mobile robot.

Fig. 16 presents the classes for ud . For instance,
if ṡ (t) = 0.5 and s(t) = 1, then the Class 20 is activated
(γ20 = 1) to fulfill s (t) ṡ (t) < 0.

FIGURE 16. Classes and rules for ud based on ṡ(t) and s(t), for the linear
velocity of the mobile robot.

The complete control scheme for the trajectory tracking
of a mobile robot is presented in Fig. 17, which is tested
on a Pioneer 3DX robot [65] running in the Virtual Robot
Experimentation Platform ‘‘V-REP’’. This software is used
to simulate a robotic environment considering the dynamics
and kinematics of the platform [66]. The Z-LSMC has been
programmed in Matlab(R) and linked to the V-REP, as shown
in Fig. 18. In the environment has been added a disturbance
on the floor (unevenness), to test the effectiveness of the
controller when the dynamics of the robot changes.

In order to make a comparative analysis, the same
controllers defined in subsection IV.A are tested in this
experiment, these are: PID, SMC, LAMDA-PID, LSMC,
and Z-LSMC. Two trajectories are evaluated, then, it is
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FIGURE 17. Cascade controller for trajectory tracking control.

FIGURE 18. V-REP simulation scene showing the Pioneer 3DX robot.

performed a qualitative evaluation through the plot of the
response curves, and a quantitative analysis measuring the
IAE and ISE performance indices. All the tested controllers
have been tuned with the ISE minimization methodology to
obtain a fair comparison among them. The tested trajectories
are Lenmiscate (see (87)), and Square (see (88)). The initial
position of the robot is rx = 0m, ry = 0m.{

rxref (t) = 1.2 sin (0.063π t)
ryref (t) = 2 sin (0.0315π t)

(87)
rxref (t) = 1.5∀t ∈ [0, 15]; (4.5− 0.2t)∀t ∈ [15, 30];
−1.5∀t ∈ [30, 45] ; (−10.5+ 0.2t)∀t ∈ [45, 60]
ryref (t)=(−1.5+0.2t)∀t ∈ [0, 15]; 1.5∀t ∈ [15, 30];

(7.5− 0.2t)∀t ∈ [30, 45] ;−1.5∀t ∈ [45, 60]
(88)

Figs. 19-24 show the response signals for the linear and
angular speeds, trajectory error, and trajectory followed by
the robot controlled by the different controllers, to evaluate
qualitatively the performance.

The results show that all the controllers perform the
trajectory tracking. From a qualitative point of view, it is
observed the chattering presented in the controller action
of SMC (see Figs. 19b, 20b and 22b), which is the main
drawback of this proposal being able to affect the actuators
by the oscillations in a real platform. This effect decreases
the angular velocity of the square (see Fig. 23b) because the
robot follows straight lines. The PID controller has errors in
linear and angular velocity (see Figs 19a and 20a), therefore
the system does not reach the reference in some instant of

time. LAMDA-PID, LSMC and Z-LSMC apparently show
nearby results. Particularly, in the square shape, it is noted that
Z-LSMC minimizes the deviation between the reference and
the real position of the robot, especially at the corners, where
abrupt orientation changes occur (see Figs 22e and 23e). The
error in both trajectories is around 2cm, around 1% of relative
error when taking into account the radius and the side of the
shapes (see Figs. 21 and 24).

Due to the graphic similarity of the responses of the
controllers, it is important to do the quantitative analysis
based on the IAE and ISE indices, shown in Fig. 25.

The indices displayed in Fig. 25 shows, from the quan-
titative point of view, that the best controller is Z-LSMC,
with the minimum value of IAE and ISE in both trajectories.
Especially for the case of square, a figure that has corners
in its shape, it is noted that the indices of the Z-LSMC are
less than the LSMC. To observe these values, the relative
error (RE) is computed:

RE IAE =
|IAELSMC − IAEZ−LSMC |

IAELSMC
×100%=13.6% (89)

RSE ISE =
|ISELSMC − ISEZ−LSMC |

ISELSMC
×100%=6.38% (90)

These values show that Z-LSMC quickly minimizes the
error, with respect to the other proposals, reaching the
reference faster. The SMC also presents good index values;
however, the excessive chattering present in its control action
(see Figs 18b, 19b and 21b) can cause heating and decrease
the useful life of the actuators in the real robot.

C. COMPUTATIONAL COMPLEXITY
The computational complexity of Z-LSMC is addressed in
terms of temporal and spatial complexity The controller is
programmed in the software Matlab R2020a, over an Intel
(R) Core (TM) i78750H microprocessor @ 2.2GHz.

