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ABSTRACT Estimating and classifying depression status are critical in the clinical and psychological
domains to map the course of treatment. Prior researchers used biosignal time-series data to reflect the
variation in factors associated with depression. In addition, machine learning algorithms were applied to
determine the underlying relationships between depressive symptoms and these factors. In this study, we
introduce a classification framework for depression levels using actigraphy data based on machine learning
algorithms. Fourteen circadian rhythm features (minimum, amplitude, alpha, beta, acrotime, upmesor,
downmesor, mesor, f_pseudo, interdaily stability (IS), intradaily variability (IV), relative amplitude (RA),
M10, and L5) extracted from accelerometer-based actigraphy data were used to model depression status
with survey variables. Six evaluation metrics (accuracy, precision, recall, F1-score, receiver operating
characteristic curve, and area under the curve) were applied to validate the performance of the proposed
framework. Among the four candidate classifiers (XGBoost classifier, support vector classifier, multilayer
perceptron, and logistic regression), the XGBoost classifier was the best at classifying depression levels.
Moreover, we confirmed that the actigraphy data of two days were optimal for feature extraction and
classification. The results of this study provide novel insights into the relationship between depression and
physical activity in terms of both identification of depression and application of actigraphy data.

INDEX TERMS Accelerometer-based actigraphy data, classification algorithm, circadian rhythm, depres-
sion level, machine learning, multi-level classification, physical activity.

I. INTRODUCTION
Depression is commonly recognized as themain factor in psy-
chiatric and psychophysiological disorders [1]. In addition,
depressive symptoms affect daily life, leading to feelings of
helplessness, anxiety, sleep disturbances, and decreased con-
centration [2]. To identify factors associated with related dis-
orders, many researchers have focused on both internal and
external elements of the patient group. For example, chronic
stress affects the onset of major depressive disorder [3], acute
stroke is associated with the occurrence of major depression
[4], and socio-environmental factors (e.g., family members’
health and relationships) affect unipolar depression [5].
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approving it for publication was Wentao Fan .

Classifying the depression level is critical in both the
clinical and psychological domains. In the clinical domain,
continuously monitoring depressive symptoms is important
for mental health management. In addition, it is beneficial
for all patient groups, including the treatment group and
the candidate group expected to receive treatment. In the
psychological aspects, it is important that individual factors
are considered to confirm a subject’s depression level [6]–[9].

Many previous researchers utilized various modalities to
identify factors associated with depression, such as elec-
troencephalogram (EEG), brain magnetic resonance imaging
(MRI), and self-report physical activity [10]–[13]. However,
these methods have several limitations. In the case of EEG
and brain MRI, an expensive MRI equipment should be pre-
pared, and data can only be collected in a limited laboratory
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environment. In terms of self-report physical activity, many
researchers collected intensity or duration of activity by self-
report questionnaires from participants. However, self-report
measures can be influenced by self-report bias or response
bias [14], [15]. To overcome these limitations, we used
accelerometer-based actigraphy data (i.e., actigraphy) in our
study. This time series data can collect continuous activity
data and is relatively inexpensive.

Considering previous studies, biosignal and life-log time
series data collected from participants (e.g., Electrocardio-
gram, accelerometer-based actigraphy) have been widely
used to screen for depression [16]–[18]. Heart rate variability
(HRV) parameters extracted from ECG signals were used
with machine learning (ML) algorithms to diagnose major
depressive disorder [19]. In addition, multimodal data (steps,
energy expenditure, body movement, sleep time, heart rate
(HR), and skin temperature) including several life-log time
series data collected from wristband-type wearable devices
were analyzed using a MLmodel to evaluate depression [20].

In related studies using self-report physical activity,
researchers focused on comparing the intensity level
(e.g., weak, moderate, or vigorous) and activity duration
(e.g., once a week or five hours a day) of participants in
study groups [21]–[23]. Moreover, actigraphy time-series
data collected using wearable devices were used to analyze
activity variation [24]–[26]. To deduce the activity patterns
from actigraphy, the characteristics of actigraphy time series
(e.g., peak, slope, amplitude) were calculated from cosinor
modeling as indices [27]–[30]. These indices represent the
circadian rhythm cycles of the participants, which reveal
major symptoms of depression [31]–[33].

Circadian rhythm patterns from actigraphy data reflect the
stability or fluctuation of activity from participants [34], [35].
These patterns can be summarized using parametric and non-
parametric metrics [36]–[39]. In previous studies, circadian
indices related to activity, sleep disturbances, and daily mood
variations were compared between the patient groups and
control groups to identify differences in the circadian patterns
of depression patients [40]. Disturbances of the circadian
cycle indicated that depression patients exhibited differences
compared to the healthy group [41], [42]. Moreover, ML
algorithms have been used to characterize daily sleep-activity
cycles using actigraphy data [43].

Based on previous studies identifying the association
between physical activity and depression, we hypothesized
that actigraphy data have sufficient potential to classify
depression levels when an adequate analysis is conducted.
To prove our hypothesis, we constructed an experimental
design using ML classification algorithms. In this study,
we proposed a classification framework for depression lev-
els (e.g., ‘mild,’ ‘moderate,’ or ‘severe’ depression) through
ML algorithms based on actigraphy data. We collected the
actigraphy data (Fig. 1), as well as demographic, physical
activity, subjective health status, and mental health vari-
ables of the same participants. Fourteen circadian rhythm
indices based on parametric and non-parametric metrics were

extracted to verify the validity of these data as features.
Four non-parametric features were used: interdaily stabil-
ity (IS), intradaily variability (IV), total activity of the ten
most active hours (M10), and total activity of the five least
active hours (L5). The nine parametric features used were
minimum, alpha, beta, acrotime, amplitude, mesor, upmesor,
downmesor, and f_pseudo. The distribution of all features,
including the survey variables and extracted circadian fea-
tures, was verified; in sequence, they were log-transformed
and standardized. To prevent multicollinearity between fea-
tures, we selected only fifteen features based on the lasso and
ridge regression models. The selected features were applied
to four classification algorithms, XGBoost classifier, support
vector classifier (SVC), logistic regression (LR), and mul-
tilayer perceptron (MLP). Finally, the performance of each
model was evaluated using six evaluation metrics: accuracy,
precision, recall, F1-score, receiver operating characteristic
(ROC) curve, and area under the curve (AUC).

