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ABSTRACT Pattern matching is a fundamental problem in theoretical computer science. The algorithms
for pattern matching and the study on the statistics of pattern matching have found enormous applications in
practical fields. In this paper, we revisit the Markov embedding approach for studying pattern matching in
repeated experiments. For any pattern of length m over alphabet 6, we show that the mean and variance of
the waiting time of the pattern in iid experiments can be computed inO(m) time based onMarkov embedding
technique, improving over the O(|6| · m) and O(m2) naïve bounds. Our method extends to computing the
k-th moment of the waiting time, and it extends to computing other related statistics about pattern matching
in repeated experiments, and it also extends to the case of Markov dependent experiments.

INDEX TERMS Pattern matching, statistics, failure function, Markov chain, KMP algorithm, automaton.

I. INTRODUCTION
The distribution and moments of waiting time of a pattern in
repeated experiments are classic statistics which have been
studied since 1960s [1], [2]. They have enormous applications
in computer science [3]–[5], telecommunication [6], indus-
trial quality control [7], and especially molecular biology
[8]–[15]. Due to the practical importance, several approaches
were invented for analyzing or computing them. Guibas and
Odlyzko [16] invented the combinatorial approach. They
computed the generating function of the number of strings
with any fixed length which do not contain the given pattern.
Breen et al. [17] obtained similar results via a probabilistic
approach, in which the renewal theory of Feller [18] was used.
Li [19] studied it via martingale theory and especially Doob’s
fundamental theorem on stopping times. His approach was
further developed in [20]–[24].

A common drawback of the aforementioned approaches is
that they entail tedious mathematics and heavy probability
theory, even for the single pattern case where the pattern
equals to a string (which is much easier than the compound
pattern case where the pattern is formed by several strings).
To compute the k-th moment of the waiting time, another

approach is based on Markov embedding [12], [25]–[28].

The associate editor coordinating the review of this manuscript and

approving it for publication was Usama Mir .

Once the model of the experiment is settled (either iid or
Markov dependent) and a single pattern A is fixed, we can
build a corresponding Markov chain Mc(A) whose stopping
time equals the waiting time of A, and it reduces to computing
the k-th moment of the stopping time ofMc(A), which further
reduces to solving a sequence of k linear systems.
This approach is quite intuitive yet it would be slow for

lengthy patterns like DNA sequences, since the dimension of
each underlying linear system equals the length of the pattern,
and a standard linear system solver is time consuming.

In this paper, we present an optimal O(|A|) time algorithm
for solving each of the linear systems invoked by the Markov
embedding approach (for the iid model), where |A| denotes
the length of A, and thus obtain an efficient algorithm for
computing the k-th moment of the waiting time of A.

On top of it, we investigate a class C of linear systems
(see (1)) that contains all the linear systems mentioned above,
and give an O(|A|) time solver for systems in C. (Note that
it does not store explicitly the coefficient matrix of these
systems.)

Apart from the k-th moment of the waiting time, many
statistics related to pattern matching (specifically, searching
A in repeated experiments), e.g., the fundamental matrix of
Mc(A) [29, p. 99] and the k-th moment of the number of com-
parisons spent by the KMP (Knuth-Morris-Pratt) algorithm
[30] (denote this number byK henceforth) reduce to instances
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in C. We thus obtain fast algorithms for computing these
statistics as well. It is worth pointing out that the reduction of
the k-th moment ofK is nontrivial and is not shown elsewhere
as far as we know, so we present it in IV-B. A key merit of
our technique is that it not only applies to the iid model but
also applies to the Markov model (see IV-C).

Technically, solving the linear system in O(|A|) time and
proving the reduction from the k-th moment of K to solving
the linear systems are difficult and require innovations. The
failure function π exploited by the KMP algorithm will play
an important role in obtaining these results (we will see
several applications of π throughout this paper). Moreover,
some algorithmic skills are required in proving the reduction.
Merits OF Our Approach Compared With Others:
1. Simple. Although, we deduce many formulas, the math-

ematics in our approach are elementary and easy to follow.
2. Powerful. Unlike our approach, the previous approaches

do not extend easily to the higher moment and the Markov
model and are not applicable for finding the moments of K.

A. FORMAL DESCRIPTION OF THE PROBLEM
Consider an experiment whose outcomes belong to 6, where
|6| = n (we usually denote the outcomes by distinct lower-
case letters). Let the experiment be performed repeatedly and
denote the sequence of outcomes by {Zi(i ≥ 1)}.

In most part of this manuscript, Z1,Z2, . . . are assumed to
be independent and identical distributed (referred to as iid
model). Thismeans that for any fixed σ ∈ 6, the probabilities
Pr(Zi = σ ) for all i are the same, denoted by pσ . We address
the case where the outcomes Z1,Z2, . . . are Markov depen-
dent (referred to as Markov model) only in IV-C.

Fix a finite sequence of outcomes A = A1, . . . ,Am, where
Ai ∈ 6 and pAi > 0 for 1 ≤ i ≤ m. The substring Ai . . .Aj of
A is denoted by A(i, j). In particular, A(1, i) (i ≥ 0) is a prefix
of A. Note that A(1, 0) is the empty string ε.
A search of A in the iid random sequence Z1Z2 · · · corre-

sponds to a running of the following Markov chain Mc(A).
Definition 1: For each i (0 ≤ i ≤ m), build a state si

labeled with prefix A(1, i), where sm is the unique absorbing
state and s0, . . . , sm−1 are transient state. For each transient
state si and σ ∈ 6, construct an edge from si to sδ(i,σ )
with associated probability pσ , where δ(i, σ ) = max{h |
A(1, h) is a suffix of (A(1, i)+σ )} (operation ‘+’ means con-
catenation). This gives the markov chain Mc(A). Fig. 1 shows
an example where 6 = {‘a’,‘b’,‘c’} and A = ‘‘abac’’.

FIGURE 1. The Markov chain Mc(A) for A = ‘‘abac ’’ and 6 = {‘a’,‘b’,‘c ’}.

After running the experiment for t times, Z1, . . . ,Zt are
generated. The Markov chain arrives at si if A(1, i) is the
longest prefix of A that is a suffix of Z1 · · · Zt . The chain

arrives at sm and is absorbed when A appears in Z1 · · · Zt .
Clearly, the waiting time of A until its first occurrence in
Z1Z2 · · · , denoted by L, is the stopping time of Mc(A).

The number of comparisons spent by the KMP algorithm
during its search of A in Z1Z2 · · · (Line 2 of Algorithm 1),
denoted by K, equals the total length of edges (see below)
travelled by the Markov chain (proved in Appendix A).
Definition 2: The edge from si to si,σ has an associated

length `(i, σ ) which equals the number of j’s in {0, . . . , i}
such that A(1, j) is a prefix of A(1, i) and that j ≥ δ(i, σ )− 1.

Our problem is: Given A = A1, . . . ,Am and {pσ | σ ∈ 6},
how can we compute the k-th moment of L and K?

B. MORE PRELIMINARIES
Throughout, [·] is the Iverson bracket, and EX and DX
denote the mean and variance of random variable X , respec-
tively. Let π : {1, ..,m} → {0, ..,m− 1} be the failure func-
tion (a.k.a. prefix function) of A [31, p. 1003]. This means that
πi = max {h | 0 ≤ h < i and A(1, h) is a suffix of A(1, i)} . It
is well known thatπ can be computed inO(m) time [30], [31].
Henceforth in this paper, assume π is precomputed.

