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ABSTRACT Mobile Edge Computing (MEC) brings the benefits of cloud computing, such as computation,
networking, and storage resources, close to end users, thus reducing end-to-end latency and enabling various
novel use cases, such as vehicle platooning, autonomous driving, and the tactile internet. However, frequent
user mobility makes it challenging for the MEC to guarantee the close proximity to the users. To tackle this
challenge, the underlying network has to be capable of seamlessly migrating applications between multiple
MEC sites. This application migration requires the quick and flexible migration of the application states
without service interruption, while minimizing the state transfer cost. In this article, we first study the state
transfer optimization problem in the MEC. To solve this problem, we propose a metaheuristic algorithm
based on Tabu search. We then propose Flexible and Low-Latency State Transfer in Mobile Edge Computing
(FAST), the first programmable state forwarding framework. FAST flexibly and directly forwards states
between source instance and destination instance based on Software-Defined Networking (SDN). Both
simulation results and practical testbed results demonstrate the favorable performance of the proposed Tabu
search algorithm and the FAST framework compared to the state-of-the-art schemes.

INDEX TERMS Application state transfer, multi-access edge computing (MEC), network function
virtualization (NFV), software-defined networking (SDN).

I. INTRODUCTION
Mobile Edge Computing (MEC) brings the flexibility
and elasticity of cloud computing to run the applications
in a close proximity of the end users, e.g., at a base
station [2]–[8]. If the MEC can efficiently support the user
mobility, then the MEC enables novel use cases, such as
vehicle platooning, autonomous cars, and immersive media
[9]–[14]. A key challenge for the MEC is to continuously
maintain running applications in close proximity of the end
users according to their movements across the coverage areas
of different base stations. Service migration, i.e., the process
of transferring an application from one place to another,
requires a consistent operational state before and after the
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migration. Service migration becomes especially challenging
when service downtime has to be minimal so as to maintain
seamless operations.

The downtime is caused by the process of saving, transfer-
ring, and recovering the application’s data during the service
migration. Early migration schemes relied entirely on virtual-
ization technologies, such as virtual machines (VM) and con-
tainers. In order to accomplish the service migration, the VM
and container migration schemes transfer: (i) the application
states, i.e., the state information that the application itself
generated (mainly the variable values of the counters and
timers and other intermediate data that characterize the cur-
rent functioning status of the application at a given time),
and (ii) the VM or container states, i.e., the state information
that the VM or container generated (e.g., the states of the
operating system). The VM or container state information is

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 115315

https://orcid.org/0000-0002-2220-0869
https://orcid.org/0000-0001-7008-1537
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0003-3183-2857


T. V. Doan et al.: FAST in MEC

typically an enormous amount of data, resulting in substantial
delays for the MEC service migration with VM and container
migration schemes [15], [16]. Furthermore, these VM and
container migration schemes are not suitable for novel MEC
use cases, such as vehicle platooning and tactile internet,
which may require manipulations (e.g., splitting or merging)
of the application states (e.g., when a truck leaves or rejoins a
vehicle platoon). In contrast, with application state transfer in
theMEC, which we refer to asMEC state transfer for brevity,
only the application states are extracted and transferred on
demand during the migration. MEC state transfer, which is
the focus of this study, can flexibly support novel MEC use
cases that require application state manipulations.

A key challenge of MEC state transfer is to minimize
the total cost of the state transfer due to the limited
MEC resources [17]. In order to constantly maintain the
low-latency communication between the MEC applications
and the users, frequent service migrations are performed.
However, these frequent migrations result in high compu-
tation cost (i.e., the hardware resources consumed to host
the migrated applications) and high bandwidth consump-
tion (i.e., the network bandwidth used for the state trans-
fers). The existing service migration optimization studies,
e.g., [18]–[21], have considered VM or container migration
schemes. To the best of our knowledge, the optimization of
MEC state transfer has not been examined in detail to date.
In this paper, we optimize the MEC state transfer during the
service migration. Due to the scarcity of MEC resources, our
goal is to minimize the total cost of the state transfer under
various constraints, such as the communication delay and net-
work bandwidth.We develop ametaheuristic algorithm based
on Tabu search to solve the MEC state transfer optimization
problem. The results obtained from the proposed Tabu search
algorithm are used to make optimized migration decisions,
e.g., where to place the migrated applications and which links
to use for transferring the application states.

In order to execute the optimized migration decision,
an underlying framework supporting fast state transfer is
needed. Several prior studies, e.g., [22]–[24], mainly rely
on a centralized controller in an SDN-enabled infrastructure
[25], [26] to receive all states from one application instance
and to forward the states to another application instance.
While the centralized controller simplifies the orchestration
of the service migration processes, the controller introduces
significant delays and can potentially become a bottleneck
whenmigrating numerous states, resulting in long downtimes
during service migration. Some state management schemes
directly forward states between application instances, without
the support from the underlying infrastructure [27], [28].
However, this direct state forwarding requires heavy mod-
ifications of the application behavior and logic so that the
applications can manage and transfer the states on their own.
Moreover, transferring states without network support is inef-
ficient, especially under high fluctuations of network traffic.

We advocate for the programmable state transfer by
introducing FAST, a state forwarding scheme that is both

flexible and achieves low latency. FAST achieves low
latency by directly forwarding states between application
instances. FAST increases flexibility by providing appli-
cations with a library implementing operations on states.
Furthermore, FAST leverages SDN for state transfer, allow-
ing multi-backup and on-the-fly state management without
affecting the rest of the network. Our evaluation results from a
practical testbed implementation indicate that FAST typically
reduces the migration time to less than half compared to
state-of-the-art schemes. Furthermore, FAST is built atop a
widely used SDN controller, so as to facilitate quick deploy-
ment as an add-on functionality in SDN-enabled networks.
To the best of our knowledge, FAST is the first programmable
state forwarding scheme. With the focus on the network
perspective, FAST can be easily integrated into existing
state management frameworks, such as OpenNF [22] and
FTM [29].

This paper makes five main contributions:
• In Section III, we formulate the MEC state transfer as
an optimization problem that minimizes the migration
cost, including the computation cost, communication
cost, and buffering cost under various constraints.

• In Section III-G, we propose a low-complexity Tabu
search algorithm to minimize the migration cost.

• In Section IV, we propose the Flexible And low-latency
State Transfer (FAST) framework for the programmable
state transfer in large-scale networks. FAST is readily
portable to various frameworks, such as Split/Merge,
S6 [30], and Fault-Tolerant MiddleBox (FTMB) [31].
Also, the FAST framework can be utilized to implement
the Tabu search minimization of the migration cost from
Section III-G in practical MEC systems. An emulation
performance evaluation of the FAST framework in a
small MEC system (with virtualization-based applica-
tion instances and software switches) is presented in
Section IV-D.

• In Section V, we implement a light-weight simulator
(available from https://github.com/openMECPlatform/
fast-simulator) to simulate the optimization problem
of the service migration, allowing network operators
and researchers to quickly evaluate their algorithms on
large-scale network topologies. The simulation results
indicate that our proposed Tabu algorithm significantly
outperforms elementary heuristic algorithms and per-
forms close to the optimum, while incurring much
lower computational complexity compared to the opti-
mal solution.

• In Section VI, we implement the FAST framework
in a real MEC testbed (with bare metal applica-
tion execution and hardware switches). The migra-
tion cost minimization solutions obtained from the
Tabu search algorithm (from Section III-G) can
be fed into FAST for the practical deployment of
optimized MEC service migration. We make the
FAST framework source code publicly available at
https://github.com/openMECPlatform/fast.git.
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II. BACKGROUND AND RELATED WORK
This section first presents background on state management
frameworks and then reviews existing studies on state transfer
optimization as well as state management frameworks.

A. BACKGROUND ON STATE MANAGEMENT
FRAMEWORKS
The application states represent data generated from handling
user requests. The application states are diverse, ranging from
simple states, such as connection information in a firewall and
address mappings in a network address translator, to complex
states, such as scores in a gaming application, user settings in
a streaming application, and mobility trajectory information
in a self-driving vehicle application. The frequent changes
of the application states require a mechanism to control
the application state consistency. This consistency require-
ment should allow an application at a destination instance
to resume at the exact running state that it had at the source
instance.

Since service migration [27] and failure recovery [31] rely
on the application states, differentiating them from each other
necessitates two distinct state management schemes. For a
service migration, a move scheme requires that the state
transfer must have been completed before the application is
resumed at the destination instance. For a failure recovery,
a copy scheme requires the source instance to continuously
transfer the states to the destination instance until a failure
occurs.

The application state management [22] carries out the ser-
vicemigration and failure recovery with four state operations:
export, forward, import, and guarantee. First, the export oper-
ation extracts the states from the source instance of a running
application. Afterwards, the forward operation transfers the
application states to a destination instance. Then, the import
operation inserts the application states into the destination
instance. The guarantee operation enforces different policies
for state transfer and orchestration between state and packet
flows. By default, the state transfer is performed without any
guarantee policy. The parallel optimization (PL) and loss free
(LF) policies accelerate the state transfer process without the
loss of state packets. Meanwhile, an order preserving (OP)
policy ensures the orderly receipt of the state packets at the
destination instance. An early release (ER) policy allows the
transfer of user data packets to the destination instance during
the state transfer, eliminating the need for buffering the user
data packets in the network devices.

Due to the wide application diversity, centralized state
management frameworks, e.g., [22]–[24], are widely adopted
to manage the application states, i.e., receiving the states
from one application instance and then forwarding the states
to other application instances. A centralized framework pro-
vides an abstract interface for external entities (e.g., net-
work operators) to easily perform the state operations. After
the state migration has been completed, the user traffic is
re-directed to the new application instance. Since this process

requires a flexible network, the implementation of the state
management typically relies on SDN.

SDN makes forwarding decisions in a separate entity,
the so-called SDN controller, which is decoupled from the
underlying network devices. Thus, SDN provides a program-
ming interface to automate network configuration. Building
on this standard SDN design [32], a state management archi-
tecture generally consists of an application plane, a control
plane, and a data plane, as illustrated in Fig. 1.

The data plane consists of application instances and
SDN-enabled network devices. The application instances are
commonly deployed on VMs or containers. An application
instance consists typically of a source instance and a des-
tination instance. The source instance contains a running
application that serves user requests and generates the states
that are later used to resume the application at the destination
instance. Meanwhile, the destination instance is the backup
of the source instance; the destination instance takes over the
role of the source instance (i.e., to serve the user requests) in
case of a migration or recovery. The SDN-enabled network
devices, e.g., OpenFlow switches, forward the user traffic
to the running application instance based on the forwarding
rules issued by the SDN controller.

The application plane includes a state control applica-
tion entity that provides a set of commands to request the
state operations, e.g., moving the states from one application
instance to another instance.

The control plane interfaces the application plane with the
data plane. The control plane provides a northbound interface
for the state control application to request the state operations
and a southbound interface for data plane elements to perform
the operations. A state management framework consisting of
a flow manager and an application state manager is built on
top of the SDN controller, see Fig. 1. The application state
manager processes the requests from the state control applica-
tion, exchanging messages (e.g., JSON) with the application
instances in the data plane to indicate the state operations.
The flow manager installs forwarding rules on the network
devices via OpenFlow messages to re-direct the user traffic
to the new application instance.

A key challenge of MEC state management is to further
reduce the latency in order to reduce the service downtime,
while performing the state operations across multiple MEC
sites. Generally, the application state management is expected
to meet four vital MEC requirements [33]:

R1: Low latency. MEC applications are typically latency-
sensitive. Therefore, the application statemanagement should
achieve fast recovery to avoid service degradation.

R2: Programmability. The dynamic change of the
network requires that the application states are flexibly
transferred between a running application and its backup.
Thus, the state forwarding must be programmable to
apply different forwarding rules to the underlying network
devices. The MEC can take advantage of the programma-
bility to permit the users to move freely across different
networks.
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R3: Flexibility. The MEC state management should be
able to add or remove backups on the fly without interfering
the rest of the network. This plays an important role in the
MEC due to the user mobility. Specifically, it is critical to
remove the backups in the current serving area as well as to
add new backups in the new serving area.

R4: High availability. MEC applications may be prone to
failures; thus, providing high availability is important. The
state management should allow a running application to have
multiple backups, which are distributed over the network.

FIGURE 1. Architecture for centralized state management: the application
state manager acts as a proxy for the state transfer between source
application instance srcApp and destination application instance dstApp.
After all states have been received at dstApp, the flow manager tells the
OpenFlow switch to redirect the user traffic (packet flow) to dstApp.