The objective of this study was to develop a depression
level classification framework based on actigraphy data with
ML algorithms. The major contributions of this study are as
follows:

(1) We proposed an ML-based classification framework
for depression levels based on the circadian rhythm char-
acteristics embedded in physical activity. In addition, we
evaluated the performance of the model under various con-
ditions, including binary and multiclass classification, on a
large dataset. Moreover, we compared the classification per-
formance of commonly used ML classification algorithms:
XGBoost classifier, SVC, MLP classifier, and LR;

(2) Advancing from analyzing simple characteristics of
physical activity data, we extracted various features about the
inherent circadian rhythm of activity from participants. Fur-
thermore, we identified the optimal length of actigraphy data
for extraction of circadian rhythm features. In addition, we
confirmed that the feature importance of the trained XGBoost
model in our framework was in agreement to that of previous
studies.

The remainder of the paper is organized as follows:
Section II includes a detailed description of the dataset and
methodologies used in the study. In Section III, the classifi-
cation performance of the fourMLmodels in the experiments
is reported. In Section IV, we discuss the results and their
implementation. Finally, the conclusions and summary of our
study are presented in Section V.

II. METHODS
A. OVERVIEW
To prove our hypothesis, we used six steps in our experimen-
tal design. First, we extracted demographic, physical activity,
mental health, subjective health status variables, and collected
actigraphy data from the Korea National Health and Nutrition
Examination Survey (KNHANES) dataset. Selected variables
and actigraphy data were combined based on the partic-
ipant ID. Second, we extracted thirteen circadian indices
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FIGURE 1. Example of actigraphy data used in this study.

FIGURE 2. Overview of experimental design in this study.

from the actigraphy data using parametric and non-parametric
methods. Third, selected variables were log-transformed and
standardized after their distribution was checked. Fourth, to
select suitable features, all the variables, including selected
variables and extracted circadian indices, were filtered using
the coefficient with the lasso and ridge regression models.
Fifth, we generated six types of datasets to evaluate the
optimal length of the actigraphy data used in an ML algo-
rithm. Finally, four classification algorithms were trained and
evaluated using the evaluation metrics. The detailed steps are
shown in Fig. 2.

B. DATA SOURCES
In our study, we used the open-source KNHANES dataset
released by the Korea Disease Control and Prevention

TABLE 1. Abbreviations used in this article.

Agency (KDCA). KNHANES is a longitudinal survey con-
ducted by the KDCA to investigate the health status, health-
related awareness and behavior, and nutritional status of
people in Korea. The survey started in 1998 and was con-
ducted every three years until 2005; subsequently, it has been
conducted annually. The original dataset is available on the
KDCAwebsite and the current dataset for 18 years from 1998
to 2019 is publicly available. This dataset consists of nine
categories of survey variables, which are listed in Table 2.

This dataset consists of two sub-datasets in separated csv
files. The first sub-dataset consists of health behavior, blood
tests, and grip test results covering the first four categories.
The second sub-dataset includes the last five categories. All
the survey results in the sub-datasets can be combined with
the participant ID. A total of 216,815 people participated in
this survey from 1998 to 2019. In our study, we selected the
datasets for two years only (2014 and 2016), which were the
only ones containing actigraphy data [44], [45]. The baseline
characteristics of both datasets are presented in Table 3.

The actigraphy data in the KNHANES dataset were col-
lected using an ActiGraph GTX3 wearable device. Acceler-
ation values from the participants’ activity were measured
in one sample in one minute (sampling rate: 1/60 Hz). All
the participants were instructed to wear the device for one
week. Although the acceleration values of the three axes
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TABLE 2. Categories of variables in KNHANES dataset.

TABLE 3. Baseline characteristics of KNHANES dataset (2014, 2016).

(X, Y, and Z) were collected, only single vertical values
(Z axis) were published.

C. DATA PREPROCESSING
1) COLLECT AND COMBINE ACTIGRAPHY AND INTERESTED
VARIABLES FROM DATASET
We analyzed whether the actigraphy data were in agreement
with survey variables. Among the nine categories included in
the survey data, demographics, physical activity, subjective
health status, and mental health variables were selected to
identify levels of depression. The dimensions of the original
dataset in 2014 and 2016 were (7,550, 746), and (8,150, 800)
before and (7,550, 73) and (8,150, 71), after the extraction
of relevant variables, respectively. For the remaining dataset,
we merged the actigraphy dataset and survey dataset based on
the participant ID in the actigraphy dataset (977 participants
in 2014 and 575 participants in 2016). Following merging,
the dimensions of both datasets were unchanged.