The KMP algorithm utilizes π to search a pattern in a text.
The kernel of the searching process is shown in Algorithm 1.

Algorithm 1 Kernel of the KMP Algorithm for Searching A
Require: We are at si (i < m) and the next outcome is σ
1: while TRUE do
2: if σ = A[i+ 1] then
3: i← i+ 1; break;
4: else
5: if i > 0 then i← πi; else break; end if
6: end if
7: end while

C. OUR RESULTS
We study the following linear system of m unknowns and m
equations. (σ is taken over 6 when its scope is unspecified.)

xi =
∑
σ

pσ · xδ(i,σ ) + ci (0 ≤ i ≤ m− 1). (1)

Note: This system employs a ‘‘dummy variable’’ xm for
simplicity; xm is assigned with 0 and is not a variable of the
system; it would appear in (1) since δ(m− 1,Am) = m.

1) We solve system (1) for any given vector c in O(m)
time, improving over a naïveO(mn) time algorithm and
an O(m+ n) time algorithm given in [32].

2) Built upon the first result, we give an O(k2m) time
algorithm for computing the k-th moment of L. The
method applies to the Markov model case (see IV-C).

3) We also design an O(k3m) time algorithm for comput-
ing the k-th moment of K based on our first result.

4) We show applications of our algorithm in computing
the fundamental matrix of Mc(A) (see II-E) and in
solving the Penney’s game problem (see IV-D).
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5) We show elementary proofs for two known formulas
(11), (12) about the mean and variance of L (see III).

Our algorithm utilizes interesting properties of Mc(A). The
theory of Markov chain is not applied in our method.

D. RELATED WORK
Many aspects of pattern occurrence in repeated experiments
have been studied. Books on this topic include [4], [27], [28].
We list some results concerning a fixed number of experi-
ments in the following. Fudos et al. [33] studied the probabil-
ity of exact r occurrences of a pattern in k experiments under
iid model. Extension to Markov model is conducted in [23],
[34], [35]. Régnier [36], Régnier and Szpankowski [10] Rég-
nier studied the mean and variance of the number of occur-
rence of a given pattern in k experiments under iid or Markov
model, for non-overlap or overlap counting.

Some other related work will be mentioned in IV-D.

II. SOLVE THE LINEAR SYSTEM
First, we state an equivalent form of (1):

yi =
∑
σ

pσ · yδ(i,σ ) − ci (0 ≤ i ≤ m− 1). (2)

In (2), we assume that y0 is a dummy variable which
equals 0. Thus, there are only m unknowns y1, . . . , ym. (The
dummy variable y0 appears in (2) since δ(i, σ ) could be 0.)
Lemma 1 shows the equivalence between (1) and (2).
Lemma 1: Assume x = (x0, . . . , xm−1) ∈ Rm and xm = 0.

Let φ(x0, . . . , xm−1) be the unique y = (y1, . . . , ym) ∈ Rm

such that the following holds: yi = x0 − xi (0 ≤ i ≤ m) (note
that y0 = 0). We claim that x is a solution to (1) if and only if
y = φ(x) is a solution to (2).

Proof: ‘‘Only if’’: Assume x is a solution to (1). For
0 ≤ i ≤ m− 1,

yi = x0 − xi

= x0 −

(∑
σ

pσ · xδ(i,σ ) + ci

)
(due to (1))

=

∑
σ

pσ · (x0 − xδ(i,σ ))− ci (because
∑
σ

pσ = 1)

=

∑
σ

pσ · yδ(i,σ ) − ci.

‘‘If’’ part: Assume y is a solution to (2). For 0 ≤ i ≤ m−1,

xi = x0 − yi

= x0 −

(∑
σ

pσ · yδ(i,σ ) − ci

)
(due to (2))

=

∑
σ

pσ · (x0 − yδ(i,σ ))+ ci (because
∑
σ

pσ = 1)

=

∑
σ

pσ · xδ(i,σ ) + ci.

�
As a corollary of Lemma 1, solving (1) reduces to solving

(2): After computing y1, . . . , ym, we can first compute x0 =
ym + xm = ym, and then compute xi = x0 − yi (i > 0).

A. SOLVE THE ABOVE SYSTEM ABOUT y
In this subsection, we show that there is a unique solution to
(2) and we compute the solution in linear time. Denote

zi =
∑

σ 6=Ai+1

pσ · yδ(i,σ ) (0 ≤ i < m). (3)

We can reformulate (2) as follows.

yi+1 = (yi − zi + ci)/pAi+1 (0 ≤ i ≤ m− 1). (4)

Proof: Because δ(i,Ai+1) = i+ 1,∑
σ

pσ · yδ(i,σ ) = zi + pAi+1 · yi+1.

So, the equation yi =
∑
σ pσ ·yδ(i,σ )−ci in (2) is equivalent

to yi = zi + pAi+1 · yi+1 − ci, i.e., the one in (4). �
According to (3), zi is a linear combination of y0, y1, . . .,

yi, because δ(i, σ ) ≤ i when ‘‘i < m and σ 6= Ai+1’’.
This implies that (4) has a unique solution. First, the dummy
variable y0 equals 0. Moreover, y1 is uniquely determined
by the equation taking i = 0 in (4), and y2 is uniquely
determined by the equation taking i = 1. So on and so forth,
ym is uniquely determined by the equation taking i = m− 1.
Consequently, both (2) and (1) have a unique solution.
The above process of determining y1, . . . , ym in sequence

implies a trivial algorithm for solving (4). Assume y0, . . . , yi
have been computed. We can compute zi from y0, . . . , yi
using (3) and compute yi+1 from zi, yi, ci. This algorithm runs
in O(n · m) time, as it takes O(n) time to compute zi.
Next, we optimize the algorithm by using a faster method

to compute zi, which is based on the following equation.

zi = zπi + pAπi+1 · yπi+1 − pAi+1 · yδi , (1 ≤ i < m) (5)

where δi denotes δ(πi,Ai+1) for 1 ≤ i < m.
To prove (5), we need the following equation which is the

basis of the KMP algorithm (proof can be found in [30]).

δ(i, σ ) =

{
i+ 1, σ = Ai+1;
δ(πi, σ ), σ 6= Ai+1.

(
1 ≤ i < m
σ ∈ 6

)
(6)

Proof of (5):

zi =
∑

σ 6=Ai+1

pσ · yδ(i,σ )
by (6)
=

∑
σ 6=Ai+1

pσ · yδ(πi,σ )

=

∑
σ

pσ · yδ(πi,σ ) − pAi+1yδ(πi,Ai+1)

=

∑
σ

pσ · yδ(πi,σ ) − pAi+1yδi (by definition of δi)

=

∑
σ 6=Aπi+1

pσ · yδ(πi,σ ) + pAπi+1yπi+1 − pAi+1yδi

(apply the fact that δ(πi,Aπi+1) = πi + 1

= zπi + pAπi+1yπi+1 − pAi+1yδi . (apply (3) for πi)

�
According to (5), we can compute zi from zπi (instead of

computing it directly using the definition (3)), and our final
algorithm is shown in Algorithm 2.
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Algorithm 2 Algorithm for Solving (4)
1: Compute δ1, . . . , δm−1;
2: y0, z0← 0;
3: y1← (y0 − z0 + c0)/pA1 = c0/pA1 ; (applying (4))
4: for i = 1 to m− 1 do
5: zi← zπi + pAπi+1yπi+1 − pAi+1yδi ; (use (5))
6: yi+1← (yi − zi + ci)/pAi+1 ; (applying (4))
7: end for

Clearly, πi < i, πi + 1 ≤ i and δi ≤ i. These inequalities
respectively imply that zπi , yπi+1, and yδi have been computed
before computing zi. Therefore, Algorithm 2 is correct.
The first step of Algorithm 2 preprocesses δ1, . . . , δm−1.