B. RELATED WORK ON STATE TRANSFER OPTIMIZATION
This sections reviews the literature related to the MEC state
transfer optimization in Section III. Aside from being ben-
eficial for high-mobility users, service migration introduces
considerable costs. Most studies [34], [35] show the impact
of the servicemigration on themigration time, downtime, and
the amount of migration data. Themigration time is measured
from the time instant when the migration starts at the source
server to the time instant when the application is resumed
at the destination server. The downtime is the time duration
during which the service is unreachable during the migration.
The amount of migration data is the data volume transferred
from the source server in order to recover the application at
the destination server.

Due to the complexity of the application design, existing
service migration studies have mostly focused on the two vir-
tualization technologies, namely virtual machine (VM) and
container, i.e., the existing studies have optimized VM and
container migration schemes, see e.g., [36]–[40]. A compre-
hensive comparison between the migration approaches for
VM and container has been conducted in [15]. The migration
data is generated by suspending the entire VM or container
and saving the memory content into files. Numerous studies
have tried to reduce the amount of migration data to decrease
the migration time and downtime. Jin et al. [41] introduced
a compression technique that exploits the high similarity of
memory pages and contained zero bytes to minimize net-
work traffic during migration. Svärd et al. [42] proposed
a dynamic page transfer ordering strategy that minimizes

the number of retransmitted pages. Machen et al. [43] and
Ma et al. [44] re-designed the migration data structure based
on layering technology, eliminating the duplicated memory
content. A strategy to replicate virtual network functions in
multiple servers to reduce the need for migrations has been
explored in [45], while [46] examined the load threshold that
should trigger a migration. An optimized multi-cluster over-
lay network for the transfer of software instances has been
designed in [47], while related hypervisor configuration for
the reconfiguration of virtual networks are examined in [48].

To the best of our knowledge, application state transfer
(without the VM or container states) has previously only
been studied in the data center context in [49]. In particular,
the study [49] optimized the migration of flows (application
states) among network function instances in a data center.
In contrast, we optimize the application state transfer in
the MEC context, i.e., we optimize the MEC state transfer,
considering MEC servers that are distributed over a net-
work graph and mobile users that connect through distributed
access nodes.

C. RELATED WORK ON STATE TRANSFER FRAMEWORKS
This section reviews the literature related to the FAST state
transfer framework introduced in Section IV. The existing
state transfer (management) studies have typically focused
on Network Function Virtualization (NFV), i.e., on manag-
ing and transferring the states of virtual network functions,
e.g., firewall and load balancer. We review the state transfer
frameworks that have been developed for conventional cloud
computing and assess whether these frameworks can fulfill
the requirements of the MEC state transfer. Also, we review
the existing state transfer frameworks for the MEC state
transfer.

Recent frameworks allow the application states to be
directly transferred between the application instances. The
frameworks [31], [50], [51] reduced the network overhead by
introducing a compact format for the application states. These
studies strive to fulfill the low-latency (R1) requirement, but
their designs couple packet processing and state processing
when handling user requests, i.e., the application states are
stored locally at the source instance. The concurrent transfer
of all application states results in significant downtime and
thus cannot further optimize R1.

One strategy to further reduce the downtime is to com-
pletely decouple the packet processing from the state process-
ing. StatelessNF [52] places the application states in a remote
data store, thus rendering the application stateless. In the con-
text of the general stateless application paradigm, the recent
MIGRATE study [53] has examined the state transfer of
the application state data that is stored in a local database
in the MIGRATE framework. In contrast to the MIGRATE
study [53], we consider the state transfer for stateful appli-
cations in this study. Also, the SDN controller in MIGRATE
only directs the user traffic; whereas, we employ the SDN
controller to make forwarding decisions for the direct state
transfer.
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Nevertheless, this StatelessNF approach introduces end-
to-end latency between the application instances and remote
storage systems. Consequently, StatelessNF poses the new
challenge of optimally placing the storage system. To avoid
the challenge of optimally placing storage systems, D3 [54]
and E-state [55] leverage key-value stores for state distri-
bution among the application instances. These studies sig-
nificantly reduce the migration time, but require on-demand
state lookup that implies a reactive strategy. Consequently,
the proposed solutions introduce high latency for the destina-
tion instance to obtain the application states when there are
frequent updates. To overcome this issue, Doan et al. [27]
proposed a proactive migration framework that allows
state synchronization between multiple application instances.
Owing to the use of the data store, multiple instances could
access the application states and thus enable these studies to
achieve the high-availability (R4) requirement, while further
optimizing R1.

However, the above studies only concentrate on the state
transfer while leaving other state operations unaddressed.
Specifically, they lack an abstract interface to indicate (signal)
the state transfer to the application instance. These studies
are locked in specific applications, hindering them from sup-
portingmultiple applications, which are ubiquitous in the net-
work. Furthermore, there is no guarantee that the destination
instance will be correctly recovered, and the user traffic will
be re-directed to it after the state transfer is complete.

To address this problem, SDN features can be exploited
for managing the application states. Split/Merge [23] is
built atop an SDN controller, providing APIs to split the
states when an instance becomes overloaded and merging the
states when the processing load decreases. Split/Merge thus
achieves elastic scaling. However, Split/Merge has low fault
tolerance because the original states are not actually copied;
instead, the original states are separated from the original
instance and then imported into other instances. To overcome
this limitation, Pico Replication [24] extends Split/Merge to
replicate the states between application instances. However,
the two aforementioned approaches did not consider state loss
and state reordering that could make the application unre-
coverable after the migration. OpenNF [22] and its enhanced
versions [29], [56], [57] have been introduced to tackle
these critical issues by offering APIs over the controller for
guaranteed methods, such as order-preserving and loss-free
processing.

The above studies rely on the controller to forward the
application states from one instance to others, thus satisfying
R4. However, they introduce a potential bottleneck in that the
controller acts as a proxy for the state transfer between the
application instances. Thus, they are still far from satisfying
R1 while the support of programmability (R2) and flexibility
(R3) is still an open question.

In summary, the prior studies on the state management
mainly tried to fulfill R1 and R4. Specifically, these stud-
ies show that an abstract scheme is needed to efficiently
manage application states. Moreover, the inflexibility of

the state transfer made them ill-suited for large-scale net-
works and consequently failed to achieve R2 and R3. In this
paper, we propose to adopt SDN for the direct state transfer.
In particular, unlike OpenNF which relies on the SDN con-
troller as the intermediate node for the state transfer, we take
advantage of the SDN controller to make the forwarding
decisions for the direct state transfer. The use of SDN for this
decision-making purpose ensures a high level of programma-
bility (R2) and flexibility (R3) [58]–[60].

Overall, the prior studies mainly focused on minimizing
the migration time, the downtime, and the amount of migra-
tion data.Meanwhile, the computation cost and buffering cost
have rarely been considered. The computation cost is deter-
mined by choosing the destination server from a set of servers
so as to save hardware resources; in particular, the selected
server should minimize the migration frequency since fre-
quent migrations require extensive hardware resources to
host the migrated application. The computation cost has not
been widely considered in the literature since most studies
have been for data centers, which have abundant hardware
resources. Considering the limited MEC hardware resources,
the computation cost becomes an important metric. The
buffering cost is defined as the amount of incoming traffic that
is buffered during the migration. Most existing studies have
ignored the buffering cost by assuming that the packet loss
during the migration has a negligible impact on the recovery
of the application after the migration. However, many MEC
applications could be seriously degraded due to packet losses.
For instance, for a video caching application, packet losses
could falsify the caching ratio, which may incorrectly trigger
content requests from the origin data center (instead of cor-
rectly streaming MEC cached content). As another example,
packet losses can corrupt intrusion detection systems [22].

III. OPTIMIZING THE MEC STATE TRANSFER
A. SYSTEM MODEL
Consider a network graph G = (V ,E) consisting of a set
V of network nodes and a set E of edges. Each of the |V |
network nodes is an SDN (OpenFlow) switch. Each edge
e ∈ E is a link connecting two switches. Let Be andDe denote
the available bandwidth and delay of link e, respectively.
We denote A ⊂ V for the set of access nodes connected to
base stations. Each of the |A| (A ⊂ V ) access nodes is an
SDN switch. We denoteM ⊂ V\A for the set of MEC servers
that serve user requests. We assume that each MEC sever
m ∈ M is directly attached to (i.e., coupled with) a network
node in V\A.
Let F denote the (overall) set of user traffic flows from the

access nodes to the MEC servers. Specifically, let Fa,m ⊂ F
denote the set of flows from access node a ∈ A toMEC server
m ∈ M . Each flow f ∈ F has a given traffic rate Rf and delay
constraint Df . The access node a ∈ A is the ingress node of a
user traffic flow f ∈ Fa,m into the network and forwards the
flow to theMEC serverm ∈ M , which is considered as egress
node of the network model.
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TABLE 1. Summary of key notations.

For modeling the state transfer, for the flows f ∈ Fa,m from
access node a to MEC server m, let Amiga ⊂ A denote the set
of target access nodes and let Fmiga ⊂ {∪m∈MFa,m} denote the
set of flows that are migrated away from access node a ∈ A.
We denote Fa,a′ ⊂ Fmiga for the set of flows migrated from
access node a ∈ A to access node a′ ∈ Amiga . Let xf ,a′,m′ be a
binary decision variable, whereby xf ,a′,m′ = 1 indicates that
the migrated flow f ∈ Fa,a′ adopts access node a′ ∈ A

mig
a as

the ingress node and the MEC server m′ ∈ M as the egress
node after the migration; xf ,a′,m′ = 0 otherwise.

In summary, the change of the old access (ingress) node a
to a new access (ingress) node a′ models the user mobility;
the change from the old MEC server (egress node) m to a
newMEC server (egress node)m′ models the flowmigration.
In order to avoid clutter in the notation definitions, we do
not explicitly distinguish between user mobility (access node
change a to a′) and flow migration (MEC server change
m to m′). Instead, we define the term ‘‘flow migration’’ to
encompass the change of the access node from a to a′ due
to user mobility, which will trigger a flow migration opti-
mization execution; this flow migration optimization execu-
tion may or may not result in a change of the MEC server
depending on the outcome of the optimization.

B. COMPUTATION COST
Let Nm′ denote the number of migrated flows that an MEC
server m′ ∈ M needs to serve after the migration of the flows

f ∈ Fmiga,a′ , i.e., Na,m′ is the number of migrated flows that
adopt an MEC server m′ ∈ M as the egress node. Na,m′ can
be represented as:

Na,m′ =
∑

a′∈Amiga

∑
f ∈Fmig

a,a′

xf ,a′,m′ . (1)

We only migrate the flows as required due to user mobility.
For example, consider an access node a1 and MEC server m1
with five flows before migration. Suppose that three flows
need to migrate due to user mobility (i.e., 2 other flows
are retained due to lack of mobility). In the migration, one
migrated flow chooses MEC server m2 and the two other
migrated flows choose MEC server m3; thus, Na1,m2 = 1 and
Na1,m3 = 2.

We denote ya,m′ as a decision variable to indicate whether
an MEC server m ∈ M is adopted to serve the Na,m′ migrated
flows, i.e.,

ya,m′ =

{
1, Na,m′ ≥ 1
0, otherwise.

(2)

We let the computation cost Ccomp
a represent the number

of VMs created to serve the migrated flows; specifically,
we evaluate Ccomp

a as:

Ccomp
a =

∑
m′∈M\{m}

ya,m′ . (3)

The computation cost Ccomp
a essentially counts the number

of new VMs that are required at the various MEC nodes m′ ∈
M\{m} to accommodate the migrated flows f ∈ Fmiga,a′ from
access node a. We acknowledge that our computation model
is coarse in the sense that any positive number Na,m′ ≥ 1 of
migrated flows is counted as requiring one VM. We also note
that we do not count a computation cost for flows that stay
at their original MEC server m, i.e., no computation cost is
counted for flows that are not migrated. We adopt this simple
coarse computation cost model as our study focus is on the
costs that arise due to user mobility that requires flow migra-
tion decision making. A more sophisticated computation cost
model, e.g., a model that considers flow rates and specific
computation demands, is an interesting direction for future
research.