2) EXTRACTION OF PARAMETRIC AND NON-PARAMETRIC
CIRCADIAN INDICES
To classify the depression status, we extracted circadian
rhythm indices from actigraphy time-series data. Both para-
metric and non-parametric metrics were applied to deduce the
various characteristics of the circadian cycles from activity

patterns. To extract the indices, the duration of the actigraphy
data collection was varied (two, three, four, five, six, and
seven days) to confirm the optimal actigraphy length for
index extraction. For each length condition, the data were
sliced into windows and data of several length conditions
were overlapped. For example, in a two-day length condition,
a window with a length of two days was sequentially sliced
from actigraphy data (e.g., the first window consists of days
1 and 2 from actigraphy data, the second window consists
of days 2 and 3, . . . . In total, six windows were applied).
Consequently, we obtained six index vectors from the two-
day actigraphy data. The detailed process for the two-day
length condition is depicted in Fig. 3.

The indices were extracted using the same process and also
for the other conditions. After extraction, the indices were
arranged in column-wise matrices. Each column was denoted
as xi, where i = 1, . . . ,N . The rows of the matrix indicate
the extracted indices for the six conditions per participant.
We termed this matrix the circadian index matrix, which is
denoted as follows:

C = [
(
xi, yj

)
, i = 1, . . . ,N , j = 1, . . . ,M ] (1)

Finally, the corresponding condition labels vector y =
[two days, . . . , seven days] were merged with the circa-
dian indices matrix. A detailed description of each circadian
rhythm index is provided in the following subsections.

a: NON-PARAMETRIC CIRCADIAN INDICES
[1] INTERDAILY STABILITY (IS)

In this study, the stability of activity over multiple days was
calculated by normalizing the number of actigraphy samples
at 24-h values. This indicator was calculated using (2) [46]:

IS =
N
∑P

h=1 (X̄h − X̄ )
2

P
∑N

i=1 (Xi − X̄ )
2 (2)

where N is the total number of samples, p is the number of
samples per day, X̄ is the mean value of all samples, X̄h are
the hourly means, and xi indicates the individual actigraphy
samples. Changes in IS can represent a coupling between the
rest-activity cycle and decreased IS values indicated higher
day-to-day variation in activity patterns [47].
[2] INTRADAILY VARIABILITY (IV)
The IV index is the ratio of the mean squared first deriva-

tive of the sample to the total variance from the actigraphy
samples as in (3):

IV =
N
∑N

i=2 (Xi − Xi−1)
2

(N − 1)
∑N

i=1 (X̄ − Xi)
2 (3)

The elements included in the equation have the samemean-
ing as in (2). This index indicates fragmentation of the rest-
activity rhythm [46].
[3] MOST ACTIVE 10-H PERIOD (M10)
The M10 was computed by averaging the ten highest

hourly means. This index indicates the activity during the
most active period of the day.
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FIGURE 3. Example of the selection process in indices extraction (two-day length condition).

[4] LEAST ACTIVE 5-H PERIOD (L5)
The L5 represents movement during sleep and nighttime

arousals. This value indicates the average value in the five
least active hours in the entire actigraphy.
[5] RELATIVE AMPLITUDE (RA)
The RA of the activity cycle in actigraphy can be calculated

from M10 and L5 values, as in (4) [48], [49]:

RA =
M10− L5
M10+ L5

(4)

b: PARAMETRIC CIRCADIAN INDICES
To extract parametric indices from the actigraphy data,
we used cosinor analysis. The least squares method was
used to fit a cosine wave to the actigraphy data [50].
We calculated nine parametric indices: minimum, ampli-
tude, alpha, beta, acrotime, upmesor, downmesor, mesor, and
f_pseudo.
[1] MINIMUM
This index is the minimum value of the fitted cosine func-

tion with actigraphy data.
[2] AMPLITUDE
This index represents the highest activity value in the activ-

ity cycle.
[3] ALPHA
Alpha indexes determine whether the peaks of the curve

are wider than the troughs. High alpha values indicate wide
troughs and narrow peaks. On the contrary, low alpha values
indicate narrow troughs and wide peaks.

TABLE 4. Selected features from feature selection criteria.

[4] BETA
This index determines whether the transformed function

rises and falls more steeply than the cosine curve. Large
values of the beta index indicate that the curves are nearly
square waves.
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FIGURE 4. Distribution examples of demographic and circadian rhythm variables used in this study. Log-transformed distribution of (a) IS variables, (b)
M10 variables, and (c) IV variables. (d) Distribution of original PHQ-9 variables. (e) Log-transformed distribution of BMI variables.

[5] ACROTIME
The acrotime indicates the time of the peak activity from

the total activity time.
[6] UPMESOR
The upmesor is the time of the day in which the switch

from low to high activity occurs. In the rest-activity rhythm,
this value indicates the timing of the variation. Lower values
indicate increased activity earlier in the day.
[7] DOWNMESOR
The downmesor is the time of the day in which the switch

from high to low activity occurs. It indicates the timing of
the change in the rest-activity cycle. Lower values represent
a decline in activity.
[8] MESOR
This index, calculated similarly to the MESOR of the

cosine model, can be calculated using (5).

MESOR =
minimum+ amplitude

2
(5)

However, as it goes through the middle of the peak, it is
not equal to the MESOR of the cosine model. Generally, this
index represents the mean of the actigraphy data.
[9] F_PSEUDO
Measure the improvement of the fit obtained by nonlinear

estimation of the transformed cosine model.

3) REMOVAL OF VARIABLES WITH NO-RESPONSE DATA
In the KNHANES dataset, -8 indicates the ‘not appli-
cable’ answers of the participants. To reflect the exact
response in each variable, we checked the distribution of
each variable, including both the survey and circadian indices

TABLE 5. Hyperparameters of ML classifiers.

matrices through histograms. We removed variables with
more than half inapplicable responses, after which 33 vari-
ables remained.
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TABLE 6. Classification performance results for classifiers with binary-class conditions.

TABLE 7. Classification performance results for classifiers with three-class conditions.