This step will be elaborated later in this section.
Algorithm 2 runs in O(m) time after the first step.

B. EXPECTATION AND VARIANCE OF L

For 0 ≤ i ≤ m, denote by ei the expected stopping time (of
Mc(A)) starting from si; formally,

ei :=
∑
t≥0

t · Pr(It takes t steps to reach sm from si).

For 0 ≤ i ≤ m, denote by fi the expectation of the square
of stopping time starting from state si; formally,

fi :=
∑
t≥0

t2 · Pr(It takes t steps to reach sm from si).

Lemma 2: 1. (e0, . . . , em−1) is the solution to (1) fixing
(c0, . . . , cm−1) = (1, . . . , 1). 2. (f0, . . . , fm−1) is the solution
fixing (c0, . . . , cm−1) = (2e0 − 1, . . . , 2em−1 − 1).

Proof: For any i (0 ≤ i < m), by the
First-Step-Analysis,

ei =
∑
σ

pσ
∑

t≥0
(t + 1)

· Pr(It takes t steps to reach sm from sδ(i,σ ))

=

∑
σ

pσ · (eδ(i,σ ) + 1) =
∑
σ

pσ · eδ(i,σ ) + 1.

This proves part 1 of this lemma.
For any i (0 ≤ i < m), by the First-Step-Analysis,

fi =
∑
σ

pσ
∑

t≥0
(t + 1)2

· Pr(It takes t steps to reach sm from sδ(i,σ ))

=

∑
σ

pσ · (fδ(i,σ ) + 2eδ(i,σ ) + 1)

= (
∑
σ

pσ · fδ(i,σ ))+ 2(ei − 1)+ 1.

This proves part 2 of this lemma. �
By Lemma 2, we can compute e = (e0, . . . , em−1)

by solving the linear system (1) fixing (c0, . . . , cm−1) =
(1, . . . , 1). Moreover, after the computation of e, we can
compute f = (f0, . . . , fm−1) by solving the linear system (1)
fixing (c0, . . . , cm−1) = (2e0 − 1, . . . , 2em−1 − 1).

Be aware that E(L) = e0, E(L2) = f0 and D(L) = E(L2)−
E(L)2. It means that we can compute the mean and variance
of L by solving (1) (for two instances).

In fact, we can compute the first k-th moments of L by
solving k instances of (1). This will be shown in IV-A.

C. EXPECTATION OF K

For ease of presentation, we abuse the notation a little bit.
Throughout this subsection, let ei be the expected number of
comparison consumed by the KMP algorithm starting from si
(until the algorithm ends); formally,

ei :=
∑
t≥0

t · Pr(It takes t comparisons to reach sm from si).

Clearly, E(K) = e0. We show in the following how to
compute (e0, . . . , em−1) by solving an instance of (1).

Recall the definition of `(i, σ ) in Definition 2.
Lemma 3: Let c̄i =

∑
σ pσ · `(i, σ ). Then, (e0, . . . , em−1)

is the solution to (1) fixing (c0, . . . , cm−1) = (c̄0, . . . , c̄m−1).
In other words,

ei =
∑
σ

pσ · eδ(i,σ ) + c̄i. (0 ≤ i < m) (7)

Proof: Consider any i (0 ≤ i < m). Denote qσ,t =

Pr(It takes t comparsions to reach sm from sδ(i,σ )).

By the First-Step-Analysis,

ei =
∑
t≥0

t · Pr(It takes t comparisons to reach sm from si)

=

∑
σ

pσ
∑

t≥0
qσ,t (t + `(i, σ ))

=

∑
σ

pσ
(∑

t≥0
qσ,t t +

∑
t≥0

qσ,t`(i, σ )
)

=

∑
σ

pσ · (eδ(i,σ ) + `(i, σ )) =
∑
σ

pσ · eδ(i,σ ) + c̄i.

�
For any i (1 ≤ i < m) and σ ∈ 6, it holds trivially that

`(i, σ ) =

{
1, σ = Ai+1;
`(πi, σ )+ 1, σ 6= Ai+1.

(8)

Recall that δi denotes δ(πi,Ai+1) for 1 ≤ i < m. Moreover,
denote `i = `(πi,Ai+1) for 1 ≤ i < m. We will preprocess
`1, . . . , `m−1 together with δ1, . . . , δm−1. The preprocessing
is shown in the next subsection.

The following equation is useful for computing c̄i.

c̄i = c̄πi − pAi+1`i + 1. (1 ≤ i < m) (9)

Proof:

c̄i =
∑
σ

pσ · `(i, σ ) (by definition)

=

∑
σ 6=Ai+1

pσ `(i, σ )+ pAi+1`(i,Ai+1)
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=

∑
σ 6=Ai+1

pσ (`(πi, σ )+ 1)+ pAi+1 (apply (8))

=

∑
σ 6=Ai+1

pσ `(πi, σ )+ 1 (becasue
∑
σ pσ = 1)

=

∑
σ

pσ `(πi, σ )− pAi+1`(πi,Ai+1)+ 1

= c̄πi − pAi+1`i + 1. (by definition of c̄πi and `i)

�
Based on (9), we can compute c̄0, . . . , c̄m−1 in sequence

in O(m) time (given σ1, . . . , σm−1, `1, . . . , `m−1) (note that
c̄0 = 1), and then solve (7) to obtain e0, . . . , em−1.
The above method extends to computing the k-th moment

of K. We present the extension in subsection IV-B.

D. THE PREPROCESSING STEP
In our main algorithm (Algorithm 2), we need to use
δ1, . . . , δm−1. Moreover, we also need to use `1, . . . , `m−1
in computing E(K) (as shown in the previous subsection).
We show how to preprocess δ1, . . . , δm−1, `1, . . . , `m−1 effi-
ciently by a Depth-First-Search (DFS) in this subsection.

Procedure 3 Get-sigma-D (j)
1: for i : i < m and πi = j do
2: Di← Dj + 1;
3: δi← Tr[Ai+1];
4: Tr[Ai+1]← i+ 1; (Here, Tr[∗] becomes δ(i, ∗))
5: Get-sigma-D (i);
6: Tr[Ai+1]← δi; (Let Tr[∗] return to δ(j, ∗))
7: end for

Algorithm 4 Compute δ1, . . . , δm−1 and `1, . . . , `m−1
Tr[1], . . . ,Tr[n]← 0; Tr[A1]← 1;
D0← 0; D−1← 0;
Get-sigma-D (0);
Compute `i← Di − Dδi−1 for each i(0 < i < m).