C. COMMUNICATION COST
We denote Ccomm

a′,m′ as the communication cost of all flows

f ∈ Fmiga,a′ traversing from access node a′ ∈ Amiga to MEC
server m′ ∈ M after the migration:

Ccomm
a,a′,m′ =

∑
f ∈Fmig

a,a′

xf ,a′,m′
∑

e∈La′,m′

Rf , (4)

where La′,m′ denotes the network path (set of links) between
a′ and m′, including all the links through intermediate net-
work nodes, i.e., the conventional packet switches that for-
ward the data packets (without conducting any significant
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computing on the data packets). Thus, the communication
cost Ccomm

a is:

Ccomm
a =

∑
a′∈Amiga

∑
m′∈M

Ccomm
a,a′,m′ . (5)

D. BUFFERING COST
The state migration process is performed as follows. First,
a controller tells an application instance srcApp on the source
MEC server to export states. Simultaneously, the controller
informs the application instance on the destination MEC
server dstApp to import the states from srcApp. We denote
tctrf for the total time for the message exchanges between the
controller, srcApp, and dstApp to migrate a flow f ∈ F . Next,
srcApp transfers the states of flow f to dstApp through the
underlying network. We denote tstatef for the state transfer
time. Finally, the controller updates the forwarding rules to
redirect the user traffic of flow f to dstApp. We denote tuf
for the time to perform this update process. Thus, the total
migration time t totalf is:

t totalf = tctrf + t
state
f + tuf . (6)

In Eq. (6), tctrf and tuf are typically negligible. Specifically,
tctrf only introduces the latency before and after the migration.
Meanwhile, tuf is only added once to t totalf before or after the
state transfer. There are numerous approaches for reducing tuf ,
such as controller placement [61], traffic prediction [62], and
path aggregation [63], which are outside the scope of this
paper. Overall, tstatef is the main contributor to t totalf . The state
transfer time tstatef includes the transmission delay, link propa-
gation delay, queuing delay, and processing delay of the state
information (packets). We assume that the queue is empty
and thus neglect the queuing delay. Furthermore, we consider
fast-forward packet switches with negligible processing delay
and negligible store-and-forward transmission delay in the
network.

Thus, only the transmission delay tstatetrans,f out of the source
MEC node and the link propagation delay tstateprop,f contribute
significantly to the state transfer time tstatef , i.e.,

tstatef = tstatetrans,f + t
state
prop,f . (7)

Let ηa,a′ be number of flows whose access node is changed
from a ∈ A to a′ ∈ Amiga due to the user mobility. We evaluate
the total state transfer time tstatea′,m′ for all flows f ∈ F

mig
a,a′ with

their MEC server changed from m to m′ (m,m′ ∈ M ) as:

tstatea′,m′ = Ttrans + Tprop. (8)

The transmission delay Ttrans of the state information of
all flows f ∈ Fmiga,a′ is generally proportional to the number of
migrated flows [49], [64]. Thus, Ttrans can be expressed as:

Ttrans =
∑

f ∈Fmig
a,a′

tstatetrans,f (9)

=
(
ρ + ωηa,a′

)
, (10)

where ρ and ω are constants that characterize the different
MEC applications.

With Lm,m′ denoting the network path, including all
the links through intermediate packet switches that forward
the data packets between the original MEC server m and the
target MEC server m′ (m,m′ ∈ M ), the propagation delay
Tprop is:

Tprop =
∑

e∈Lm,m′

De. (11)

With Eq. (10) for the transmission delay and Eq. (11) for
the propagation delay, Eq. (8) for the total state transfer time
becomes

tstatea′,m′ = ρ + ωηa,a′ +
∑

e∈Lm,m′

De. (12)

The buffering cost Cbuff
a′,m′ for all flows f ∈ Fmiga,a′ can be

evaluated as

Cbuff
a′,m′ =

∑
f ∈Fmig

a,a′

xf ,a′,m′ t
state
a′,m′Rf . (13)

Thus, the total buffering cost Cbuff
a is

Cbuff
a =

∑
a′∈Amiga

∑
m′∈M\{m}

Cbuff
a′,m′ . (14)

E. CONSTRAINTS
We proceed to introduce the constraints for the communica-
tion cost and the state transfer cost.

1) MEC SERVER SELECTION CONSTRAINT
For the sake of simplicity, we assume that all flows f ∈ Fmiga,a′

that are migrated from access node a to access node a′ ∈ Amiga
utilize the same MEC server m′ ∈ M , i.e.,∑

m′∈M

xf ,a′,m′ = 1 ∀f ∈ Fmiga,a′ , a
′
∈ Amiga . (15)

The extension to utilizing different MEC servers can be
accommodated with the cost models of the preceding sub-
sections in a straightforward manner. In brief, the commu-
nication cost model in Section III-C would have to account
for the communication costs from the new access node to
the multiple destination MEC servers, and the buffering cost
model in Section III-D would have to account for the state
transfer between the source MEC server and the multiple
destination MEC servers. Also, the computation cost model
in Section III-B would have to be updated to the adoption
of multiple destination MEC servers for the migration. In
order to avoid clutter that would obscure the main concepts
of this article, we omit the details of this extension to multiple
destination MEC servers.
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2) DELAY CONSTRAINT
For all migrated flows with their previous access node
a ∈ A, i.e., all flows f ∈ Fmiga , the delay constraint must
not be violated, i.e.,∑

e∈E

xf ,eDe ≤ Df , ∀f ∈ Fmiga , (16)

whereby xf ,e is a binary decision variable: xf ,e = 1 indicates
that the flow f ∈ Fmiga adopts link e ∈ E in its flow path after
the migration; xf ,e = 0 otherwise.

Algorithm 1: Greedy Initial Algorithm

Input : G = (V ,E), Amiga , M , F
Output: ListMECa

1 ListMECa = [ ]
2 for a′ ∈ Amiga do
3 Listcosta′ = [ ]
4 for m′ ∈ M do
5 Pathdata = Dijkstra(a′,m′)
6 if Pathdata == ∅ then
7 continue
8 end
9 Calculate Ccomm

a,a′,m′ using Eq. (4)
10 if m′ == m then
11 Cbuff

a′,m′ = 0
12 else
13 Pathstate = Dijkstra(m,m′)
14 if Pathstate == ∅ then
15 continue
16 end
17 Calculate Cbuff

a′,m′ using Eq. (13)
18 end
19 Calculate C total

a,a′,m′ using Eq. (18) with α = 0
20 Listcosta′ .append(C

total
a,a′,m′ )

21 end
22 candidate = argm′ min(Listcosta′ )
23 ListMECa .append(candidate)
24 end

3) LINK CAPACITY CONSTRAINT
The total traffic rate of all flows f ∈ F traversing link e ∈ E
must not exceed the link capacity, i.e.,∑

e∈E

∑
f ∈F

xf ,eRf ≤ Be. (17)

F. OBJECTIVE FUNCTION
We aim to minimize the total migration cost C total , which
incorporates the computation cost, the communication cost,
and the buffering cost for all flowsmigrated from access node
a ∈ A, i.e.,

minC total
a = min

(
αCcomp

a + βCcomm
a + γCbuff

a

)
, (18)

where α, β, and γ are tunable weights that control the rel-
ative importance (priority) of computation cost, communi-
cation cost, and buffering cost subject to the constraints of
Section III-E.
The problem in Eq. (18) is NP-hard: we simplify the prob-

lem in Eq. (18) by setting β and γ to 0 (only for the purpose
of this proof). The problem is transformed to the problem
that tries to find an MEC server that can serve as many
migrated flows as possible without violating the constraints
of Section III-E. This problem is equivalent to the knapsack
problem which is NP-hard.

Algorithm 2: Tabu Search
Input : G = (V ,E), A, M , F , istop, itabu
Output: Sbest

1 S0 = ListMECa obtained from Algorithm 1
2 i = 0, Scurr = S0, Sbest = S0
3 Listtabu = [ ]
4 while i < istop do
5 move = MoveStrategy(Scurr )
6 Update(Scurr ) from the move
7 Calculate f (Scurr ) using Eq. (18)
8 i = i+ 1
9 if move is not in Listtabu then
10 if len(Listtabu) < itabu then
11 Listtabu.append(move)
12 else
13 break
14 end
15 else
16 if f (Scurr ) < f (Sbest ) then
17 Listtabu.remove(move)
18 end
19 end
20 if f (Scurr ) < f (Sbest ) then
21 Sbest = Scurr
22 i = 0
23 end
24 end

G. PROPOSED TABU SEARCH ALGORITHM
Generally, heuristic algorithms are tightly coupled to a spe-
cific problem, while meta-heuristic algorithms leverage gen-
eral techniques [65] that have been proven to efficiently solve
a broad range of hard problems [66]. Popular meta-heuristic
algorithms include ant colony optimization [67], genetic
algorithms [68], and Tabu search [69]. Tabu search tends to
have lower complexity than other meta-heuristics [70]. Since
low complexity is well-suited for the low-latency requirement
in MEC, we employ the Tabu search algorithm to solve our
problem in Eq. (18).

Tabu search is an iterative search process used for mathe-
matical optimization. Tabu search starts to explore the search
space from an initial solution and then iteratively moves
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from its neighborhoods to transit from a current solution to a
better solution until a stopping condition is met. Tabu search
relies on a Tabu list of the previously visited solutions to
avoid re-visiting previous solutions. We summarize the major
elements of the Tabu search algorithm in the context of our
problem setting as follows:
• Wepropose to start the Tabu searchwith an initial greedy
solution obtained with Algorithm 1. Algorithm 1 seeks
the best MEC server corresponding to each target access
node a′ in terms of communication cost and buffering
cost. Thus, we set α = 0 in Eq. (18). To calculate the
communication cost, we adopt the shortest path with
respect to the latency from the target access node a′

to the MEC server candidate m′ based on Dijkstra’s
algorithm (Lines 5–9). For the buffering cost, we also
employDijkstra’s algorithm to compute the shortest path
from the original MEC server m to the MEC server
candidate m′ (Lines 10–19). We then calculate the total
cost C total

a,a′,m′ and add it to a list Listcosta′ (Line 20).
The target MEC server is selected with minimum total
cost from Listcosta′ and then added to a list ListMECa
(Lines 22–23).

• Tabu search explores the neighborhood of the cur-
rent solution to seek a better solution as outlined in
Algorithm 2. A neighborhood solution is determined
by applying a single move from the current solution:
A move is defined as a mapping between an access node
and an MEC server. We first randomly select a target
access node from Amiga . We then move its corresponding
MEC server to another MEC server that satisfies the
constraints described in Section III-E.

• To prevent cycling the previously visited solutions,
a move that satisfies the constraints in Section III-E is
added to the Tabu list Listtabu. If the Tabu list exceeds its
pre-defined length itabu, then the algorithm is stopped
(Line 13). This facilitates reducing the complexity of
the search process. Notably, we set an aspiration cri-
terion: if the aspiration criterion is met, then the move
is released (removed) from the Tabu list (Lines 16–18).
The aspiration criterion is defined for the case when a
better solution than the current best solution is found.

In summary, our proposed Tabu search Algorithm 2, oper-
ates as follows. First, an initial solution S0 containing a list
of target MEC servers is obtained from Algorithm 1 (Line 1).
Afterwards, S0 is assigned to the current solution Scurr and the
best solution Sbest , while a Tabu list Listtabu is initialized as
empty (Lines 2–3). A while loop is performed to iteratively
seek a solution until the number of iterations exceeds istop
(Lines 4–24). Specifically, the move strategy is applied and
Scurr is updated from the move (Lines 5–6). The total cost
f (Scurr ) is re-calculated using Eq. (18) and then the number
of iteration is increased by one (Lines 7–8). In Lines 9 to 19,
the algorithm determines whether the move is in Listtabu.
If the move has not been previously visited, then the move is
added to Listtabu (unless the length of Listtabu exceeds itabu);
otherwise, the algorithm is stopped (Lines 10–14). If the

move is in Listtabu, the algorithm checks whether the aspi-
ration condition is met (Lines 16–18). The move is released
from Listtabu if the total cost of Scurr is lower than the cost of
Sbest . In Lines 20 to 23, if a solution is found, the algorithm
assigns Scurr to Sbest and restarts the while loop.

IV. FAST: FLEXIBLE AND LOW-LATENCY STATE
TRANSFER
The MEC framework deploys applications and a backup
scheme and instructs FAST to transfer states.

FIGURE 2. FAST framework for the state management in MEC between
srcApp and dstApp: The OpenNF application state manager handles the
requests of the state operations (i.e., move, copy, and share) received
from the state control application. The novel state forwarding manager
manages the forwarding rules for the state transfer between srcApp and
dstApp. Meanwhile, the OpenNF flow manager coordinates the
redistribution of the user traffic.

FIGURE 3. FAST state management procedure: The FAST controller directly
transfers the application states from srcApp via SDN-enabled switches to
dstApp.