1) SPATIAL COMPLEXITY
The spatial complexity considers the memory usage and
arithmetic complexity, which are computed as follows.

a: MEMORY USAGE
The permanent memory usage contemplates the number of
parameters used for the computation of the control action
u(t) is based on the number of classes m = cl . For uc,
Z-LSMC uses the descriptor ṡ, that is, l = 1. Thus,
the number of parameters to store is 2c. For ud , Z-LSMC
uses two descriptors s and ṡ, that is, l = 2. Thus, the
number of stored parameters is 2c2. Besides, are considered
the parameters σk,j = 0.25, α, λ, three centers, the standard
deviation of the reliability, and four scaling gains for
calibration. The overall number of parameters stored in
memory (#stored_val) is:

#stored_val = 2c2 + 2c+ 11 (91)

In this paper is assumed that each parameter is stored in 2
bytes of memory [67].
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FIGURE 19. Linear speed for the Lenmiscate trajectory (d) LSMC, (e) Z-LSMC.

FIGURE 20. Angular speed for the Lenmiscate trajectory followed by the robot: (a) PID, (b) SMC, (c) LAMDA-PID, (d) LSMC, (e) Z-LSMC.

FIGURE 21. (a) Lenmiscate trajectory with the different controllers, (b) trajectory
distance error.

FIGURE 22. Linear speed for the square trajectory followed by the robot: (a) PID, (b) SMC, (c) LAMDA-PID, (d) LSMC, (e) Z-LSMC.

FIGURE 23. Angular speed for the square trajectory followed by the robot: (a) PID, (b) SMC, (c) LAMDA-PID, (d) LSMC, (e) Z-LSMC.

b: NUMBER OF OPERATIONS
The arithmetic complexity is addressed, analyzing the
number of arithmetic operations to calculate the control
action. The number of operations required to compute the

different parameters of the LAMDA controller is presented
in Table 4.

The total number of operations shows a quadratic exponent
corresponding to the number of classes for each descriptor.
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FIGURE 24. (a) Square trajectory with the different controllers, (b) trajectory distance
error.

FIGURE 25. Comparative performance indexes of the controllers a) IAE,
b) ISE.

TABLE 4. Arithmetic complexity of Z-LSMC.

The expression shows the simplicity of the algorithm in the
field of spatial complexity.

2) TEMPORAL COMPLEXITY
The temporal complexity allows analyzing the time required
in each sample time to calculate the control action. Table 5
presents the average time for 6000 samples, in which the
controller output is computed varying the number of classes
‘‘c’’ per descriptor.

TABLE 5. Arithmetic complexity of Z-LSMC.

The values presented in Table 5 demonstrate that the
computational time required to compute the controller output
of one sample with Z-LSMC is less than 1.7× 10−4 sec., for
the worst case, this is 9 classes per descriptor. Based on these
results, the proposed controller can be used in systems that
require a sampling greater than that value.

V. CONCLUSION
This paper has formalized a new intelligent controller based
on LAMDA, the concepts of SMC, and the Total Utility of
Z-numbers, to establish an inference method that improves

the performance of the control system. The controller has
used the criteria of restriction given for theMADs of LAMDA
and the reliability of the measures obtained of the sliding sur-
face and its derivative to compute a more aggressive control
action in presence of large errors and smooth control action
when the error is close to zero. Besides, one of the foremost
qualities of this approach is obtaining a chattering-free robust
controller

The Z-LSMC design is simple and only requires to
establish the rules for two inputs: the sliding surface and
its first derivative. This information is sufficient for the
calculation of the overall control action. The Total Utility of
Z-numbers is addressed and applied in control systems for the
first time in this paper, showing very good results.

The approach has been proven into two case studies with
the next control objectives: regulation of a chemical process
and trajectory tracking of a mobile robot, to validate our
proposal. It is observed that the Z-LSMC controller is capable
of reaching the reference quickly andwith control actions that
would not affect the actuators in a real system since one of its
strengths is being robust and chattering-free.

Based on the obtained results, Z-LSMC is the best in terms
of performance for the regulation and tracking trajectory
objectives presented in the two case studies. Particularly,
in the regulation of the chemical process it has been
observed that despite the changes in the dynamics of the
plant, the controller remains stable and calculates a much
smoother control action than the other proposals (see the
overshoot), which shows good characteristics with respect to
the disturbance rejection. On the other hand, for trajectory
tracking, it has been observed that the controller presents very
good results, especially it is capable of following the abrupt
reference changes faster than the other proposals, without
presenting an aggressive control action, as shown the graphics
and the indices IAE and ISE.

It should be noted that the main difficulty in the design of
the Z-LSMC is the calibration of scaling gains (k1, k2, kc, kd )
since there are no equations formulated for this purpose.
An additional drawback is finding the bounds of the functions
(βdn, βe, βd , βA), however, these can be defined through
experimentation and knowledge of an expert regarding the
real system. The definition of the centers of the Gaussian
functions for reliability is also an open field of investigation
since the Z-Numbers and TU are new concepts applied to
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control systems; therefore, it is appropriate to deepen the
analysis of how this would affect more complex dynamics
systems.

As future work, we propose to extend Z-LSMC to
Adaptive LAMDA approaches, in which the centers of the
classes for the restriction and reliability of the Z-numbers
can be automatically computed in online learning mode,
in order to avoid the heuristic calibration, which is a time-
consuming and complex process in some systems with
uncertain dynamics. Furthermore, it is necessary to test the
controller in higher-order and unstable systems to evaluate
its implementation feasibility to cover a greater number of
applications.
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