The preprocessing algorithm is described in Algorithm 4.
Lemma 4: 1. Algorithm 4 computes δ1, . . . , δm−1 cor-

rectly. 2. Algorithm 4 computes `1, . . . , `m−1 correctly.
Proof: Let us first prove the claim on δ1, . . . , δm−1. (To

this end, we can ignore array D for a moment.) Observe two
facts:

A. The lines inside the for-loop (in Procedure 3) will be
executed exactly once for each i (0 < i < m). (trivial)
B.Upon the for-loop in any call ofGet-sigma-D, the array

Tr would have been assigned with δ(j, 1), . . . , δ(j, n), and
moreover, Line 4 updates Tr to δ(i, 1), . . . , δ(i, n).
Fact B follows immediately from the recursive definition

of δ in (6). Indeed, (6) implies that if πi = j (0 < i < m), then
δ(i, 1), . . . , δ(i, n) are almost the same as δ(j, 1), . . ., δ(j, n),
with the only exception that δ(i,Ai+1) = i+ 1.

As a result, Tr[Ai+1] = δ(j,Ai+1) = δ(πi,Aj+1) = δi upon
Line 3, therefore δi is computed correctly at Line 3.

We nowmove on to the claim on `1, . . . , `m−1. First, recall
the definition of `(i, σ ) in Definition 2.
For i (0 ≤ i < m) and σ ∈ 6, we claim that

`(i, σ ) = Di − Dδ(i,σ )−1 + 1. (10)

This equation can be obtained as follows. Build a sequence

(i, π(i), π(π (i)), . . . , 0) := (j0, j1, . . . , jr ),

which contains exactly those j’s for which A(1, j) is a prefix
of A(1, i). Moreover, notice that D(ja) = D(ja+1)+ 1.
It holds either (i) δ(i, σ ) = ja+ 1 for some 0 ≤ a ≤ r (this

occurs when σ ∈ {A[j0+1], . . . ,A[jr+1]}), or (ii) δ(i, σ ) = 0
(this occurs if σ /∈ {A[j0 + 1], . . . ,A[jr + 1]}).
In case (i), length `(i, σ ) equals the number of elements

in {j0, j1, . . . , ja} (according to Definition 2), which equals
Dj0 −Dja +1 = Di−Dδ(i,σ )−1+1. In case (ii), length `(i, σ )
equals the number of elements in {j0, j1, . . . , jr } (according
to Definition 2), which equals Dj0 − Djr + 1 = Di + 1 =
Di−Dδ(i,σ )−1+1 (note that δ(i, σ )−1 = −1 and D−1 = 0).

Therefore, (10) holds in either way. As a corollary of (10),

`i = `(πi,Ai+1)
by (10)
= Dπi − Dδ(πi,Ai+1)−1 + 1

= Dπi − Dδi−1 + 1 = Di − Dδi−1.

So, Algorithm 4 computes `1, . . . , `m−1 correctly. �
Algorithm 4 uses a table Tr of space O(n) which is initial-

ized in O(n) time before Get-sigma-D(0) is invoked. In fact,
this is the only step which may exceed O(m) time; all the
other steps in the algorithm sum up to O(m) time. Therefore,
the algorithm consumes O(n+ m) time.
Nevertheless, we can improve the algorithm to O(m) time

using perfect hash. The idea is that we only take care of those
Tr[σ ] for which σ is a character in S = {A1, . . . ,Am} and
discard all the other useless information in Tr. To this end,
we can use the perfect hash table (with two layers) introduced
in [37]. In our case, the universe is 6 and the dictionary S
includes all characters that appear in A (|S| ≤ m). We can
build an O(S) = O(m) space table for S, so that each looking
up and inserting operation is handled in O(1) time.

E. ON THE FUNDAMENTAL MATRIX OF Mc(A)
Recall that Mc(A) is the Markov chain searching A. Let P =
(Pi,j)(m+1)×(m+1) be the transition matrix of Mc(A); Pi,j(i, j ∈
{0, . . . ,m}) is the probability that it moves to sj at the next
step when the chain is currently at si. Let Q be the leading
principle submatrix of Pwith orderm, i.e.,Q is obtained from
P by deleting the last column and last row.

Obviously, fixing any c = (c0, . . . , cm−1)> ∈ Rm, the
linear system (1) is equivalent to x = Qx+ c. Consequently,
our main result can equivalently be stated as follows:

For any c = (c0, . . . , cm−1)> ∈ Rm, we can solve
x = Qx+ c, i.e., x = (I−Q)−1 c, in O(m) time.

With this connection, we are now ready to state another
important application of our main result:
Corollary 1: The fundamental matrix of Mc(A), which is

defined as N = (I−Q)−1, can be computed in O(m2) time.
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Suppose we want to compute the j-th column ofN. Set c =
(c0, . . . , cm−1)> where ck =

[
k = j

]
(0 ≤ k ≤ m− 1). Then,

the j-th column of N is given by Nc = (I−Q)−1 c.
Remark 1: According to the theory of Markov chain [29],

[38], many statistics about Mc(A) can be computed once the
fundamental matrix N is computed. For example, we can
compute the mean and variance of the number of visits to each
state sj (before being absorbed) starting at each state si. Also,
we can compute the expected number of visited states and the
transient probabilities. See the details in Appendix B.

III. ELEMENTARY PROOFS OF TWO FORMULAS
Let wj = (pA1 )

−1
· · · (pAj )

−1 (0 ≤ j ≤ m); w0 = 1. Let
T0,i be the waiting time of si starting from s0. The following
two formulas of T0,i are proved in [19] and [3, p. 407] by
applying Doob’s fundamental theorem on stopping times of
martingales or generating function of T0,i. This section gives
a more elementary proof using the basic properties of Mc(A).

ET0,i =
∑i

j=1
wj1, (11)

DT0,i = (ET0,i)2 −
∑i

j=1
(2j− 1)wj ·1, (12)

where 1 :=
[
A(1, j) = A(i− j+ 1, i)

]
.

Proof of (11):Denote by ei the expected waiting time of
sm starting from si. Denote yi = ET0,i, which equals e0 − ei
(this follows from the trivial fact that ET0,i + ei = e0).
Let y = (y1, . . . , ym) and x = (e0, . . . , em−1) and recall φ

in Lemma 1. Since yi = e0 − ei, we have y = φ(x).
By Lemma 2, x is the unique solution to (1) fixing c =

(1, . . . , 1). Therefore, according to Lemma 1, y = φ(x) is the
unique solution to (2) (or (4)) fixing c = (1, . . . , 1), i.e.,

yi+1 = (yi −
∑

σ 6=Ai+1

pσ · yδ(i,σ ) + 1)/pAi+1 . (i < m) (13)

Next, by using (13), we prove (11) by induction.
Initial condition: Because y0 = 0, (11) holds for i = 0.

Taking i = 0 in (13), we get y1 = (y0 −
∑
σ 6=A1 pσ · y0 +

1)/pA1 , namely, y1 = p−1A1 = w1. So, (11) holds for i = 1.
Induction. Assume (11) holds for 0, 1, . . . , i, we shall

prove that (11) also holds for i + 1. Consider all j such that
A(1, j) is a suffix of A(1, i). Denote them by j0, j1, . . . , jr ,
where j0 = i > j1 > . . . > jr = 0. We say jk is alive if
there is no jh larger than jk such that Ajh+1 = Ajk+1.

yi+1 =
(
yi −

∑
σ 6=Ai+1

pσ · yδ(i,σ ) + 1
)
/pAi+1 (by (13))

=

(
yi + 1−

∑
σ 6=Ai+1

pσ
( ∑
Ajk+1=σ
jk is alive

yjk+1
))
/pAi+1

=

( r∑
k=0

wjk −
∑

σ 6=Ai+1

pσ
∑

Ajk+1=σ

wjk+1

)
/pAi+1

(Expending terms yi and yjk+1 using (11))

=

(∑
jk

wjk −
∑

σ 6=Ai+1

∑
Ajk+1=σ

wjk

)
/pAi+1

=

∑
Ajk+1=Ai+1

wjk /pAi+1 =
∑

Ajk+1=Ai+1

wjk+1

=

i+1∑
j=1

wj

[
A(1, j) = A(i− j+ 2, i+ 1)

]
.