A. FAST: DESIGN CONCEPT
As shown in Fig. 2, the FAST framework consists of three
components: an application state manager, a state forward-
ing manager, and a flow manager. FAST is extended from
OpenNF [22], leveraging the OpenNF application state man-
ager and flow manager to perform the state operations and
the forwarding decisions of the user traffic. The novel state
forwarding manager manages the forwarding rules for the
application states. Based on the global view of the net-
work, the state forwardingmanager applies different forward-
ing rules to the underlying network devices, thus enabling
the programmability of the application state transfer. FAST
relies on the SDN design and utilizes the SDN function-
alities. To allow multiple concurrent application backups,

VOLUME 9, 2021 115323



T. V. Doan et al.: FAST in MEC

the state forwarding manager performs multicast communi-
cation using a group table provided by OpenFlow. To add
or delete the backups on-the-fly, FAST simply enables or
blocks the switch ports, which lead to the corresponding
backup instances. This reduces the effort compared to using
a conventional network for the state forwarding.

FAST shares the same data plane for both the state for-
warding and the data packet forwarding. The state forward-
ing manager and the flow manager cooperate to avoid flow
rule conflicts, which could result in unrecoverable backup
instances after a state transfer. There is a case that state flows
and packet flows go through the same SDN-enabled switch
with different priorities. Without having a consensus about
the forwarding policies, the states could not reach the backup
instance. Thus, before installing the forwarding rules for the
application states on the network devices, the forwarding
manager and the flow manager should exchange their for-
warding policies to avoid potential conflicts.

B. FAST: STATE MANAGEMENT PROCEDURE
The goal of FAST is to directly forward applications states,
thus mitigating the burden of the centralized state manage-
ment. As shown in Fig. 3, FAST allows the application
states to be directly forwarded from a source application
instance srcApp via the SDN-enabled switches to a desti-
nation application instance dstApp. First, the state control
application sends a request to the application state manager
indicating a move scheme. The application state manager
then informs the state forwarding manager to set the flow
rules in the SDN-enabled switches for the state transfer. Next,
the switches send an acknowledgment message (e.g., 200 OK
response) to the state forwarding manager, indicating that the
flow rules have been successfully installed. The state for-
warding manager then informs the application state manager
about the completion of the flow rule installation. Afterwards,
the application state manager issues the export operation to
srcApp. Next, srcApp extracts its states and then directly
forwards the states via the forwarding path set up by the
state forwarding manager to dstApp. After the state transfer
is complete, dstApp sends an acknowledgment message to
the application state manager, confirming that all states have
been received. Finally, the application state manager invokes
the flow manager to instruct the SDN-enabled switches to
re-direct the user traffic to dstApp.

C. FAST: IMPLEMENTATION
Among the well-known state management frameworks, such
as OpenNF, FTMB, and Pico the OpenNF framework is well
suited to implement FAST because OpenNF is open-source
and programmable. However, FAST can also be ported to
other frameworks, facilitating their ability to enable flexible
and low-latency state transfer. We first leverage the existing
fundamental OpenNF functions to process states (e.g., import
or export states) inside applications. We then extend OpenNF
to enable the state forwarding via the underlying network
devices. Specifically, we implement a novel state forwarding

manager that works in cooperation with the OpenNF applica-
tion state manager and flow manager.

To integrate FAST into OpenNF, our implementation oper-
ates as follows. First, OpenNF allows applications to commu-
nicate with the controller via a shared library that provides
generic application interfaces. Specifically, OpenNF uses two
network ports, namely a stateControl port (7790) and an
eventControl port (7791) for exchanging the state packets
and event packets between the application instances and
the controller, respectively. Following this port-based design,
we create a new forwarding path for the application states.
In order to separate out the state forwarding functionalities
from the controller while ensuring adaptability, we propose to
use a stateTransfer port (7792) dedicated to the state transfer.

Second, after the state packets have been received from
srcApp, the OpenNF controller converts their message format
to the putPerFlow format and then sends them to dstApp.
Such an operation is performed to avoid the misconfiguration
caused by the centralizedmanagement in OpenNF. If the state
packets were directly forwarded from srcApp to dstApp, then
they would obviously be unknown and would immediately
be discarded by the state handler at dstApp. To overcome
this issue while retaining the same design logic, we imple-
ment a method to construct the putPerFlow structure right
at srcApp. Consequently, after the state packets have been
generated, they are repackaged and translated from the get-
PerFlow structure to the putPerFlow structure. Afterwards,
the state packets are transferred to dstApp through the net-
work devices. The final challenge arises at dstApp, whereby
OpenNF originally uses the state handler at the stateControl
port. Similarly, we replicate this method at the stateTransfer
port to handle the states received from srcApp.

In summary, the state transfer proceeds as follows. First,
srcApp and dstApp request to establish connections with the
FAST controller (i.e., via the stateControl port and via the
eventControl port) and simultaneously start a thread to listen
to the stateTransfer port. When receiving a move request,
the application state manager invokes the state forwarding
manager to install the forwarding rules for the application
states on the network devices. The state manager then indi-
cates an export operation to srcApp via the eventControl port.
The state packets are generated and repackaged at srcApp.
Next, based on the forwarding path installed by the state
forwarding manager, these packets are directly forwarded
to dstApp through the stateTransfer port. The state packets
are then received by the state handler at dstApp. After all
state packets have been correctly received, dstApp sends an
acknowledgment message to the controller via the stateCon-
trol port. The controller finally informs the flow manager to
direct the user traffic to dstApp.

D. FAST: EMULATION PERFORMANCE EVALUATION
In this section, we evaluate FAST and compare it with related
schemes. We assess the efficiency of FAST by measuring the
total move time, which reflects the service downtime and
is widely considered in the literature [22], [31]. The total
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FIGURE 4. Emulation evaluation: Total move time as a function of packet
rate for 50 packet flows (a) and at 100 packet flows (b).

move time is the time duration from the time instant when the
export of the application states from the source application
instance commences to the time instant when the user traffic
is re-routed to the destination application instance. Since
the packet rate and the number of flows govern how many
states are generated, we examine their impact on the total
move time. Moreover, we investigate the impact of the state
management on the total move time for existing guarantee
policies in OpenNF, including no guarantee (NG), parallel
optimization (PL), loss-free (LF), order-preserving (OP), and
early release (ER), as described in Section II-A.

1) EVALUATED SCENARIOS
We compare the performance of FAST against the following
two schemes:
• OpenNF: The OpenNF controller acts as a proxy,
receiving the states from the source application instance
and then forwarding the states to the destination appli-
cation instance. The state transfer is performed with a
layer-2 switch.

• OpenNF-OVS: The state transfer is similar to the one
in OpenNF, but the states are transferred via an Open
vSwitch (OVS) instance.

2) EMULATION SETUP
We conducted the evaluations on a machine configured with
Intel(R) Core(TM) i7-7500U CPU at 2.50 GHz, 16 GBmem-
ory, and Ubuntu 14.04. We used Mininet [71], which is a
virtualized tool to emulate hosts, network switches, and links,
to set up a network topology consisting of two software
switches and three hosts. FAST and OpenNF are imple-
mented atop a Floodlight SDN controller. The three hosts are
used as follows: one host acts as a packet generator and the
other two hosts are the source application instance srcApp
and the destination application instance dstApp. These appli-
cation instances operate in a Linux namespace to emulate
a virtualized environment, which is typical for light-weight
cloud computing. The Passive Real-time Asset Detection
System (PRADS) [72], which has been widely used to exam-
ine state management solutions [22], [29], is deployed as
the source application instance srcApp and the destination
application instance dstApp. We reused existing functionali-
ties in OpenNF to export/import states from/to PRADS. Since
our main focus is on the state transfer, we modified PRADS

for the direct state forwarding as mentioned in Section IV-C.
One switch is used for the packet forwarding and another
switch is used for the state forwarding. The use of two
separate switches prevents the mutual impact of the state
forwarding and the packet forwarding. The two switches in
FAST and OpenNF-OVS are OVS instances. The switches in
the OpenNF scheme are used as follows: one switch acts as
the OVS instance for the user traffic and another switch is a
normal layer-2 switch for the state forwarding.

We first ran the Floodlight controller and then created the
Mininet topology. Afterwards, we started the packet gen-
erator to forward the user traffic to the PRADS instance
on srcApp. After observing a prescribed number of flows
processed by srcApp, the controller initiated a move scheme.
For instance, the moves in Fig. 4 were initiated after there
were 50 flows (Fig. 4 (a)) or 100 flows (Fig. 4 (b)) pro-
cessed by srcApp. After the movement has been completed,
the PRADS instance on srcApp is stopped and taken over
on dstApp. We report the 95% confidence intervals obtained
from 10 independent replications.

3) EMULATION RESULTS
We first investigate the total move time for varying packet
rates from 2500 packets/s to 10000 packets/s, which we gen-
erated with the tcpreplay tool [73] following the evaluation
strategy in [22]. All evaluated schemes applied the PL and LF
policies. We considered the LF policy so that we can observe
the impact of both the packet rate and the number of flows on
the total move time. More specifically, to guarantee the LF
move, the SDN controller has to buffer the incoming packets
during the state transfer (otherwise srcApp will discard these
packets to ensure state consistency during the state transfer).
These buffered packets will be released to dstApp after the
state transfer is completed.

The increasing number of flows results in more flow states
that need to be transferred, and thus longer state transfer
times, which contribute significantly to the total move times.
Subsequently, the higher state transfer times result in more
buffered packets, since the buffered packets are released after
the state transfer is completed. Meanwhile, a higher packet
rate increases the number of buffered packets during the state
transfer. Since the application itself cannot control the packet
rate of the incoming packets, to reduce the number of buffered
packets, the total move time needs to be minimized. The joint
use of the PL and LF policies allows the concurrent execution
of the export of states at srcApp and the import of states at
dstApp, thus accelerating the state transfer.

As expected, Fig. 4 shows an upward trend in the total
move time with increasing packet rate. This upward trend is
caused by the increasing number of arriving packets, resulting
in more buffered packets which need to be released. Notably,
we observe from Fig. 4 that FAST achieves much shorter total
move times than OpenNF and OpenNF-OVS. For a packet
rate of 10000 packets/s, FAST reduces the total move time
down to less than a quarter of the total move times of OpenNF
and OpenNF-OVS.
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FIGURE 5. FAST emulation evaluation: Total move time for different
guarantee policies for 100 packet flows, each with 2500 packets/s
compared to no guarantee (NG) policy. The parallel optimization (PL) and
early release (ER) policies are grouped (PL+ER) to indicate the policies for
reducing the total move time; the loss-free (LF) and order-preserving (OP)
policies are grouped (LF+OP) to indicate the policies for the correct
recovery of the application.

Moreover, we observe from Fig. 4 that FAST has only a
very slight upward trend of the total move time with increas-
ing packet rate compared to the significantly steeper upward
trends of OpenNF and OpenNF-OVS. The flatter upward
trend of FAST is achieved by directly forwarding the states
between the application instances. The steeper upward trends
of OpenNF and OpenNF-OVS are mainly due to the involve-
ment of the OpenNF controller in the state transfer. Specifi-
cally, we observe from Fig. 4 that OpenNF-OVS incurs less
total move time than OpenNF in most settings. When the
number of flows increases, the gap between OpenNF-OVS
and OpenNF tends to increase (except for 10000 packets/s
for 100 flows in Fig. 4 (b), when the OVS software switch
starts to become saturated). Fig. 4 (b) shows that for 100 flows
and 10000 packets/s, OpenNF-OVS reduces the total move
time by roughly 15% compared to OpenNF. This is because
OpenNF-OVS used OVS for the state forwarding, while
OpenNF simply adopted a normal switch; whereby OVS
tends to perform better than the normal switch when the
packet rate increases (as long as the packet rate does not
saturate the switch).

To investigate the impact of the guarantee policies on the
total move time, we examined five schemes including NG,
PL, LF PL, LF PL+ER, and LF+OP PL+ER for 2500 pack-
ets/s per flow and 100 flows. Fig. 5 shows that FAST
achieves significantly shorter move times than OpenNF-OVS
and OpenNF. For the first four schemes, FAST has an 80%
shorter total move time than the other approaches. For the
NG scheme, OpenNF incurs 140 ms total move time, includ-
ing 17 ms for exporting the states from srcApp, 13 ms for
importing them into dstApp, and the remaining 110 ms for
the execution time at the OpenNF controller. Meanwhile,
the total move time in FAST drops to 27 ms, including
16 ms for extracting the states at srcApp and the remaining
11 ms for importing them into dstApp, while the state transfer
delay is negligible in the considered Mininet setting. The
results for the LF+OP PL+ER scheme indicate that FAST

reduces the total move time by 20% compared to OpenNF.
We observe that the OP policy significantly increases the total
move time. As shown in Fig. 5, OpenNF completes a move
for the LF+OP PL+ER scheme in 590 ms, nearly a 4-fold
increase compared to the NG scheme. This is mainly because
the OP policy takes a significant amount of time to control
the order of the states generated by srcApp before sending
them to dstApp through an elaborate two-phase forwarding
state update procedure (see [22] for details). Thus, the OP
policy is only considered for applications that are degraded
by orderless states, such as intrusion detection systems [22].
Nevertheless, FAST reduces the move time by 135 ms com-
pared to OpenNF and by 89 ms compared to OpenNF-OVS.