4) CHECK DISTRIBUTION AND TRANSFORM BY LOG
TRANSFORMATION AND STANDARDIZATION
After removing the irrelevant variables with invalid
responses, we confirmed the distributions of the remaining
variables to improve the evaluation of the ML algorithms. In
addition, we applied log transformation and z-score standard-
ization to the arranged dataset to overcome possible unequal
and skewed distribution of variables.

In the case of the ‘PHQ-9’ variable (target variable), which
was discrete and not continuous, we could not apply log

transformation. Distributions of variables used in our study,
including ‘PHQ-9,’ are depicted in Fig. 4.

5) FEATURE SELECTION
Features of both the extracted circadian rhythm indices and
selected survey variables may have two problems. First,
features can have a high correlation between them (mul-
ticollinearity or redundant variables in classifying depen-
dent variables). Second, a low correlation can be observed
between features and class (irrelevant features for classifying
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TABLE 8. Classification performance results for classifiers with four-class conditions.

TABLE 9. Classification performance results for classifiers under five-class conditions.

dependent variables). To select adequate features, we applied
three-step rank and frequency feature selection methods. Two
feature selection criteria, lasso and ridge regression models
[51], [52], were applied.

In the feature selection steps, we first fitted the lasso and
ridge regression models based on a dataset including both
circadian indices and survey variables. The coefficients were
confirmed for the individual features and sorted by their
magnitude. Second, we selected the top 15 features based
on each coefficient. All high-ranking features selected from
the regression models were collected. Finally, the collected

features were sorted again according to their frequency. After
feature sorting, we chose the top-15 features to reflect both
rank and frequency from both selection criteria. The features
selected in this section are listed in Table 4.

Considering the selected features, ‘EQ5D’ indicates sub-
jective quality of life index, ‘BP1’ indicates awareness of
usual stress, ‘LQ4_00’ indicates uncomfortable physical
activity, ‘D_2_1’ indicates uncomfortable experience in the
last two weeks, ‘HE_BMI’ indicates the BMI index values,
‘mh_stress’ indicates stress awareness, ‘DF2_dg’ indicates
the doctor’s diagnosis about depression, ‘D_1_1’ indicates
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TABLE 10. One-way ANOVA test results of evaluation indices.

the subjective health status, and ‘pa_aerobic’ indicates aer-
obic physical activity.

6) GENERATION OF DATASET UNDER SIX CONDITIONS TO
CONFIRM THE OPTIMAL LENGTH OF ACTIGRAPHY DATA
To confirm the optimal length of the actigraphy monitoring
for classification, we constructed six datasets by varying the
duration of the actigraphy data. The first dataset contained
circadian rhythm indices extracted from the actigraphy data
of two days. Similarly, the second to sixth datasets consisted
of three, four, five, six, and seven days of actigraphy data,
respectively. The numbers of rows in the first and second
datasets were 9158, 7681, 6160, 4627, 3086, and 1544,
respectively. Additionally, each dataset was split into training
and test datasets at a 9:1 ratio.

7) EVALUATION OF CLASSIFICATION PERFORMANCE IN
EACH CONDITION
In the final step, we constructed an additional dataset with
various class conditions to compare the classification per-
formance at diverse class levels. Classification performance
was evaluated by four conditions: binary, three, four, and five
classes.

Four classification algorithms (XGBoost, SVC, MLP, and
LR) were compared in a total of 24 conditions (six actigraphy
length conditions× four conditions for classification labels).
To check the relevance as input features for depression level
classification, we confirmed the list of features sorted by
feature importance from trained ML models.

Due to the imbalance in the number of subjects belonging
to each class label, weights were applied to complement the
algorithm training. We conducted a random search to deter-
mine the optimal hyperparameters of the four ML classifiers,
as listed in Table 5. In addition, 10-fold cross validations were
applied to prevent overfitting of classification algorithms.

D. CLASSIFICATION ALGORITHMS
In this study, we utilized four classification algorithms to
model the relationship between the selected features and
the level of depression. The first classification model was
the XGBoost classifier, which is based on an ensemble of
several decision tree models, according to (6) [53]. This

FIGURE 5. ROC curves of classifiers from actigraphy data of two days
under binary condition. (a) XGBoost classifiers, (b) SVC, (c) MLP classifier,
(d) LR.

model trains a given dataset with n samples and m features
D = {(xi, yi)|x i ∈ Rm, yi ∈ R. In our cases, we used
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FIGURE 6. ROC curves of classifiers from actigraphy data of two days
under three-class conditions. (a) XGBoost classifiers, (b) SVC, (c) MLP
classifier, (d) LR.

FIGURE 7. ROC curves of classifiers from actigraphy data of two days
under four-class conditions. (a) XGBoost classifiers, (b) SVC, (c) MLP
classifier, (d) LR.
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FIGURE 8. ROC curves of classifiers from actigraphy data of two days
under five-class conditions. (a) XGBoost classifiers, (b) SVC, (c) MLP
classifier, (d) LR.

a dataset with n rows and m features (including circadian
indices, survey variables, and class labels). Gradient boosting

TABLE 11. Comparison performance of classifiers for depression status
in previous studies.

algorithms with regularized objectives constitute the basis for
the model.

L(φ) =
∑
i

l(yi, y′i)+
∑
k

�(fk ) (6)

where �(f ) = γT +
1
2
λ ||ω||2 (7)

y′i = φ (xi) =
∑K

k=1
fk (xi), fk ∈ F (8)

To optimize the algorithms with a dataset, we minimize
the regularized objective function in (6), where y′i indicates
the predicted value from the tree model and each fk cor-
responds to individual trees. Function l is a differentiable
convex loss function that compares the difference between the
predicted y′i and target yi. In the second term, function � is
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TABLE 12. Feature ranking by importance from XGBoost classifier.

the penalization term for the complexity of models. To avoid
overfitting the partial dataset, an additional regularization
term smoothens the last learned weight. In this study, we
set yi as class labels to which depression levels are assigned
(e.g., ‘mild,’ ‘moderate,’ ‘severe’ depression).