�
Proof of (12): Let x′ be the unique solution to (1) fixing

c = (y0, . . . , ym−1). Let y′ = φ(x′) = (y′0, . . . , y
′

m−1).
Applying Lemma 1, y′ is the unique solution to (2) (or (4))
fixing c = (y0, . . . , ym−1). Therefore,

y′i+1 =
(
y′i −

∑
σ 6=Ai+1

pσ · y′δ(i,σ ) + yi

)
/pAi+1 . (14)

To prove (12), we first prove the following formula of y′.

y′i =
i∑

j=1

(j− 1)wj

[
A(1, j) = A(i− j+ 1, i)

]
. (15)

We prove (15) by induction. By definition, y′0 = 0. Take
i = 0 in (14), we get y′1 = y0/pA1 = 0. So y′1 = 0. Since
y′0 = 0 and y′1 = 0, (15) holds for i = 0 and i = 1.
Next, assume that (15) holds for 0, 1, . . . , i, we shall prove

that (15) also holds for i + 1. Let j0, . . . , jr and the concept
‘‘alive’’ be the same as in the proof of (11).

y′i+1 =
(
y′i −

∑
σ 6=Ai+1

pσ · y′δ(i,σ ) + yi

)
/pAi+1 (by (14))

=

(
y′i +

∑
jk>0

wjk −
∑

σ 6=Ai+1

pσ · y′δ(i,σ )

)
/pAi+1

=

(
y′i +

∑
jk>0

wjk −
∑

σ 6=Ai+1

pσ
∑

Ajk+1=σ

jk is alive

y′jk+1

)
/pAi+1

=

(∑
jk>0

jkwjk −
∑

σ 6=Ai+1

pσ
∑

Ajk+1=σ

jkwjk+1

)
/pAi+1

(Expending terms y′i and y
′

jk+1 using (15))

=

(∑
jk

jkwjk −
∑

σ 6=Ai+1

∑
Ajk+1=σ

jkwjk

)
/pAi+1

=

∑
Ajk+1=Ai+1

jkwjk /pAi+1 =
∑

Ajk+1=Ai+1

jk · wjk+1

=

i+1∑
j=1

(j− 1)wj

[
A(1, j) = A(i− j+ 2, i+ 1)

]
.

Let Ti,m be the waiting time of sm starting from si. Denote
fi = E(T 2

i,m) and f = (f0, . . . , fm−1). We have

f = (I−Q)−1(2e0 − 1, . . . , 2em−1 − 1)> (by Lemma 2)

= (I−Q)−1
(
2(e0 − y0)− 1, . . . , 2(e0 − ym−1)− 1

)>
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= (2e0 − 1)(I−Q)−1(1, . . . , 1)>

− 2(I−Q)−1(y0, . . . , ym−1)>

= (2e0 − 1)(e0, . . . , em−1)> − 2(x ′0, . . . , x
′

m−1)
>.

Therefore, f0 − fi = (2e0 − 1)(e0 − ei) − 2(x ′0 − x ′i ) =
(2e0 − 1)yi − 2y′i (1 ≤ i ≤ m). Combining this formula with
(11) and (15), the result is that DT0,i equals to

= DT0,m − DTi,m = (f0 − fi)+ e2i − e
2
0

= ((2e0 − 1)yi − 2y′i)+ (e0 − yi)2 − e20 = y2i − yi − 2y′i

= y2i −
i∑

j=1

(1+ 2(j− 1))wj

[
A(1, j) = A(i− j+ 1, i)

]
.

(The last equation applies (11) and (15).) �

IV. EXTENSIONS AND APPLICATIONS
A. ON THE k-TH MOMENT OF L

For k ≥ 0 and 0 ≤ i ≤ m, denote
e(k)i =

∑
t≥0

tk · Pr(It takes t steps to reach sm from si),

c(k)i = −
∑k−1

l=0

(
k
l

)
(−1)k−le(l)i .

Lemma 5: For k ≥ 0, (e(k)0 , . . . , e
(k)
m−1) is the solution to

(1) fixing (c0, . . . , cm−1) = (c(k)0 , . . . , c
(k)
m−1). In other words,

e(k)i =

(∑
σ

pσ · e
(k)
δ(i,σ )

)
−

k−1∑
l=0

(
k
l

)
(−1)k−le(l)i . (16)

We need the following identity to prove Lemma 5. (A proof
of this identity can be found in Appendix A.)

k∑
h=l

(
k
h

)(
h
l

)
(−1)h = 0. (k > l ≥ 0) (17)

Equivalently,

k−1∑
h=l

(
k
h

)(
h
l

)
(−1)h = −

(
k
l

)
(−1)k . (k > l ≥ 0) (18)

Proof of Lemma 5: We prove it by induction. First,
noticing that (c(1)0 , . . . , c

(1)
m−1) = (1, . . . , 1), the case k = 1

holds according to Lemma 2. The case k = 0 also holds
trivially. Assume now for any h < k , (e(h)0 , . . . , e

(h)
m−1) is the

solution to (1) fixing (c0, . . . , cm−1) = (c(h)0 , . . . , c
(h)
m−1), and

we are going to prove (16). By the First-Step-Analysis,

e(k)i =
∑

σ
pσ
∑

t≥0
(t + 1)k

· Pr(It takes t steps to reach sm from sδ(i,σ ))

=

∑
σ
pσ
∑

t≥0
(tk +

∑k−1

h=0

(
k
h

)
th)

· Pr(It takes t steps to reach sm from sδ(i,σ ))

=

(∑
σ
pσ e

(k)
δ(i,σ )

)
+

∑k−1

h=0

(
k
h

)∑
σ
pσ e

(h)
δ(i,σ )

=

(∑
σ
pσ e

(k)
δ(i,σ )

)

+

∑k−1

h=0

(
k
h

)(
e(h)i +

∑h−1

l=0

(
h
l

)
(−1)h−le(l)i

)
(obtain the last equality from induction hypothesis)

=

(∑
σ
pσ e

(k)
δ(i,σ )

)
+

∑k−1

h=0

(
k
h

)∑h

l=0

(
h
l

)
(−1)h−le(l)i

=

(∑
σ
pσ e

(k)
δ(i,σ )

)
+

∑k−1

l=0
e(l)i ·

∑k−1

h=l

((
k
h

)(
h
l

)
(−1)h−l

)
=

(∑
σ
pσ e

(k)
δ(i,σ )

)
−

∑k−1

l=0
e(l)i

((
k
l

)
(−1)k−l

)
.

Note that the last step applies (18). �
Based on Lemma 5, we can compute e(k) as follows.
First, compute c(k) from e(0), . . . , e(k−1). Then, solve the

system (1) fixing (c0, . . . , cm−1) = (c(k)0 , . . . , c
(k)
m−1).

Assume e(1), . . . , e(k−1) have been computed. Then,
it takes O(mk) time for computing the constant vec-
tor (c(k)0 , . . . , c

(k)
m−1) according to the definition c(k)i =

−
∑k−1

l=0

(k
l

)
(−1)k−le(l)i . We then obtain e(k) in O(m) time.