It is worth noting that the total move time of the FAST
framework is mainly incurred for five main steps: i) the
SDN controller for the flow rule installation of the state
transfer, ii) the applications for enabling the connections for
the direct state transfer, i.e., for opening the ports for the
state transfer, iii) the srcApp for extracting the states, iv)
the SDN switches as the data plane for the state transfer for
forwarding the states (incurring the state transfer delay), and
v) the destApp for importing the states. The time required by
the SDN controller and the applications for opening the ports
for the state transfer in the FAST framework is negligible
(i.e., each performed only once for the state transfer, incurring
typically less than 1ms delay). FAST extracts, transfers (via
the intermediate SDN switches), and imports the states in
the data plane. In contrast, for the OpenNF-related schemes,
the SDN controller is the intermediate node for the state
transfer. The OpenNF-related schemes transfer the applica-
tion state information via Java Script Object Notation (JSON)
that the SDN controller receives from the source application
instance, unpacks, and then re-packages before forwarding
to the destination application instance, incurring significant
time delays in the SDN controller. Furthermore, the FAST
framework is a ‘‘topology-aware’’ scheme that relies on
the underlying data-plane network devices to transfer the
application states. Whereas, the OpenNF-related schemes are
‘‘topology-unaware’’ in that they rely on the SDN controller,
which may be located far from the source and destination
MEC servers, for the forwarding of the application states.

The emulation evaluation has established that the FAST
framework outperforms the OpenNF-related schemes at the
level of the overall state transfer strategy. Specifically,
the state transfer through the data plane (with decision
making in the SDN controller) in the FAST framework
achieves generally shorter move times than the state transfer
through the SDN controller in the OpenNF-related schemes.
Section V, follows up on this overall result, by examining
different optimization (decision making) mechanisms that
operate in the SDN controller in the FAST framework.

V. SIMULATION EVALUATION OF MEC STATE TRANSFER
OPTIMIZATION
This section focuses on the performance comparison of dif-
ferent optimization (decision) mechanisms within the FAST

115326 VOLUME 9, 2021



T. V. Doan et al.: FAST in MEC

framework and addresses the following two questions with
extensive simulation evaluations: i) How efficient is the pro-
posed Tabu search MEC state transfer optimization in terms
of the computation cost, communication cost, and buffering
cost?, and ii) How much complexity does the proposed Tabu
search MEC state transfer optimization introduce?

A. BENCHMARK SCHEMES
We compare our proposed FAST-Tabu algorithm, which we
refer to as ‘‘Tabu’’ for brevity, against the following five
benchmark schemes. We note that all compared schemes,
i.e., Tabu and the five benchmark schemes, operate within the
context of FAST, i.e., operate with the direct state forwarding
feature in FAST.
• Optimal: We find an optimal solution using Gurobi
(version 9.02) [74], which is a widely used commercial
optimization tool.

• Latency-aware state transfer (LAST): LAST chooses
the MEC server with the lowest end-to-end latency from
the new access node a′ to the new MEC server m′.

• Communication-aware state transfer (CAST): CAST
selects the MEC server with the least bandwidth usage,
i.e., the MEC server with least communication cost as
defined in Section III-C.

• Random: The algorithm uniformly randomly selects an
MEC server that satisfies the constraints in Section III-E.

• No migration: If the constraints are satisfied, the old
MEC serverm remains unchanged when flowsmove to a
new access node a′. Otherwise, a flow deadline violation
is recorded.

B. SIMULATION SETUP
We used the Python NetworkX [75] library, a Python library
for creating, manipulating, and studying complex networks,
to generate an Erdös-Rényi (ER) [76] random graph model
with |V | = 50 nodes, including |A| = 10 access nodes and
|M | = 40 MEC servers (i.e., each of the network nodes
in V\A has an attached MEC server) with the connection
probability p = 0.6. The ER network graph is widely
considered in the literature [77]–[79] to simulate real-world
network topologies. We consider more MEC servers
(|M | = 40) than access nodes (|A| = 10), which is rea-
sonable because there should at least be one MEC server
corresponding to (close to) each access node [80], [81].
Meanwhile, considering compute-intensive applications that
offload their heavy computation tasks to MEC [82], a large
set of MEC servers ensures sufficient computation resources
for the user requests. Also, our study examines the opti-
mization of the state transfer between the MEC servers.
A large number of MEC servers implies that the optimization
problem has to consider more options and thus makes the
optimization more complex. Nevertheless, a different regime
of scare resources, in which there are only few MEC servers,
could be investigated in future research with the general
optimization model introduced in Section III. The link delay
between nodes is randomly distributed between 10 ms and
50 ms, mimicking the physical link delay. This setting is

also used by Mouradian et al. [83] and Yang et al. [84].
The link bandwidth is randomly distributed in the set of
[1, 10] Gbps [83], [85]. For the objective function in Eq. (18),
since the communication cost typically dominates the total
cost, we set β = 1 and α = γ = 10.
Service requests (traffic flow requests) have a maxi-

mum delay constraint chosen randomly between 50 ms and
100 ms [86]. The arrival of the service requests follows a
Poisson distribution with a rate of 1 request per 30 seconds.
Each flow request has an exponentially distributed lifetime
with an average of 3 hours [87]. These settings mimic real
network traffic and allow for generating large numbers of
requests. The traffic rate is randomly selected in the range
of 10 Mbps to 50 Mbps per flow, reflecting the typical MEC
network traffic [84]. The requests are uniformly randomly
distributed to the access nodes a ∈ A. We consider three
open-source applications for setting the application param-
eters that determine the transmission time of the states [49],
namely PRADS, Zeek [88] (formerly Bro), and Iptables [89],
which have been widely considered for the performance
evaluation of the state transfer [22], [29], [30], [49], [54],
[56], [84]. We investigate the performance of the evaluated
schemes on a desktop computer with Intel Core i7-6700T
CPU and 16 GB RAM.
The simulation evaluation proceeds as follows. First, flow

(service) requests are generated into the network. Each flow
has an access node a ∈ A as the network ingress node and an
MEC server m ∈ M as the network egress node, whereby
the ingress and egress nodes of each flow are randomly
selected. To simulate the condition to trigger a migration,
mobility models, such as SUMO [90] or the ONE simulator
mobility models [91], could be used. However, most MEC
studies that adopted these mobility models, e.g., [92], [93],
simply assumed that one MEC server is attached to each base
station. Thus, the use of a mobility model in these studies
becomes an important factor for the experiment. In contrast
to the aforementioned studies, we do not assign an MEC
server to each base station. Instead, in this paper, we deploy
an edge cloud network architecture [94] to provide a set
of |M | = 40 MEC servers at the edge of the network.
The edge cloud network architecture increases the flexility
(i.e., different choices to deploy MEC applications because
there are many MEC servers) and availability (i.e., more
hardware resources). Aligned with the considered edge cloud
network architecture, we consider a mobility model in which
the migration is triggered based on the number of flows,
which is an essential metric tomeasure the performance of the
migration, as mentioned in Section IV-D. More specifically,
after observing a certain number of flows (e.g., 100 flows
or 500 flows) generated in the network, a migration at a
uniformly randomly selected access node a ∈ A is triggered.
More specifically, the simulation proceeds as follows. The

network starts up initially empty. Flows are generated one by
one and they are randomly assigned to an ingress (access)
node and an egress (MEC) node. In particular, the access node
and MEC node are uniformly randomly selected among the
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access and MEC nodes that meet the latency constraint of the
flow and the link capacity constraint. The access and MEC
nodes ‘‘fill up’’, i.e., get more and more ongoing flows; we
count the total number of ongoing flows in the entire network
(not at a specific access node). When the total number |F |
of flows in the network reaches a prescribed threshold in the
range of 100 to 500 flows, we randomly select an access
node a ∈ A whose flows need to be migrated. The reason
for considering the total number |F | of flows in the network
is that it will significantly impact the migration costs. For
instance, more flows in the network result in higher link band-
width consumption for the entire network, thus influencing
the choice of theMEC server after the flowmigration. For this
selected access node a, we uniformly randomly select the set
of target access nodesAmiga to which the flows can bemigrated
among the other access nodes (the number of target access
nodes is pre-defined; in SectionV-D1, we consider |Amiga | = 2
target access nodes; in Section V-D2, we consider |Amiga | = 1
to 6 target access nodes). Then, each flow will either be
retained (for a user without mobility) in the original access
node or randomly assigned (for a user with mobility) to one
of the |Amiga | target access nodes (1/(|A

mig
a | + 1) probability

for each of these |Amiga | + 1 options) to form the sets Fmiga,a′
of flows that are migrated from access node a to the target
access nodes a′ ∈ Amiga . The simulation iteration (replication)
is stopped after the migration is completed. We conducted
100 independent replications for each evaluation and present
the resulting 95% confidence intervals.

C. PERFORMANCE METRICS
We evaluate the effectiveness of our proposed scheme with
six performance metrics: computation cost [Eqn. (3)], com-
munication cost [Eqn. (5)], buffering cost [Eqn. (14)], total
cost [Eqn. (18)], total state transfer time, and execution time.
The total state transfer time is the time needed to transfer
all states of the migrated flows, whereby the time to transfer
the states of each flow is calculated by Eqn. (7) and the
parameters to evaluate the transmission delays of the state
information of the three considered applications follow the
approach in [49]. The execution time is the time needed to
execute each evaluated scheme.

D. SIMULATION RESULTS
1) IMPACT OF NUMBER OF FLOWS
We first compare the performance of the proposed
FAST-Tabu algorithm against the benchmark algorithms
operating within the FAST framework by varying the number
|F | of flows at which the migration is triggered from 100 to
500 with a step size of 100 flows. The number of target access
nodes is set to |Amiga | = 2.
Fig. 6(a) plots the total cost of the evaluated schemes as

a function of the number |F | of flows that triggers the flow
migration. As expected, Fig. 6(a) shows an upward trend in
the total cost with increasing number of flows at which the
migration is performed. In particular, the optimal and Tabu

FIGURE 6. Total cost as a function of the total number of flows in the
network that trigger flow migration and the number of target access
nodes.

schemes achieve lower total costs than the LAST and CAST
schemes, which in turn achieve lower total costs than the
random scheme.

In particular, the results in Fig. 6(a) indicate that the
optimal and Tabu schemes incur only about half the total
cost of the random scheme. The optimal and Tabu schemes
have a tendency to achieve slightly lower total cost than the
no migration scheme. Importantly, the no migration scheme
introduced a significant flow deadline violation probability
of 42% for the scenarios considered in Fig. 6(a); the flow
deadline violation probability is constant with respect to
the number of flows that trigger a migration. A flow dead-
line violation occurs after a migration if the new ingress
access node a′ (selected uniformly randomly among the target
access nodes in Amiga ) has a propagation delay from the (non-
migrated) MEC server m of the flow that exceeds the flow
deadline Df . The five evaluated migration schemes never
caused a flow deadline violation in our simulations. Unlike
the no migration scheme, which retains the migrated flows
at the original (non-migrated) MEC server (egress node) m,
the migration schemes freely adopt an MEC server (egress
node) based on their respective strategies.

We next investigate the communication cost while vary-
ing the number |F | of flows that trigger flow migration in
Fig. 7(a). Fig. 7(a) verifies our expectation that a higher num-
ber of required flows to trigger a migration, results in a higher
communication cost. This is because the increase in the num-
ber of flows in the network results in more migrated flows,
thus increasing the communication cost. Fig. 7(a) indicates
that the proposed Tabu search scheme achieves similar perfor-
mance compared to the optimal scheme, while outperforming
the no migration and random schemes. As CAST and LAST
adopt the MEC servers according to the computed shortest
paths, CAST and LAST achieve the lowest communication
cost.