The second classification algorithm applied was the SVC
with nonlinear kernels [54]. This algorithm classifies the
feature space using hyperplanes that are separated by class
labels. In previous studies, researchers used linear kernels to
classify binary-class conditions for stress [55]. In contrast,
we used a nonlinear kernel (radial basis function kernel) to
evaluate the classification performance with more diverse
class levels. In addition, to avoid overfitting when nonlinear
kernels are used, we developed and tested the model perfor-
mance using completely participant-separated datasets.

The third classification algorithm was an LR classifier. To
estimate the coefficient of the regression model, a maximum
likelihood estimation method was applied. Consequently, the
classifier yields a likelihood value L(x), where 0 ≤ L(x) ≤ 1.
This value indicates the association between class labels and
input vectors. A likelihood value higher than 0.5, which is the
assigned threshold, indicates that the condition was classified
as severe depression levels in binary cases. For this classifier,
we considered the basic form of the LR model with our
features and depression classes as follows:

F(z) = E(
Y
x
) =

1

1+ e−(α+
∑
βiXi)

(9)

where z = α + β1X1 + β2X2 + · · · + βkXk (10)

where Y represents the depression level as a class. We con-
sidered Y as a specified value of either ‘mild,’ ‘moderate,’
or ‘severe’ in the three classes. In summary, the LR model
suggested probability values to categorize each class under
various conditions.

The final classification algorithm used in this study was
an MLP classifier (i.e., an artificial neural network model). It
consists of multiple layers of, at least, three layers of nodes
(input, hidden, and output layers). Each node calculates the
output vectors through the activation function g with weight

and bias vectors. The detailed calculation is as follows:

ok = g(w(L)>
k h(L) + b(L)k ) (11)

where h(l)k = f (l)(
∑ml−1

j=1
w(l−1)
kj h(l−1)j + b(l−1)k ) (12)

E. EVALUATION METRICS
We compared the classification performance of the ML
classifiers based on six evaluation metrics. To evaluate the
classification results of the algorithms using other indica-
tors rather than only the accuracy, we calculated the true
positive (TP), true negative (TN), false negative (FN), and
false positive (FP) values from the confusion matrix. The
correctly classified samples were calculated using the TP and
TN values. In contrast, incorrectly classified samples were
indicated by FN and FP. Based on the four basic values from
the confusion matrix, we obtained four additional indicators:
precision, recall, F1-score, and accuracy, calculated using
(13–16), respectively. Furthermore, we confirmed the true
positive rate (TPR) and false positive rate (FPR), using (17)
and (18), respectively, to draw the ROC curve. In addition,
we evaluated the performance based on AUC values using an
ROC curve.

To validate the classification performances of each classi-
fier, we applied a one-way analysis of variance (ANOVA) test
considering the evaluation indices values from classification
algorithms.

Precision =
TP

TP+ FP
(13)

Recall =
TP

TP+ FN
(14)

F1− score = 2×
Precision× Recall
Precision+ Recall

(15)

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(16)

TruePositiveRate =
TP

TP+ FN
(17)

FalsePositiveRate =
FP

FP+ TN
(18)

F. TOOLS
All codes for ML classifiers and data preprocessing were
written using Python (version 3.7.1; scikit-learn, version
2.4.1) and R (version 4.0.3).

III. RESULTS
The performance of ML algorithms at classifying depression
levels is shown in Tables 6–9. Specifically, we examined the
classification performance and optimal length of the actig-
raphy data extracted for circadian rhythm indices. First, in
terms of the classification performance, the XGBoost clas-
sifier outperformed the other algorithms based on all the
evaluation metrics. In addition, to identify the classification
performance in terms of various label conditions, we com-
pared the values of evaluation metrics under four condi-
tions (binary, three, four, and five classes). The evaluation
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FIGURE 9. ROC curves of classifiers under binary-class conditions. (a), (b), (c), (d) Three-day length actigraphy, (e), (f), (g), (h) four-day length
actigraphy, (i), (j), (k), (l) five-day length actigraphy, (m), (n), (o), (p) six-day length actigraphy, (q), (r), (s), (t) seven-day length actigraphy, (a), (e), (i), (m),
(q) XGBoost classifier, (b), (f), (j), (n), (r) SVC, (c), (g), (k), (o), (s) MLP, (d), (h), (l), (p), (t) LR.

metric values of the XGBoost classifier were 97.42%
(accuracy), 97.51% (precision), 97.19% (recall), 97.40%
(F1-score), and 99.00% (AUC) in the binary-class condi-
tion. In the three-class condition, accuracy (95.21%), pre-
cision (95.01%), recall (95.21%), F1-score (95.87%), and
AUC (99.00%) were obtained. In the four-class condition,
accuracy (95.92%), precision (95.02%), recall (95.46%),
F1-score (95.82%), and AUC (99.00%) were found. In the
five-class condition, as the last condition, accuracy (94.81%),
precision (94.21%), recall (94.90%), F1-score (94.94%),
and AUC (99.00%) were examined using the XGBoost
classifier. The ROC curves for each class condition with
two days of actigraphy data are shown in Fig. 5–8. The
remaining ROC curves under other conditions are listed
in Appendix A.