To sum up, we can compute e(1), . . . , e(k) altogether in
O(mk2) time, and thus obtainE(L1) = e(1)0 , . . . ,E(L

k ) = e(k)0 .
Furthermore, the k-th moment of L can easily be computed
from E(L1), . . . ,E(Lk ) (see [3, p. 397–399]).

B. ON THE k-TH MOMENT OF K

For ease of presentation, we abuse the notation a little bit.
In this subsection, e(k)i and c(k)i have different meanings com-
pared with the last subsection. Here, we denote e(k)i =∑

t≥0

tk · Pr(It takes t comparisons to reach sm from si).

For a ≥ 0, b ≥ 0, 0 ≤ i < m, denote wa,bi =∑
σ pσ (`(i, σ ))

a e(b)δ(i,σ ), and c
(k)
i =

∑k
l=1

(k
l

)
wl,k−li .

Lemma 6: (e(k)0 , . . . , e
(k)
m−1) is the solution to (1) fixing

(c0, . . . , cm−1) = (c(k)0 , . . . , c
(k)
m−1). In other words,

e(k)i =

(∑
σ

pσ · e
(k)
δ(i,σ )

)
+

k∑
l=1

(
k
l

)
wl,k−li . (0 ≤ i < m)

(19)

Proof: Consider any i (0 ≤ i < m). Denote qσ,t =

Pr(It takes t comparsions to reach sm from sδ(i,σ )).

By the First-Step-Analysis,

e(k)i =
∑
σ

pσ
∑
t≥0

qσ,t (t + `(i, σ ))k

=

∑
σ

pσ
∑
t≥0

qσ,t
k∑
l=0

(
k
l

)
tk−l(`(i, σ ))l

=

∑
σ

pσ
k∑
l=0

(
k
l

)
(`(i, σ ))l

∑
t≥0

qσ,t tk−l
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=

∑
σ

pσ
k∑
l=0

(
k
l

)
(`(i, σ ))le(k−l)δ(i,σ )

=

∑
σ

pσ

(
e(k)δ(i,σ ) +

k∑
l=1

(
k
l

)
(`(i, σ ))le(k−l)δ(i,σ )

)

=

(∑
σ

pσ e
(k)
δ(i,σ )

)
+

k∑
l=1

(
k
l

)∑
σ

pσ (`(i, σ ))le
(k−l)
δ(i,σ )

=

(∑
σ

pσ e
(k)
δ(i,σ )

)
+

k∑
l=1

(
k
l

)
wl,k−li .

�
It remains to show how to compute the constant c(k)i effi-

ciently. This reduces to showing the computation of wa,bi .
We need the following formula of wa,bi (i > 0).

wa,bi =
a∑
l=0

(
a
l

)
wl,bπi + pAi+1 (e

(b)
i+1 − (`i + 1)ae(b)δi ). (20)

Proof:

wa,bi =
∑
σ

pσ (`(i, σ ))ae
(b)
δ(i,σ )

=

∑
σ 6=Ai+1

pσ (`(i, σ ))ae
(b)
δ(i,σ ) + pAi+1e

(b)
i+1

=

∑
σ 6=Ai+1

pσ (`(πi, σ )+ 1)ae(b)δ(πi,σ ) + pAi+1e
(b)
i+1

=

∑
σ

pσ (`(πi, σ )+ 1)ae(b)δ(πi,σ )

− pAi+1 (`i + 1)aebδi + pAi+1e
(b)
i+1

=

∑
σ

pσ
a∑
l=0

(
a
l

)
`(πi, σ )le

(b)
δ(πi,σ )

+ pAi+1
(
e(b)i+1 − (`i + 1)aebδi

)
=

a∑
l=0

(
a
l

)∑
σ

pσ `(πi, σ )le
(b)
δ(πi,σ )

+ pAi+1
(
e(b)i+1 − (`i + 1)aebδi

)
=

a∑
l=0

(
a
l

)
wl,bπi + pAi+1

(
e(b)i+1 − (`i + 1)aebδi

)
.

�
We also need the following formula of wa,b0 .

wa,b0 = (1− pA1 )e
(b)
0 + pA1e

(b)
1 . (21)

Proof:

wa,b0 =
∑
σ

pσ (`(0, σ ))ae
(b)
δ(0,σ ) =

∑
σ

pσ e
(b)
δ(0,σ )

=

∑
σ 6=A1

pσ e
(b)
δ(0,σ ) + pA1e

(b)
δ(0,A1)

=

∑
σ 6=A1

pσ e
(b)
0 + pA1e

(b)
1 = (1− pA1 )e

(b)
0 + pA1e

(b)
1 .

�

Our final algorithm is shown in Algorithm 5.

Algorithm 5 Algorithm for Computing e(1), . . . , e(k)

1: (c(0)0 , . . . , c
(0)
m−1)← (0, . . . , 0).

2: for b = 0 to k − 1 do
3: Use c(b) to obtain e(b) by applying Lemma 6;
4: for i = 0 to m− 1 do
5: Compute w0,b

i , . . . ,wk,bi according to (21) or (20);
6: c(b+1)i ←

∑b+1
l=1

(b+1
l

)
wl,b+1−li ; (by definition)

7: end for
8: end for
9: Use c(k) to obtain e(k) by applying Lemma 6.

The correctness of Algorithm 5 follows from the above
equations and discussions. It can be easily checked that every
notation in the algorithm is computed before used.

We analyze the running time of Algorithm 5 in the follow-
ing. Clearly, the bottleneck of this algorithm lies in computing
the entries in {wa,bi | 0 ≤ i < m, 0 ≤ a ≤ k, 0 ≤ b < k}.
Each of them costsO(k) time to compute. Therefore, the total
running time is O(k3m). (The running time is higher for the
case of K than the case of L. In computing the k-th moment
of K, we have to divide c(k)i into multiple parts and the com-
putation is thus more involved and expensive.) Nevertheless,
it is still O(m) time when k = O(1).

C. ON THE CASE OF MARKOV MODEL
We now move on to the case where the outcomes {Zi} of the
repeated experiments are first-order homogeneous Markov
dependent. Let pρ,σ = Pr(Zi = σ | Zi−1 = ρ) be the transi-
tion probability from outcome ρ to σ , and pσ = Pr(Z1 = σ )
be the initial probability of σ . A Markov chain searching A
under this Markov dependent model is defined as follows.
Definition 3: Build m + n states s−(n−1), . . . , s−1,

s0, . . . , sm. The first n − 1 states (with negative subscripts)
correspond to the n − 1 symbols in 6/{A1}; each of them is
labeled with a different symbol in 6/{A1}. The last m + 1
states (with nonnegative subscripts) are corresponding to the
m + 1 prefixes of A. State sm is the unique absorbing state.
For each transient state sv and σ ∈ 6, there is an edge from
sv to sδ1(v,σ ) where δ

1(v, σ ) is defined as follows. See Fig. 2.

For v ∈ 6 \ {A1}, δ1(v, σ ) =
{
σ, σ 6= A1;
1, σ = A1.

.