We proceed to examine the buffering cost while vary-
ing the number |F | of flows that trigger flow migration in
Fig. 7(b). Fig. 7(b) also points out the upward trend in terms
of the buffering cost. The results indicate that the optimal
scheme and the proposed Tabu search scheme achieve similar
performance while performing much better than the other
schemes. Notably, the proposed Tabu search scheme incurs
only approximately one third of the buffering cost of the
LAST, CAST, and random schemes.

We study the computation cost of the evaluated schemes
as a function of the number |F | of flows that trigger the
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FIGURE 7. Communication cost, buffering cost, and computation cost as a function of the number of flows in the network that trigger flow
migration.

FIGURE 8. Communication cost, buffering cost, and computation cost as a function of the number of target access nodes.

migration in Fig. 7(c). The flat curves in Fig. 7(c) indicate
that the number of flows has an insignificant impact on
the computation cost. This is mainly because we considered
only |Amiga | = 2 target access nodes and the flows from a
given target access node a′ are typically associated with a
close-by MEC server to meet the flow deadlines. The results
show that the proposed Tabu search scheme incurs higher
computation cost than the optimal scheme, but outperforms
the other schemes. This is because the optimal scheme and the
proposed Tabu search scheme strive to find the MEC servers
that serve as many migrated flows as possible, i.e., strive to
minimize the extra required VMs to serve the migrated flows.
Meanwhile, the LAST, CAST, and random schemes typically
require a new VM for the MEC server that is close-by to
each target access node. LAST and CAST choose the best
MEC server for each flow for their respective optimization
objectives. They do not take into consideration whether that
MEC server also serves other flows or not (i.e., do not try to
minimize the extra number of required VMs at MEC servers
to serve the migrated flows). Similarly, the random scheme
chooses a random MEC server without considering whether
that MEC server also serves other flows or not. In this sense,
the LAST, CAST, and random schemes are ‘‘memoryless’’
as they do not keep track of the MEC servers that flows are
migrated to.

We next investigate the total state transfer time as a
function of the number |F | of flows that trigger migration
in Fig. 9(a). Fig. 9(a) indicates that the optimal scheme
and the proposed Tabu search scheme significantly shorten
the total state transfer time; down to roughly one third of the
other schemes. This is because LAST and CAST ignore the
state transfer cost, preferring the shortest paths from the target
access nodes to the target MEC servers, which may be far

away from the original MEC servers. Thus, the LAST and
CAST schemes can introduce very large total transfer times.
Similarly, the random scheme simply chooses a target MEC
server that satisfies the constraints (without considering the
state transfer cost).

2) IMPACT OF NUMBER OF TARGET ACCESS NODES
In this section, we evaluate the performance as a function of
the number |Amiga | of target access nodes in the range from one
to six, while setting the number |F | of flows in the network
that trigger the migration to 300.

Fig. 6(b) plots the total cost as a function of the number
of target access nodes. The results confirm the superiority of
the optimal scheme and the proposed Tabu search scheme in
all cases. It is worth noting that the gap between the optimal
and Tabu schemes and the no migration scheme tends to
increase with more target access nodes. This implies that
the migration offers more cost benefit than the no migration
scheme when the number of target access nodes is large.
We note for completeness that the no migration scheme had a
flow deadline violation probability of 47.2% for the scenarios
in Fig. 6(b) and is therefore not further considered.

Fig. 8(a) shows the communication cost for different num-
bers of target access nodes. The results are similar to the
results in Fig. 7(a). However, the optimal scheme and the
proposed Tabu search scheme increase the gap to the no
migration scheme and the random scheme, especially for
large numbers of target access nodes. This increased gap
for the communication cost significantly contributes to the
widening gap in the total cost in Fig. 6(b). For an increas-
ing number of target access nodes, the communication cost
is mainly governed by the effectiveness of the schemes in
finding the optimal paths.
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Fig. 8(b) plots the buffering cost while varying the number
of target access nodes. The flat curves in Fig. 8(b) indicate
the insignificant impact of the number of target access nodes
on the buffering cost. The reason is that the buffering cost
mainly depends on the number of migrated flows (and not on
the number of target access nodes). The optimal and the Tabu
schemes consistently require less than roughly a third of the
buffering cost of the LAST, CAST, and random schemes.

We investigate the computation cost while varying the
number of target access nodes in Fig. 8(c). Fig. 8(c) shows the
upward trend in the computation cost for increasing numbers
of target access nodes. This is mainly because the larger num-
ber of target access nodes typically requires new VMs for the
migrated flows at more MEC servers. Fig. 8(c) indicates that
our proposed Tabu search scheme incurs higher computation
cost than the optimal scheme, while incurring substantially
lower (nearly only half) computation cost compared to the
LAST, CAST, and Random schemes. This is mainly because
the optimal and proposed Tabu search schemes strive to find
the MEC servers that can serve the migrated flows most
effectively, i.e., while requiring the least numbers of VMs to
be added to the MEC servers.

We investigate the total state transfer time for increasing
numbers of target access nodes in Fig. 9(b) (while the total
number of access nodes in the network remains fixed at
|A| = 10). Fig. 9(b) shows that the larger the number of
target access nodes, the longer the total state transfer time.
The reason is that more target access nodes result in more
target MEC servers. Thus, the number of state transfers to
new MEC servers is increased. Notably, the results show that
the optimal scheme and the proposed Tabu search scheme
clearly outperform the other schemes in terms of the total
state transfer time.

We proceed to examine the computational complexity
(execution time) of the proposed Tabu search scheme in
comparison with the other schemes for a varying number
of target access nodes in Fig. 10. Notably, Fig. 10 shows
that the execution time of the proposed Tabu search scheme
is much less than for the optimal scheme for two or more
target access nodes. For 6 access nodes, the proposed Tabu
search scheme reduces the execution time down to nearly one
eighth compared to the optimal scheme. The complexity of
the optimal scheme is drastically increased when the number
of target access nodes is large. Meanwhile, the number of
target access nodes has a negligible impact on the execution
time of the proposed Tabu search scheme because the Tabu
search algorithm controls the complexity by using the Tabu
list, see Section III. The LAST, CAST, and random schemes
are low-complexity heuristic algorithms that quickly find the
target MEC servers.

In summary, our proposed Tabu search scheme achieves
mostly similar performance but introduces much less com-
plexity compared to the optimal scheme. Thus, the proposed
Tabu search scheme appears well suited for MEC state trans-
fer optimization.

VI. FAST EXPERIMENTS ON A REAL TESTBED
Unlike the data center, the MEC is a novel cloud paradigm
that has not been widely considered in real-world implemen-
tations. Therefore, there is no accepted reference network
topology for the MEC available yet. Thus, we consider a
testbed that consists of six MEC servers, one traffic gen-
erator, one controller server, and one Aruba 2930F hard-
ware switch with SDN capabilities. The MEC servers and
the traffic generator are equipped with Intel(R) Core(TM)
i7-6700 CPU at 3.40 GHz and 32 GB memory, running on
Ubuntu Bionic 18.04. The MEC servers are used to deploy
the examined applications, whereby each of the two MEC
servers will host the source instance and destination instance
of an application, respectively. Tcpreplay [73] is used as the
traffic generator, replaying the network traffic to the MEC
servers from a recorded pcap file. We implemented FAST
and OpenNF on the controller server equipped with Intel(R)
Xeon(R) CPUE5-2630 v3 (32 cores) at 2.40GHz and 128GB
memory, running on Ubuntu Xenial 16.04. Our experimental
results represent the averages and 95% confidence intervals
of 10 measurements.

We examined three applications, namely PRADS,
Iptables [89], and Zeek [88] (formerly Bro), which are
deployed in bare metal fashion [95], [96] on theMEC servers.
The major benefit of these applications is to improve the
network security. As stated in [17], security and privacy issues
introduce critical MEC challenges. Thus, the considered
applications could potentially be deployed to secure the user
traffic at the network edge. Since PRADShas been introduced
in Section IV-D2, we briefly introduce Iptables and Zeek as
follows.

Iptables is a well-known user-space utility program for
configuring IP packet filter rules of the Linux kernel firewall.
Iptables defines tables containing chains of rules for packet
processing, whereby packets are processed by sequentially
traversing the rules in chains. Iptables uses a connection
tracking module (conntrack) to manage the state entries.

Zeek is a popular open-source platforms for network
security monitoring. Zeek inspects all traffic on a network
interface in depth for signs of suspicious activity. Zeek can
perform a wide range of analysis and detection functions,
e.g., detect malware via external registries, and validate
SSL certificate chains. To perform these functions, Zeek has
built-in modules that track and manage the network states.

Since our main focus is on the state transfer, we first
reused existing functionalities in OpenNF to allow
exporting/importing the states from/to PRADS, Iptables, and
Zeek. We then modified these applications to enable FAST,
see Section IV-C.

Fig. 11 plots the total move time for the different applica-
tions at 100 packet flows. Importantly, the results indicate that
FAST achieves significantly shorter total move times than
OpenNF. Specifically, compared to OpenNF, FAST reduces
the total move times for Iptables, PRADS, and Zeek as fol-
lows: 48.6% (from 68.33 ms down to 35.13 ms) for Iptables,
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FIGURE 9. Total migration time as a function of the number of flows in the network that trigger a migration and the number of target access
nodes.

FIGURE 10. Execution time as a function of the number of target access
nodes.

FIGURE 11. Total move time in real testbed for different applications at
100 packet flows.

63.3% (from 89.8 ms down to 33 ms) for PRADS, and 67.3%
(from 118.67 ms down to 38.87 ms) for Zeek. With OpenNF,
the total Zeek move time is significantly longer than the
Iptables move time. This is mainly because Zeek has a larger
state size than Iptables. The involvement of the OpenNF
controller in the state transfer leads to a significant impact
of the state size on the total move time.

VII. CONCLUSION
Frequent user mobility necessitates quick and flexible migra-
tion of application states without service interruption, while
minimizing the state transfer costs. We have proposed a
meta-heuristic algorithm based on Tabu search to solve the
MEC state transfer optimization problem. The simulation
results indicate favorable performance characteristics of the
proposed Tabu search algorithm in terms of the total transfer
cost. Notably, the proposed Tabu search scheme incurs sig-
nificantly lower computational complexity than the optimal
scheme, thus confirming its applicability in the MEC.

To migrate application states quickly, reliably, and in
a flexible manner, we have introduced FAST, a state
management scheme running at the SDN controller to coor-
dinate the state transfer process. FAST allows for the for-
warding of application states directly between the MEC
application instances (without transferring the VM or con-
tainer states). Furthermore, FAST provides an API that
allows for further extensions. We make the full FAST frame-
work source code publicly available at https://github.com/
openMECPlatform/fast.git. We conducted a FAST perfor-
mance measurement for various real-world applications on a
real testbed. The measurement results demonstrate that FAST
reduces the total move time by over 60% compared to the
existing OpenNF approach.

We identify three future research directions for our FAST
framework. First, since FAST offers direct state transfer
between the source and destination MEC servers that host the
MEC application before and after the migration, the support
of a mechanism in FAST to predict the user mobility could
be helpful to facilitate the process of finding the destination
MEC server i.e., the target access node and destination MEC
server could be determined in advance and thus the appli-
cation states could be tentatively transferred before a final
migration decision is made; upon making the final migration
decision, we would then only need to re-direct the user’s
traffic to the new destination MEC server. To achieve this
goal, machine learning techniques, such as deep learning and
reinforcement learning, can be employed. However, the use of
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the existing machine learning techniques in MEC is known
to introduce significant computation complexity [97], thus
possibly prolonging the migration process. Future research
should develop low-complexity machine learning techniques
for this mobility prediction.

A second future research direction is the support of a pro-
grammable data plane in FAST. Programmable data planes
have gained tremendous interest in recent years [98], allow-
ing the network devices to perform complex operations on
packets. Since FAST advocates the programmable state for-
warding, the use of programmable data planes, such as POF
(Protocol-Oblivious Forwarding) [99] and P4 (Programming
protocol-independent packet processors) [100], in FAST can
potentially greatly improve the flexibility of the state trans-
fer. However, the programmable data planes are still in
early-stage development, and may give rise to critical issues,
such as security violations and performance degradation [98].
For the security issue, the application state (which might
contain user-sensitive data) can be vulnerable. Meanwhile,
the performance degradation can lead to state loss and intro-
duce long migration times. Therefore, the trade-offs arising
from programmable data planes for the application state
migration in FAST need to be thoroughly examined in future
research.