Second, the performance of each classification algorithm
was compared based on the length of the actigraphy data from

which the circadian indices were extracted. The maximum
evaluation metric values of the classifiers were obtained for
the actigraphy data for two days. Additionally, we investi-
gated whether the number of rows differed for each of the
datasets obtained for the five durations of actigraphy moni-
toring. The number of rows gradually decreased as the length
of the actigraphy data increased. To prevent the dataset size
from affecting the performance, we controlled the size of
the dataset and conducted an additional experiment. In this
experiment, 1000 rows were sampled through stratified ran-
dom sampling for all the datasets to reduce the bias for each
class label. Subsequently, the same experimental process was
applied to each dataset. We confirmed the same tendency in
additional experiments and concluded that circadian indices
extracted from two-day actigraphy data were sufficient to
classify depression levels. The detailed results are presented
in Appendix B.
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FIGURE 10. ROC curves of classifiers under three-class conditions. (a), (b), (c), (d) Three-day length actigraphy, (e), (f), (g), (h) four-day length
actigraphy, (i), (j), (k), (l) five-day length actigraphy, (m), (n), (o), (p) six-day length actigraphy, (q), (r), (s), (t) seven-day length actigraphy, (a), (e), (i),
(m), (q) XGBoost classifier, (b), (f), (j), (n), (r) SVC, (c), (g), (k), (o), (s) MLP, (d), (h), (l), (p), (t) LR.

Finally, we validated the classification performance using
a one-way ANOVA test. The null hypothesis established was
that the average performance of the four algorithms was the
same. We verified that the test results of evaluation indices
(accuracy, precision, recall, F1-score, AUC) were statistically
significant. As a result, statistical significance of performance
was confirmed, and the null hypothesis was rejected. Detailed
one-way ANOVA test results are shown in Table 10.

IV. DISCUSSION
In this study, we attempted to classify depression levels
using actigraphy data based on ML algorithms. Survey vari-
ables and circadian rhythm indices extracted from actig-
raphy data were collected from the KNHANES dataset.
To obtain reasonable evidence for depression status iden-
tification with physical activity, we found several studies

related to clinical and technical aspects. First, considering
the relationship between depression and physical activity,
Wu et al. [56] established that physical inactivity in patients
with Parkinson’s disease caused depression and degeneration
of motor skills through a comprehensive review of rele-
vant studies. Teixeira et al. [57] proved that physical activ-
ity was associated with depression and anxiety in elderly
groups. Moreover, Roshanaei-Moghaddam et al. [58] ver-
ified that decreased levels of physical exercise or seden-
tary lifestyle were a significant risk factor of depression.
Ku et al. [59] tracked elderly groups for 11-year periods.
They identified that physical activity engagement was asso-
ciated with lower risk of depressive symptoms. Based on
these previous studies, we determined that physical activity
including aerobic exercises can work as a main factor to
depression.
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FIGURE 11. ROC curves of classifiers under four-class conditions. (a), (b), (c), (d) Three-day length actigraphy, (e), (f), (g), (h) four-day length actigraphy,
(i), (j), (k), (l) five-day length actigraphy, (m), (n), (o), (p) six-day length actigraphy, (q), (r), (s), (t) seven-day length actigraphy, (a), (e), (i), (m), (q) XGBoost
classifier, (b), (f), (j), (n), (r) SVC, (c), (g), (k), (o), (s) MLP, (d), (h), (l), (p), (t) LR.

Second, related to analyses with ML algorithms,
Albahli et al. [60] suggested a thoracic disease identifi-
cation framework through deep neural network models.
Albahli et al. [61] showed that the detection performance of
a convolutional neural network in X-ray images was superior
to that of other models. In addition, Chekroud et al. [62]
built ML models to find predictive factors for determining
the responsiveness to antidepressant treatment in patients
with depression. Furthermore, Bhakta and Arkaprabha [63]
compared five ML algorithms to predict depression in the
elderly population. Based on these studies, we concluded
that ML algorithms can be used to detect or identify dis-
eases. Therefore, our topic about classification of the level
of depression using ML algorithms was well-founded.

To reflect variations in specific factors, time-series
data collected from study participants directly (EEG

or ECG recorded by electrodes attached to the skin)
or indirectly (actigraphy data measured using wearable
devices) were utilized with structured data. For example,
Hosseinifard et al. [64] used electrical activities of the brain
to evaluate depression. EEG signals of depression patients
were utilized to extract feature vectors. Both linear fea-
tures (e.g., power values of four EEG bands from power
analysis) and nonlinear features (e.g., detrended fluctuation
analysis (DFA), Higuchi fraction, and Lyapunov exponent)
were applied to ML classifiers. Three classifiers, linear
discriminate analysis, LR, and k-nearest neighbors, were
compared to identify depression patients in a study of patient
and control groups. LR classifiers yielded a classification
accuracy of 83.3% with a correlation dimension. In addition,
the LR classifiers showed 90% accuracy with all nonlinear
features. The authors indicated that the model performance
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TABLE 13. Classification performance results for classifiers with binary-class conditions.

TABLE 14. Classification performance results for classifiers with three-class conditions.

was significantly better when a combination of linear and
nonlinear features was used, compared to the case when only
linear features were used.

Mohammadi et al. [65] proposed a fuzzy function-based
ML classifier trained by three nonlinear features (fuzzy
entropy, Katz fractal dimension, and fuzzy fractal dimen-
sion) to distinguish depression levels. To reflect variation of
brain activities, the researchers collected EEG signals from
depression patient groups, based on which all the features
were calculated. To evaluate the classification performance
in combination with each feature, three nonlinear features

were randomly combined into groupswith one, two, and three
feature groups. The proposed algorithms (fuzzy function-
based algorithms) were compared with SVM classifiers with
90.0% accuracy. Among the classifiers, those trained using all
features (three features) showed the best performance under
all conditions.