FIGURE 2. The Markov chain searching A = ‘‘abac ’’ under Markov model
where 6 = {‘a’,‘b’,‘c ’}. To make the graph clear, we draw those edges
between s0, s−1, and s−2 separately on the left part of the figure.
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For v ∈ {0, . . . ,m− 1},

δ1(v, σ ) =

{
δ(v, σ ), δ(v, σ ) > 0;
τσ , δ(v, σ ) = 0,

(22)

where τσ < 0 is the number so that sτσ is labelled with σ .
The edge from sv to sδ1(v,σ ) has an associated probability

that is defined as follows. For v = 0, it is pσ . For v ∈
{1, . . . ,m− 1}, it is pAv,σ . For v ∈ 6 \ {A1}, it is pv,σ .
The constructed markov chain is denoted by Mc1(A). The

following lemma follows from the definition of Mc1(A).
Lemma 7: Mc1(A) simulates the process of searching pat-

tern A in the Markov dependent experiments Z1Z2Z3 · · · , and
the stopping time of Mc1(A) is the waiting time of A.

Let Q1 be obtained from the transition matrix of Mc1(A)
by deleting the last column and last row. Our key result is:
Lemma 8: Given c = (c−(n−1), . . . , c−1, c0, . . . , cm−1)>∈

Rm+n−1, we can solve x = Q1 x+ c in O(n3 + m) time.
Assume (x−(n−1), . . . , x−1, x0, . . . , xm−1)> is the solution

to x = Q1 x+ c. Denote yi = x1 − xi for any i ∈ {−(n −
1), . . . ,−1} ∪ {1, . . . ,m}. Our algorithm for computing the
solution x goes through three steps as follows.

1) STEP 1: COMPUTE y−(n−1), . . . , y−1

The first n− 1 equations in x = Q1 x+ c are as follows.

xi = Q1
i,1x1 +

∑
j<0

Q1
i,jxj + ci. (−(n− 1) ≤ i ≤ −1) (23)

Using yi = x1 − xi, the above equations imply that

yi =
∑
j<0

Q1
i,jyj − ci. (−(n− 1) ≤ i ≤ −1) (24)

The linear system (24) contains n− 1 unknowns and n− 1
equations. By solving (24) using a standard method, which
takes less than O(n3) time, we obtain y−1, . . . , y−(n−1).

(Note: According to basic theory of Markov chain, (24) is
nonsingular if any one of s−(n−1), . . . , s−1 can reach s1.)

2) STEP 2: COMPUTE y1, . . . , ym

Applying the last m− 1 equations in x = Q1 x+ c,

xi =
∑
σ

pAi,σ · xδ1(i,σ ) + ci. (1 ≤ i < m) (25)

Therefore,

yi = x1 − xi =
∑
σ

pAi,σ · yδ1(i,σ ) − ci. (1 ≤ i < m) (26)

Denote zi =
∑
σ 6=Ai+1 pAi,σ · yδ1(i,σ ) and we obtain

yi = zi + pAi,Ai+1 · yi+1 − ci. (1 ≤ i < m) (27)

Thus we obtain a linear system on m − 1 unknowns
y2, . . . , ym, with m − 1 equations. (Note 1: Although y1
appears in this system, it is only a dummy variable and equals
0.) (Note 2: y−(n−1), . . . , y−1 may appear in this system, but
they have already been computed in Step 1.) The remaining
question is how do we solve (27) efficiently?

As in the previous sections, we need a recursive formula
of zi that facilitates the computation of zi in O(1) time. This
formula is given in (28) below. It is inevitably more involved
than (5) as Mc1(A) is more complicated than Mc(A). Denote

δ1i = δ
1(πi,Ai+1), (1 ≤ i < m)

γρ =
∑

σ 6=A1
pρ,σ yτσ . (ρ ∈ 6)

For 1 ≤ i < m, we claim that zi =

zπi + pAπi ,Aπi+1yπi+1 − pAi,Ai+1yδ1i , πi > 0;

γAi − pAi,Ai+1yjAi+1 ,
πi = 0 and
Ai+1 6= A1;

γAi ,
πi = 0 and
Ai+1 = A1.

(28)

Proof: If πi > 0, we have

zi =
∑

σ 6=Ai+1

pAi,σ · yδ1(i,σ ) =
∑

σ 6=Ai+1

pAπi ,σ · yδ1(πi,σ )

(because Ai = Aπi and δ
1(i, σ ) = δ1(πi, σ ))

=

∑
σ

pAπi ,σ · yδ1(πi,σ ) − pAπi ,Ai+1 · yδ1i

=

∑
σ 6=Aπi+1

pAπi ,σ · yδ1(πi,σ ) + pAπi ,Aπi+1 · yπi+1

− pAπi ,Ai+1 · yδ1i
= zπi + pAπi ,Aπi+1 · yπi+1 − pAi,Ai+1 · yδ1i .

If πi = 0 and Ai+1 6= A1, we have

zi =
∑

σ 6=Ai+1

pAi,σ · yδ1(i,σ )

=

∑
σ 6=Ai+1,σ 6=A1

pAi,σ · yτσ + pAi,A1 · y1

=

∑
σ 6=Ai+1,σ 6=A1

pAi,σ · yτσ

=

∑
σ 6=A1

pAi,σ · yτσ − pAi,Ai+1 · yjAi+1

= γAi − pAi,Ai+1 · yjAi+1 .

If πi = 0 and Ai+1 = A1, we have

zi =
∑

σ 6=Ai+1

pAi,σ · yδ1(i,σ ) =
∑

σ 6=Ai+1

pAi,σ · yτσ

=

∑
σ 6=A1

pAi,σ · yτσ = γAi .

�

3) STEP 3: COMPUTE x−(n−1), . . . , x−1, x1, . . . , xm AND x0
Because ym = x1 − xm and xm = 0 (dummy variable),
we see x1 = ym, and x1 can thus be computed easily. Next,
we compute xi for i /∈ {0, 1}. Because yi = x1 − xi, we get
xi = x1 − yi. Thus, xi can be computed from x1, yi.
When all the xi’s except x0 are known, the last unknown

x0 can be computed in O(m) time using the equation x0 =∑
i Q

1
0,ixi + c0 which is in linear system x = Q1 x+ c.
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Next, we prove Lemma 8 by summing up the three steps.
Proof of Lemma 8: Array γ can be computed in O(n2)

time directly according to its definition. Array δ11, . . . , δ
1
m−1

can be computed in O(m) time. (Clearly, δ1(i, σ ) can be com-
puted from δ(i, σ ) in O(1) time due to (22). Moreover, δ1i =
δ1(πi,Ai+1) and δi = δ(πi,Ai+1). Therefore δ11, . . . , δ

1
m−1

can be computed from δ1, . . . , δm−1 in O(m) time. ) After
preprocessing π, δ1, and γ , we can solve (27) in O(m) time
easily based on (28). In addition, Step 1 takes O(n3) time,
whereas Step 3 takes O(n + m) time. Altogether, we solve
x = Q1 x+ c in O(n3 + n2 + n+ m) = O(n3 + m) time. �
As a corollary of Lemma 8, we have
Corollary 2: We can compute the fundamental matrix

(I−Q1)−1 of Mc1(A) in O((n3 + m)(m+ n)) time.
In the rest part of this subsection, we discuss how to

compute the k-th moment of the stopping time of Mc1(A).
The lemma below is almost the same as Lemma 5.
For −(n− 1) ≤ i ≤ m and k ≥ 0, define

e(k)i =
∑
t≥0

tk · Pr(It takes t steps to reach sm from si),

c(k)i = −
k−1∑
l=0

(
k
l

)
(−1)k−le(l)i . (note that l < k)

Lemma 9: For k ≥ 0, (e(k)
−(n−1), . . . , e

(k)
m−1)

> is the solution

to x = Q1 x+ c fixing c = (c(k)
−(n−1), . . . , c

(k)
m−1)

>. In other
words, the following equations holds for every i,

e(k)i =

(∑
σ

pσ · e
(k)
δ1(i,σ )

)
−

k−1∑
l=0

(
k
l

)
(−1)k−le(l)i . (29)

The proof of Lemma 9 is almost the same as the proof of
Lemma 5 and is omitted.