This study primarily targeted the reduction of the MEC
state transfer latency, which is an important MEC QoS met-
ric [2]. A third future research direction is to broaden the
network model to incorporate other QoSmetrics, e.g., the pri-
ority of the incoming service requests. Additionally, future
research could consider the efficient use of storage resources
and the reduction of the power consumption for the MEC
state transfer. As the examined state transfer only captures the
data needed to recover the application after the migration, our
proposed solution could potentially save storage resources
and reduce the power consumption (i.e., require less energy to
recover the application) compared to the traditional container
or VM migration.

ACKNOWLEDGMENT
This article was presented at the 2020 IEEE Global
Communications Conference: Next-Generation Networking
and Internet (Globecom2020, NGNI), Taipei, Taiwan.
A preliminary abridged version of this study has appeared in
[DOI: 10.1109/GLOBECOM42002.2020.9322117].

REFERENCES
[1] T. V. Doan, C. Ding, G. T. Nguyen, D. You, and F. H. P. Fitzek, ‘‘FAST:

Flexible and low-latency state transfer in mobile edge computing,’’ in
Proc. GLOBECOM IEEE Global Commun. Conf., Dec. 2020, pp. 1–6.

[2] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani,
‘‘Multi-access edge computing: A survey,’’ IEEE Access, vol. 8,
pp. 197017–197046, 2020.

[3] M. Liu and Y. Liu, ‘‘Price-based distributed offloading for mobile-edge
computing with computation capacity constraints,’’ IEEE Wireless Com-
mun. Lett., vol. 7, no. 3, pp. 420–423, Jun. 2018.

[4] Y. Mansouri and M. A. Babar, ‘‘A review of edge computing: Fea-
tures and resource virtualization,’’ J. Parallel Distrib. Comput., vol. 150,
pp. 155–183, Apr. 2021.

[5] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,
and Z. Ding, ‘‘A survey of multi-access edge computing in 5G and
beyond: Fundamentals, technology integration, and state-of-the-art,’’
IEEE Access, vol. 8, pp. 116974–117017, 2020.

[6] S. D. A. Shah, M. A. Gregory, S. Li, and R. D. R. Fontes, ‘‘SDN
enhanced multi-access edge computing (MEC) for E2Emobility and QoS
management,’’ IEEE Access, vol. 8, pp. 77459–77469, 2020.

[7] S. D. A. Shah, M. A. Gregory, and S. Li, ‘‘Cloud-native network slicing
using software defined networking based multi-access edge computing:
A survey,’’ IEEE Access, vol. 9, pp. 10903–10924, 2021.

[8] H. Zhang, Y. Yang, X. Huang, C. Fang, and P. Zhang, ‘‘Ultra-low latency
multi-task offloading in mobile edge computing,’’ IEEE Access, vol. 9,
pp. 32569–32581, 2021.

[9] T. V. Doan, D. You, H. Salah, G. T. Nguyen, and H. P. Frank Fitzek,
‘‘MEC-assisted immersive services: Orchestration framework and pro-
tocol,’’ in Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast.
(BMSB), Jun. 2019, pp. 1–6.

[10] T. V. Doan, Z. Fan, G. T. Nguyen, D. You, A. Kropp, H. Salah, and
F. H. P. Fitzek, ‘‘Seamless service migration framework for autonomous
driving in mobile edge cloud,’’ in Proc. IEEE 17th Annu. Consum. Com-
mun. Netw. Conf. (CCNC), Jan. 2020, pp. 1–2.

[11] H. Ma, S. Li, E. Zhang, Z. Lv, J. Hu, and X. Wei, ‘‘Cooperative
autonomous driving oriented MEC-aided 5G-V2X: Prototype system
design, field tests and AI-based optimization tools,’’ IEEE Access, vol. 8,
pp. 54288–54302, 2020.

[12] T. Hoeschele, C. Dietzel, D. Kopp, F. H. P. Fitzek, and M. Reisslein,
‘‘Importance of internet exchange point (IXP) infrastructure for 5G:
Estimating the impact of 5G use cases,’’ Telecommun. Policy, vol. 45,
no. 3, Apr. 2021, Art. no. 102091.

[13] J. Nakazato, M. Nakamura, T. Yu, Z. Li, K. Maruta, G. K. Tran, and
K. Sakaguchi, ‘‘Market analysis of MEC-assisted beyond 5G ecosys-
tem,’’ IEEE Access, vol. 9, pp. 53996–54008, 2021.

[14] E. Pencheva, D. Velkova, and I. Atanasov, ‘‘Edge based mission critical
session control,’’ in Proc. Int. Conf. Inf. Technol. (InfoTech), Sep. 2020,
pp. 1–4.

[15] T. V. Doan, G. T. Nguyen, H. Salah, S. Pandi, M. Jarschel, R. Pries,
and F. H. P. Fitzek, ‘‘Containers vs virtual machines: Choosing the right
virtualization technology for mobile edge cloud,’’ in Proc. IEEE 2nd 5G
World Forum (5GWF), Sep. 2019, pp. 46–52.

[16] P. Shantharama, A. S. Thyagaturu, A. Yatavelli, P. Lalwaney,
M. Reisslein, G. Tkachuk, and E. J. Pullin, ‘‘Hardware acceleration
for container migration on resource-constrained platforms,’’ IEEE
Access, vol. 8, pp. 175070–175085, 2020.

[17] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge com-
puting: A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[18] W. Lu, X. Meng, and G. Guo, ‘‘Fast service migration method based on
virtual machine technology for MEC,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 4344–4354, Jun. 2019.

[19] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, ‘‘Dynamic
flow migration for embedded services in SDN/NFV-enabled 5G core
networks,’’ IEEE Trans. Commun., vol. 68, no. 4, pp. 2394–2408,
Apr. 2020.

[20] L. Cui, F. P. Tso, D. P. Pezaros,W. Jia, andW. Zhao, ‘‘PLAN: Joint policy-
and network-awareVMmanagement for cloud data centers,’’ IEEETrans.
Parallel Distrib. Syst., vol. 28, no. 4, pp. 1163–1175, Apr. 2017.

[21] L. Lv, Y. Zhang, Y. Li, K. Xu, D. Wang, W. Wang, M. Li, X. Cao, and
Q. Liang, ‘‘Communication-aware container placement and reassignment
in large-scale internet data centers,’’ IEEE J. Sel. Areas Commun., vol. 37,
no. 3, pp. 540–555, Mar. 2019.

[22] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. and Akella, ‘‘OpenNF: Enabling innovation in network
function control,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 163–174, 2014.

[23] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
‘‘Split/Merge: System support for elastic execution in virtual
middleboxes,’’ in Proc. USENIX (NSDI), 2013, pp. 227–240.

[24] S. Rajagopalan, D. Williams, and H. Jamjoom, ‘‘Pico replication: A high
availability framework for middleboxes,’’ in Proc. 4th Annu. Symp. Cloud
Comput., Oct. 2013, pp. 1–15.

[25] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and
S. Schmid, ‘‘Adaptable and data-driven softwarized networks: Review,
opportunities, and challenges,’’ Proc. IEEE, vol. 107, no. 4, pp. 711–731,
Apr. 2019.

115332 VOLUME 9, 2021



T. V. Doan et al.: FAST in MEC

[26] M. Silva, P. Teixeira, C. Gomes, D. Dias, M. Luís, and S. Sargento,
‘‘Exploring software defined networks for seamless handovers in vehic-
ular networks,’’ Veh. Commun., vol. 31, Oct. 2021, Art. no. 100372.

[27] T. V. Doan, Z. Fan, G. T. Nguyen, H. Salah, D. You, and F. H. P. Fitzek,
‘‘Follow me, if you can: A framework for seamless migration in mobile
edge cloud,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun. Work-
shops (INFOCOM WKSHPS), Jul. 2020, pp. 1178–1183.

[28] S. Pandi, R. S. Schmoll, P. J. Braun, and F. H. P. Fitzek, ‘‘Demonstration
of mobile edge cloud for tactile internet using a 5G gaming application,’’
in Proc. 14th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC),
Jan. 2017, pp. 607–608.

[29] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, ‘‘Transparent flow
migration for NFV,’’ in Proc. IEEE 24th Int. Conf. Netw. Protocols
(ICNP), Nov. 2016, pp. 1–10.

[30] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
‘‘Elastic scaling of stateful network functions,’’ in Proc. USENIX NSDI,
vol. 2018, pp. 299–312.

[31] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
‘‘Rollback-recovery for middleboxes,’’ SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 227–240, 2015.

[32] OpenFlow-Enabled SDN and Network Functions Virtualization, Brief,
ONF Solution, Open Networking Foundation, Menlo Park, CA, USA,
2014.

[33] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge
computing—A key technology towards 5G,’’ ETSI, Sophia Antipolis,
France, ETSI White Paper 11, 2015.

[34] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, ‘‘A survey on virtual machine
migration: Challenges, techniques, and open issues,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 2, pp. 1206–1243, 2nd Quart., 2018.

[35] S. Wang, J. Xu, N. Zhang, and Y. Liu, ‘‘A survey on service migration in
mobile edge computing,’’ IEEE Access, vol. 6, pp. 23511–23528, 2018.

[36] Z. Liang, Y. Liu, T.-M. Lok, and K. Huang, ‘‘Multi-cell mobile edge
computing: Joint service migration and resource allocation,’’ IEEE
Trans. Wireless Commun., early access, Apr. 12, 2021, doi: 10.1109/
TWC.2021.3070974.

[37] O. Oleghe, ‘‘Container placement and migration in edge computing:
Concept and scheduling models,’’ IEEE Access, vol. 9, pp. 68028–68043,
2021.

[38] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, ‘‘A joint ser-
vice migration and mobility optimization approach for vehicular edge
computing,’’ IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9041–9052,
Aug. 2020.

[39] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
‘‘Dynamic service migration in mobile edge computing based on
Markov decision process,’’ IEEE/ACM Trans. Netw., vol. 27, no. 13,
pp. 1272–1288, May 2019.

[40] X. Zhou, S. Ge, T. Qiu, K. Li, and M. Atiquzzaman, ‘‘Energy-
efficient service migration for multi-user heterogeneous dense cellular
networks,’’ IEEE Trans. Mobile Comput., early access, Jun. 8, 2021, doi:
10.1109/TMC.2021.3087198.

[41] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, ‘‘Live virtual machine
migration with adaptive, memory compression,’’ in Proc. IEEE Int. Conf.
Cluster Comput. Workshops, Aug. 2009, pp. 1–10.

[42] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, ‘‘Evaluation of delta
compression techniques for efficient live migration of large virtual
machines,’’ inProc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution
Environ. (VEE), 2011, pp. 111–120.

[43] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, ‘‘Live
service migration in mobile edge clouds,’’ IEEE Wireless Commun.,
vol. 25, no. 1, pp. 140–147, Feb. 2018.

[44] L. Ma, S. Yi, N. Carter, and Q. Li, ‘‘Efficient live migration of edge
services leveraging container layered storage,’’ IEEE Trans. Mobile Com-
put., vol. 18, no. 9, pp. 2020–2033, Sep. 2019.

[45] F. Carpio, A. Jukan, and R. Pries, ‘‘Balancing the migration of virtual
network functions with replications in data centers,’’ in Proc. NOMS
IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2018, pp. 1–8.

[46] Y. Wang, X. Zhu, and X. Qiu, ‘‘A quick adaptive migration algorithm for
virtual network function,’’ in Proc. Int. Conf. Wireless Satell. Syst. Cham,
Switzerland: Springer, 2019, pp. 333–347.

[47] R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, ‘‘A multi-clustering
approach to scale distributed tenant networks for mobile edge comput-
ing,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 499–514,Mar. 2019.

[48] N. Deric, A. Varasteh, A. Basta, A. Blenk, R. Pries, M. Jarschel, and
W. Kellerer, ‘‘Coupling VNF orchestration and SDN virtual network
reconfiguration,’’ in Proc. Int. Conf. Netw. Syst. (NetSys), Mar. 2019,
pp. 1–3.

[49] C. Sun, J. Bi, Z. Meng, T. Yang, X. Zhang, and H. Hu, ‘‘Enabling NFV
elasticity control with optimized flow migration,’’ IEEE J. Sel. Areas
Commun., vol. 36, no. 10, pp. 2288–2303, Oct. 2018.

[50] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, ‘‘Statelet-based efficient
and seamless NFV state transfer,’’ IEEE Trans. Netw. Service Manage.,
vol. 14, no. 4, pp. 964–977, Dec. 2017.

[51] M. Ghaznavi, E. Jalalpour, B. Wong, R. Boutaba, and A. J. Mashtizadeh,
‘‘Fault tolerant service function chaining,’’ in Proc. Annu. Conf. ACM
Special Interest Group Data Commun. Appl., Technol., Archit., Protocols
Comput. Commun., Jul. 2020, pp. 198–210.