To classify the stress status of study participants,
Rizwan et al. [66] proposed classification algorithms using
SVM with features extracted from ECG signals. Three fea-
tures (QT interval, RR interval, and ECG-derived respi-
ration) were applied to the classifiers. In addition, two
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TABLE 15. Classification performance results for classifiers with four-class conditions.

TABLE 16. Classification performance results for classifiers with five-class conditions.

kernels (Gaussian and cubic) and three model types (linear,
quadratic, and cubic) in SVM algorithms were compared
to find high-performance algorithms for stress status. The
classification algorithms yielded their best performancewhen
all the three features were used, compared to the cases
in which only one or two were used. In addition, models
with Gaussian kernels exhibited promising accuracy (lin-
ear SVM: 98.6%, quadratic SVM: 98.6%, and cubic SVM:
98.6%) compared to that of cubic kernel SVM models
(linear SVM: 97.2%, quadratic SVM: 97.1%, and cubic
SVM: 97.2%).

Zhong et al. [67] used whole-brain resting-state functional
MRI data (rs-fMRI) from both depression and healthy groups
to identify major depressive disorders. From collected rs-
fMRI data, brain activity time series data of 116 brain regions
were extracted to construct a functional connectivity network.
Functional connectivity represented by Pearson correlation
matrix and correlation coefficient vectors in several matrices
were applied to SVM classifiers as input features. To select
high discriminate features for classification, the Kendall Tau
rank method was applied. SVM classifiers with linear kernel
function showed the best classification accuracy (91.9%) in
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FIGURE 12. ROC curves of classifiers under five-class conditions. (a), (b), (c), (d) Three-day length actigraphy, (e), (f), (g), (h) four-day length actigraphy,
(i), (j), (k), (l) five-day length actigraphy, (m), (n), (o), (p) six-day length actigraphy, (q), (r), (s), (t) seven-day length actigraphy, (a), (e), (i), (m), (q)
XGBoost classifier, (b), (f), (j), (n), (r) SVC, (c), (g), (k), (o), (s) MLP, (d), (h), (l), (p), (t) LR.

experimental conditions. In addition, only six features were
confirmed as efficient from a total 116 features.

To enable comparison with previous studies, we con-
structed an experimental design of our research com-
posed of similar steps (feature extraction from time series
data, feature selection, and classification through ML algo-
rithms). Different from time series data widely used in
previous works (EEG, ECG, and time series from rs-
fMRI), we attempted to use the variation of physical
activity to investigate a possible relationship with depression
levels.

To reflect the variation in physical activity, diversemethods
can be used to collect physical activity data from partici-
pants. Physical activity data obtained by self-report ques-
tionnaires are widely utilized to measure the averaged phys-
ical activity. De Mello et al. [68] used a self-report physi-

cal activity questionnaire to assess the physical activity of
depression patients. They surveyed various types of phys-
ical activity (e.g., weak, moderate, or vigorous) and regu-
larity of activity (e.g., the number of activities in a week).
Additionally, to monitor a subject’s physical activity over
a long period, Sabia et al. [69] collected physical activ-
ity questionnaires from elderly groups with dementia for
28 years. Furthermore, detailed physical activity patterns
can be collected as time-series data by accelerometer or
pedometer.

Harris et al. [70] compared self-report and time-series
physical activity data to validate each metric. The researchers
suggested that each data has an advantage in accordance with
research methods and topics. Because of densely continuous
activity values (acceleration or step values), time-series data
collected by wearable devices can offer detailed intensity of
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FIGURE 13. ROC curves of classifiers under binary-class conditions. (a), (b), (c), (d) Two-day length actigraphy, (e), (f), (g), (h) three-day length actigraphy,
(i), (j), (k), (l) four-day length actigraphy, (m), (n), (o), (p) five-day length actigraphy, (q), (r), (s), (t) six-day length actigraphy, (u), (v), (w), (x) seven-day
length actigraphy, (a), (e), (i), (m), (q), (u) XGBoost classifier, (b), (f), (j), (n), (r), (v) SVC, (c), (g), (k), (o), (s), (w) MLP, (d), (h), (l), (p), (t), (x) LR.

activity on an hourly or daily basis. In the case of self-report
questionnaire data, the authors suggested that self-report is
more convenient for long-term follow-up studies and more
useful for evaluating activity type or in combination with
other structured datasets.

In our study, we attempted to confirm the relationship
between physical activity and depression status. Furthermore,
characteristics of the circadian cycle embedded in physi-
cal activity were focused to identify an inherent relation

with depression. To extract circadian indices from physical
activity, actigraphy data, which are time-series data, were
used. Moreover, continuous activity values composed of
actigraphy data were more favorable for establishing detailed
patterns. Therefore, we used accelerometer-based actigra-
phy data to calculate circadian rhythm indices. Further-
more, we determined which features were more effective for
classification among the features extracted from actigraphy
data.
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FIGURE 14. ROC curves of classifiers under three-class conditions. (a), (b), (c), (d) Two-day length actigraphy, (e), (f), (g), (h) three-day length
actigraphy, (i), (j), (k), (l) four-day length actigraphy, (m), (n), (o), (p) five-day length actigraphy, (q), (r), (s), (t) six-day length actigraphy, (u), (v), (w), (x)
seven-day length actigraphy, (a), (e), (i), (m), (q), (u) XGBoost classifier, (b), (f), (j), (n), (r), (v) SVC, (c), (g), (k), (o), (s), (w) MLP, (d), (h), (l), (p), (t), (x) LR.