According to Lemma 9, we can compute e(1), e(2), . . . , e(k)

in sequence. It takesO((m+n)k) time for computing c(k), and
O(n3+m) time to compute e(k) from c(k). Therefore, the total
running time is O((mk + nk + n3)k).
Corollary 3: For the first-order Markov dependent exper-

iments Z1Z2Z3 · · · , the k-th moment of the waiting time of A
can be computed in O(k2m+ (k2n+ kn3)) time.
Remark 2: 1. Typically, m will be very large compared to

n, k . We may assume that n3 < m and k = O(1). In this case,
the running time mentioned above is only O(m).
2. In fact, our method can be generalized to the case of

j-th order Markov dependent experiments. When j, k, n are
regarded as constants, our running time is still O(m).
3. The terms n3 appeared above (which come from the

computation of matrix inversion) are not best possible. There
exist o(n3) (say, O(n2.3727)) time algorithms for computing
matrix inversion and multiplication nowadays [31, p. 828].

D. APPLICATION IN PENNY’s GAME PROBLEM
Penney’s game [1], [19], [20], [39]. Given t strings
A(1), . . . ,A(t) which are reduced, i.e., no one is a
substring of another. Denote by L1, . . . ,Lt thewait-
ing times of A(1), . . . ,A(t) respectively in repeated

experiments Z1,Z2 . . . (iid or Markov model). Let
L = min(L1, . . . ,Lt ), and wj = Pr(L = Lj) for
1 ≤ j ≤ t . How can we compute the expected
waiting time E(L) until one of the t strings appear,
and the probability w1, . . .wt for each given string
to be the first to appear?

A clever method for solving the Penney’s problem is given
in [19], [20] and is based on the following lemma.
Lemma 10 [20]: Given a homogeneous first-order

Markov chain C∗ with all states s0, . . . , st communicate. Let
Li,j be the first passage time of sj starting at si, and ei,j =
ELi,j. For any t distinct states sb1 , . . . , sbt , the following
equation holds and its coefficient matrix is nonsingular.

0 1 . . . 1
1 eb1,b1 . . . ebt ,b1
...

...
...

1 eb1,bt . . . ebt ,bt



EL∗

w∗1
...

w∗t

 =


1
e0,b1
...

e0,bt

 , (30)

where L∗ = min{L0,b1 , . . . ,L0,bt } and w
∗
j = Pr(L = L0,bj ).

We can apply Lemma 10 as follows to solve the Penney’s
game. Construct a chain C∗ so that each string A(j) corre-
sponds to a state sbj in C∗ and that (EL,w1, . . . ,wt ) =
(EL∗,w∗1, . . . ,w

∗
t ). The construction is similar to the con-

struction of an automaton for searching a compound pattern,
but each transient edge is now associated with a probabil-
ity (we omit the details). It is unnecessary to construct the
chain explicitly. Applying Lemma 10, Penney’s problem now
reduces to solving (30). Moreover, solving (30) is straightfor-
ward, when the coefficients {ebj,bi}, {e0,bi} are known.

On the other hand, our algorithms in II-B can be applied to
compute the coefficients of (30). Denote by Mc∗i the Markov
chain searching A(i) (Mc∗i = Mc(A(i)) for iid model and
Mc∗i = Mc1(A(i)) for Markov model). First, for each i,
compute the expected stopping time of Mc∗i starting from
each state (this can be done by our algorithms). Then, ebj,bi
equals the expected stopping time of Mc∗i starting from sh,
where h is the largest element such that A(i)(1, h) is a suffix
of A(j) (holds for iid model; Markov model is similar).
Remark 3: 1. For the compound pattern case, the second

moment of the waiting time L is also studied. Combining the
martingale approach proposed in [19], [20] with a technique
called gambling teams, [21] and [23] showed how to compute
the second moment under iid and Markov models. Higher
moments are not studied to the best of our knowledge.

2. Conway gave a simple formula for the 2-players Pen-
ney’s game. References [16], [40], [41] studied strategies
about the game.

V. CONCLUSION
To sum up, the k-thmoment of waiting time of a single pattern
A in random experiments and some closely related statistics
(such as the k-th moment of the number of comparisons spent
by the KMP algorithm) can be computed efficiently via the
Markov embedding approach.

114974 VOLUME 9, 2021



D. Zhang, K. Jin: Fast Algorithms for Computing Statistics of Pattern Matching

Our results are based on a fast solver of the linear system
(1) related to the Markov chain corresponding to A.

Our technique extends to the Markov model, and our algo-
rithm computes the k-th moment starting from every state,
not only from the initial state.

Applications of our algorithm include the computation of
the coefficients of (30), which leads to the solution of the Pen-
ney’s game, as shown in subsection IV-D. The Penney’s game
has found applications in networks [42]. Other applications
are mainly in bioinformatics; see some details in [12], [23].

APPENDIX A
OMITTED PROOFS

Claim: The number of comparisons K equals the
total length of edges traveled by the Markov chain.
Proof: (In this proof, we need some preliminaries

in I-B.)
It reduces to proving that the length `(i, σ ) of the edge from

si (i < m) to sδ(i,σ ) is defined as the number of comparisons
consumed by Algorithm 1 with input si and σ .

Recall the following well-known property of π :

{j ∈ {0, . . . , i} | A(1, j) is a prefix of A(1, i)}

= {i, π(i), π(π (i)), . . . , 0} := {j0, j1, . . . , jr } := J .

Algorithm 1 compares A[j0+1],A[j1+1], . . . in sequence
with σ , until it finds A[jh + 1] = σ or find that no such jh
exists. For each j in J that is at least δ(i, σ )− 1, it consumes
one comparison. On the other hand, the edge length `(i, σ ) is
also the number of j’s in J that is at least δ(i, σ )− 1. �

The proof of (17) is attached here.

k∑
h=l

(
k
h

)(
h
l

)
(−1)h =

(
k
l

) k∑
h=l

(
k − l
h− l

)
(−1)h

=

(
k
l

) k−l∑
h=0

(
k − l
h

)
(−1)h =

(
k
l

)
(1− 1)k−l = 0.

APPENDIX B
MORE ABOUT FUNDAMENTAL MATRIX
Theorem 1 [29], [38]: LetNdg denote the diagonal matrix

with the same diagonal as N, and Nsq denote the Hadamard
product of N with itself (i.e. each entry of N is squared). Let
1 denote the length-m column vector whose entries are all 1.

Expected number of visits to each state.
Entry Ni,j is the expected number of visits to state sj
(before being absorbed) if it is started in state si.

Variance of number of visits to each state.
Let V = (Vi,j), where Vi,j denotes the vari-
ance of the number of visits to state sj (before
being absorbed) starting from state si. We have
V = N(2Ndg− I)− Nsq.

Expected number of visited states.
Let µi be the expected number of visited states
(before being absorbed) starting from state si. Then
µ = NNdg 1.

Transient probabilities.
Let H = (Hi,j), where Hi,j denotes the proba-
bility of visiting sj starting from state si. Then,
H = (N− I)N−1dg .
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