[52] M. Kablan, A. Alsudais, E. Keller, and F. Le, ‘‘Stateless network func-
tions: Breaking the tight coupling of state and processing,’’ in Proc. 14th
USENIX NSDI. Boston, MA, USA, Mar. 2017, pp. 97–112.

[53] J. Santa, A. F. Skarmeta, J. Ortiz, P. J. Fernandez, M. Luis, C. Gomes,
J. Oliveira, D. Gomes, R. Sanchez-Iborra, and S. Sargento, ‘‘MIGRATE:
Mobile device virtualisation through state transfer,’’ IEEE Access, vol. 8,
pp. 25848–25862, 2020.

[54] Z. Cao, A. Abujoda, and P. Papadimitriou, ‘‘Distributed data deluge
(D3): Efficient state management for virtualized network functions,’’ in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOMWKSHPS),
Apr. 2016, pp. 782–787.

[55] M. Peuster and H. Karl, ‘‘E-state: Distributed state management in elastic
network function deployments,’’ in Proc. IEEE NetSoft Conf. Workshops
(NetSoft), Jun. 2016, pp. 6–10.

[56] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, ‘‘Paving the way for NFV: Simplifying middlebox modifica-
tions using StateAlyzr,’’ in Proc. USENIX NSDI, Mar. 2016, pp. 239–253.

[57] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, ‘‘U-HAUL: Efficient state
migration in NFV,’’ in Proc. 7th ACM SIGOPS Asia–Pacific Workshop
Syst., Aug. 2016, pp. 1–8.

[58] M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer, ‘‘Flexibility
in softwarized networks: Classifications and research challenges,’’ IEEE
Commun. Surveys Tuts., vol. 21, no. 3, pp. 2600–2636, 3rd Quart., 2019.

[59] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klugel, and
A. M. Alba, ‘‘How to measure network flexibility? A proposal for eval-
uating softwarized networks,’’ IEEE Commun. Mag., vol. 56, no. 10,
pp. 186–192, Oct. 2018.

[60] C. Trois, M. D. Del Fabro, L. C. E. de Bona, andM.Martinello, ‘‘A survey
on SDN programming languages: Toward a taxonomy,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 4, pp. 2687–2712, 4th Quart., 2016.

[61] M. He, A. Basta, A. Blenk, and W. Kellerer, ‘‘Modeling flow setup time
for controller placement in SDN: Evaluation for dynamic flows,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–7.

[62] A. AlGhadhban and B. Shihada, ‘‘Delay analysis of new-flow setup time
in software defined networks,’’ in Proc. IEEE/IFIP Netw. Oper. Manage.
Symp. (NOMS), Apr. 2018, pp. 1–7.

[63] R. Khalili, Z. Despotovic, and A. Hecker, ‘‘Flow setup latency in SDN
networks,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 12, pp. 2631–2639,
Dec. 2018.

[64] A. Gember-Jacobson and A. Akella, ‘‘Improving the safety, scalability,
and efficiency of network function state transfers,’’ in Proc. ACM SIG-
COMMWorkshopHot TopicsMiddleboxes Netw. Function Virtualization,
Aug. 2015, pp. 43–48.

[65] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez, ‘‘The
p-median problem: A survey of metaheuristic approaches,’’ Eur. J. Oper.
Res., vol. 179, no. 3, pp. 927–939, 2007.

[66] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, ‘‘Metaheuristic
research: A comprehensive survey,’’ Artif. Intell. Rev., vol. 52, no. 4,
pp. 2191–2233, Dec. 2019.

[67] M. Dorigo and T. Stützle, ‘‘The ant colony optimization metaheuristic:
Algorithms, applications, and advances,’’ in Handbook Metaheuristics.
Boston, MA, USA: Springer, 2003, pp. 250–285.

[68] D. Whitley, ‘‘A genetic algorithm tutorial,’’ Statist. Comput., vol. 4, no. 2,
pp. 65–85, Jun. 1994.

[69] F. Glover and M. Laguna, ‘‘Tabu search,’’ in Handbook of Combinatorial
Optimization. New York, NY, USA: Springer, 1998, pp. 2093–2229.

[70] J. Silberholz and B. Golden, ‘‘Comparison of metaheuristics,’’ in Hand-
book Metaheuristics. Boston, MA, USA: Springer, 2010, pp. 625–640.

[71] Mininet, an Instant Virtual Network on Your Laptop (or Other PC).
Accessed: Aug. 17, 2021. [Online]. Available: http://mininet.org

VOLUME 9, 2021 115333

http://dx.doi.org/10.1109/TWC.2021.3070974
http://dx.doi.org/10.1109/TWC.2021.3070974
http://dx.doi.org/10.1109/TMC.2021.3087198


T. V. Doan et al.: FAST in MEC

[72] PRADS, Passive Real-time Asset Detection System. Accessed: Aug. 17,
2021. [Online]. Available: http://gamelinux.github.io/prads

[73] Tcpreplay, an Open Source Network Security Monitoring Tool. Accessed:
Aug. 17, 2021. [Online]. Available: https://tcpreplay.appneta.com/

[74] Gurobi Optimization. Accessed: Aug. 17, 2021. [Online]. Available:
https://www.gurobi.com

[75] NetworkX, Network Analysis in Python. Accessed: Aug. 17, 2021.
[Online]. Available: https://networkx.github.io

[76] P. Erdős and A. Rényi, ‘‘On random graphs I,’’ Pub. Math. (Debrecen),
vol. 6, pp. 290–297, Jan. 1959.

[77] M. Bouet andV. Conan, ‘‘Mobile edge computing resources optimization:
AGeo-clustering approach,’’ IEEETrans. Netw. ServiceManage., vol. 15,
no. 2, pp. 787–796, Jun. 2018.

[78] M. A. T. Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi,
and B. H. Khalaj, ‘‘vSPACE: VNF simultaneous placement, admission
control and embedding,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 3,
pp. 542–557, Mar. 2018.

[79] N. Tastevin,M.Obadia, andM. Bouet, ‘‘A graph approach to placement of
service functions chains,’’ in Proc. IFIP/IEEE Symp. Integr. Netw. Service
Manage. (IM), May 2017, pp. 134–141.

[80] Z. Nezami, K. Zamanifar, K. Djemame, and E. Pournaras, ‘‘Decentral-
ized edge-to-cloud load balancing: Service placement for the Internet of
Things,’’ IEEE Access, vol. 9, pp. 64983–65000, 2021.

[81] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, ‘‘An online framework for
joint network selection and service placement in mobile edge comput-
ing,’’ IEEE Trans. Mobile Comput., early access, Mar. 9, 2021, doi:
10.1109/TMC.2021.3064847.

[82] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, ‘‘Toward compu-
tation offloading in edge computing: A survey,’’ IEEE Access, vol. 7,
pp. 131543–131558, 2019.

[83] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad,
N. T. Jahromi, and R. H. Glitho, ‘‘Application component placement in
NFV-based hybrid cloud/fog systems with mobile fog nodes,’’ IEEE
J. Sel. Areas Commun., vol. 37, no. 5, pp. 1130–1143, May 2019.

[84] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, ‘‘Delay-
aware virtual network function placement and routing in edge clouds,’’
IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 445–459, Feb. 2021.

[85] S. Song, C. Lee, H. Cho, G. Lim, and J.-M. Chung, ‘‘Clustered virtualized
network functions resource allocation based on context-aware grouping
in 5G edge networks,’’ IEEE Trans. Mobile Comput., vol. 19, no. 5,
pp. 1072–1083, May 2020.

[86] J. Pei, P. Hong, K. Xue, and D. Li, ‘‘Resource aware routing for service
function chains in SDN and NFV-enabled network,’’ IEEE Trans. Ser-
vices Comput., vol. 14, no. 4, pp. 985–997, Jul. 2021.

[87] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, ‘‘Dis-
tributed service function chaining,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 11, pp. 2479–2489, Nov. 2017.

[88] Zeek (Formerly Bro), an Open Source Network Security Monitoring Tool.
Accessed: Aug. 17, 2021. [Online]. Available: https://zeek.org/

[89] Linux Iptables. Accessed: Aug. 17, 2021. [Online]. Available:
https://linux.die.net/man/8/iptables

[90] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, ‘‘Recent devel-
opment and applications of SUMO—Simulation of urban mobility,’’ Int.
J. Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, Dec. 2012.

[91] A. Keränen, J. Ott, and T. Kärkkäinen, ‘‘The ONE simulator for DTN
protocol evaluation,’’ in Proc. 2nd Int. ICST Conf. Simulation Tools
Techn., 2009, pp. 1–10.

[92] T. Ouyang, Z. Zhou, and X. Chen, ‘‘Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,’’ IEEE
J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[93] G. Luo, H. Zhou, N. Cheng, Q. Yuan, J. Li, F. Yang, and
X. Shen, ‘‘Software-defined cooperative data sharing in edge computing
assisted 5G-VANET,’’ IEEE Trans. Mobile Comput., vol. 20, no. 3,
pp. 1212–1229, Mar. 2021.

[94] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang,
‘‘Mobile edge cloud system: Architectures, challenges, and approaches,’’
IEEE Syst. J., vol. 12, no. 3, pp. 2495–2508, Sep. 2018.

[95] E. Chirivella-Perez, J. M. A. Calero, Q. Wang, and J. Gutiérrez-Aguado,
‘‘Orchestration architecture for automatic deployment of 5G services
from bare metal in mobile edge computing infrastructure,’’ Wireless
Commun. Mobile Comput., vol. 2018, pp. 1–18, Nov. 2018.

[96] P. Shantharama, A. S. Thyagaturu, and M. Reisslein, ‘‘Hardware-
accelerated platforms and infrastructures for network functions: A survey
of enabling technologies and research studies,’’ IEEE Access, vol. 8,
pp. 132021–132085, 2020.

[97] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, ‘‘Machine learning at the network edge: A survey,’’ 2019,
arXiv:1908.00080. [Online]. Available: http://arxiv.org/abs/1908.00080

[98] R. Bifulco and G. Retvari, ‘‘A survey on the programmable data plane:
Abstractions, architectures, and open problems,’’ in Proc. IEEE 19th Int.
Conf. High Perform. Switching Routing (HPSR), Jun. 2018, pp. 1–7.

[99] H. Song, ‘‘Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,’’ in Proc. 2nd ACM SIGCOMM
WorkshopHot Topics Softw. DefinedNetw. (HotSDN), 2013, pp. 127–132.

[100] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:
Programming protocol-independent packet processors,’’ SIGCOMM
Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

TUNG V. DOAN is currently pursuing the
Ph.D. degree with the Deutsche Telekom Chair
of Communication Networks, TU Dresden,
Germany. From 2016 to 2018, he actively con-
tributed to OpenStack, a popular open-source
cloud-computing platform. His research interests
include cloud/edge computing, software-defined
networking (SDN), and network function
virtualization (NFV).

GIANG T. NGUYEN received the Ph.D. degree
in computer science from Technical University
Dresden (TU Dresden), Germany, in 2016. From
2016 to 2019, he was a Postdoctoral Researcher
with the Deutsche Telekom Chair of Communi-
cation Networks (ComNets), TU Dresden. After
that, he worked at Wandelbots GmbH. Since
July 2021, he has been an Assistant Professor with
TU Dresden.

MARTIN REISSLEIN (Fellow, IEEE) received the
Ph.D. degree in systems engineering from the Uni-
versity of Pennsylvania, Philadelphia, PA, USA,
in 1998. He is currently a Professor with the
School of Electrical, Computer, and Energy Engi-
neering, Arizona State University (ASU), Tempe,
AZ, USA. He is also an Associate Editor of IEEE
ACCESS, IEEE TRANSACTIONS ON EDUCATION, and
IEEE TRANSACTIONS ON MOBILE COMPUTING.

FRANK H. P. FITZEK (Senior Member, IEEE)
received the Dipl.-Ing. degree in electrical engi-
neering from the Rheinisch-Westflälische Tech-
nische Hochschule (RWTH), Aachen, Germany,
in 1997, and the Ph.D. (Dr.-Ing.) degree in elec-
trical engineering from Technical University of
Berlin, Berlin, Germany, in 2002. He is currently
a Professor and the Head of the Deutsche Telekom
Chair of Communication Networks, Technical
University Dresden, Germany, coordinating the
5G Lab Germany.

115334 VOLUME 9, 2021

http://dx.doi.org/10.1109/TMC.2021.3064847