After classification by ML classifiers, we evaluated the
results based on both classification performance and feature
importance. In terms of classification performance, we com-
pared performance under various conditions (24 conditions).
To confirm changes in performance with class conditions,
we set four conditions (binary-, three-, four-, and five-class
labels). Among the four classifiers (XGBoost, SVC, MLP
classifier, and LR), the XGBoost classifier showed the best

performance in all experimental conditions. Furthermore, we
compared the performance of our framework with that of the
classifiers proposed in previous studies. The performance of
each classifier is listed in Table 11. Despite using different
data, we confirmed that the XGBoost classifier proposed in
our study showed excellent performance compared to that
of classifiers developed in previous studies. Moreover, based
on these results, we found that circadian characteristics of
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FIGURE 15. ROC curves of classifiers under four-class conditions. (a), (b), (c), (d) Two-day length actigraphy, (e), (f), (g), (h) three-day length actigraphy,
(i), (j), (k), (l) four-day length actigraphy, (m), (n), (o), (p) five-day length actigraphy, (q), (r), (s), (t) six-day length actigraphy, (u), (v), (w), (x) seven-day
length actigraphy, (a), (e), (i), (m), (q), (u) XGBoost classifier, (b), (f), (j), (n), (r), (v) SVC, (c), (g), (k), (o), (s), (w) MLP, (d), (h), (l), (p), (t), (x) LR.

physical activity not widely used were valuable to classify
depression levels.

Among several factors influencing algorithm performance,
the length of actigraphy for extracting features was criti-
cal. We expected that classification performance would be
affected by the length of the actigraphy data from which
features were extracted. Furthermore, the length is one of
the hyperparameters that the researcher must determine. To

determine the optimal length of actigraphy, six conditions
(two, three, four, five, six, and seven days) were evaluated. As
a result, all the evaluation metric values showed the highest
values when actigraphy monitoring was conducted for two
days.

However, the dataset consisted of extracted features
of different sizes. Because different dataset sizes can
affect the evaluation results, we constructed a dataset with
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FIGURE 16. ROC curves of classifiers under five-class conditions. (a), (b), (c), (d) Two-day length actigraphy, (e), (f), (g), (h) three-day length actigraphy,
(i), (j), (k), (l) four-day length actigraphy, (m), (n), (o), (p) five-day length actigraphy, (q), (r), (s), (t) six-day length actigraphy, (u), (v), (w), (x) seven-day
length actigraphy, (a), (e), (i), (m), (q), (u) XGBoost classifier, (b), (f), (j), (n), (r), (v) SVC, (c), (g), (k), (o), (s), (w) MLP, (d), (h), (l), (p), (t), (x) LR.

1000 samples through stratified random sampling. After
experimenting with a different-sized dataset, we found that
the tendency in previous experiment results was repeated in
these experiments (i.e., performance under a two-day length
condition showed the highest evaluation values).

Based on the two experimental results, we found that
the optimal duration of actigraphy monitoring to effectively
determine depression status was two days, regardless of the

dataset size. Similarly, Thomas et al. [75] investigated the
reliability of actigraphy length using different individuals as
a case study and suggested that a two-day period adequately
reflected the circadian rhythm of actigraphy. Thus, we con-
cluded that the actigraphy data of two days were sufficient
for feature extraction to classify depression levels.

In the case of feature importance, we investigated the
ranked features in XGBoost classifiers. In the XGBoost
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algorithm, the F1-score was calculated based on the number
of times that the decision tree model was used for estimation.
A detailed list of important features is presented in Table 12.

The ranked features of the XGBoost classifiers were the
same under all conditions. A total of 15 input features were
selected by regression models in the feature selection steps
and consisted of 10 survey variables and 5 circadian rhythm
indices. The factors identified in previous studies on depres-
sion and physical activitywere justified by the feature ranking
in this study. The authors focused on mean activity levels and
lower values of physical activity to identify factors associated
with depressed individuals. Additionally, they observed lower
values of physical activity in the depressed groups [76]–[78].
In summary, our study represents a reliable experimental
paradigm in terms of both classification performance and
feature importance for classification.

V. CONCLUSION
Classifying depression levels is critical for various fields,
including clinical and psychological domains. In this study,
we proposed a framework for classifying depression levels
using ML algorithms. Based on previous studies on the rela-
tionship between depression and physical activity, actigraphy
data using an accelerometer were used to extract circadian
rhythm indices as features. To evaluate our framework from
a diverse perspective, we designed experiments with various
class labels and actigraphy length conditions. We found that
the XGBoost classifier exhibited the best classification per-
formance and that two days of actigraphy data were suitable
for representing the circadian cycle in physical activity.

The first strength of this study was the application of
accelerometer-based actigraphy data, which are not widely
used to classify depression levels. Second, we determined the
ideal length of actigraphy data for feature extraction. Third, a
large-scale real-world dataset collected from people living in
Korea was used to reflect practical tendencies.

Our study has some limitations. First, actigraphy data
included detailed differences (e.g., gap between morning
and afternoon, difference between weekdays and weekends).
These differences can affect depression levels. However, we
considered overall characteristics instead of specific changes
to classify depression levels. Second, various classification
methodologies including deep learning algorithms can be
applied to solve our research questions. To facilitate con-
firmation of feature importance, we used ML algorithms in
our study. Third, we need to consider external validation
through datasets collected from other countries to generalize
our framework in further study.

APPENDIX A
The ROC curves under other (three, four, five, six, and seven
days length) conditions with class conditions (binary, three,
four, and five classes). See Figures 9–12.

APPENDIX B
Experimental results under 1000-rows dataset. See
Tables 13–16 and Figures 13–16.
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