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ABSTRACT Volumetric representation is widely used in digital sculpting and terrain generation due to its
highly modifiable characteristic. However, storing the entire raw voxel map requires a lot of memory, which
limits its application on general machines. In this work, we propose to use a novel data structure based on the
concept of layered depth-normal images to replace the commonly used scalar field for storing the volumetric
information. The proposed data structure can be quickly edited, and the isosurface can be extracted by
using general methods such as Marching Cubes and Dual Contouring. The proposed sculpting system can
edit models with multiple resolution levels, and the surface between models of different resolutions can
be connected seamlessly. Our method can achieve similar results as the existing volumetric methods while
significantly reduces the memory usage and computation time. The model created by our system can be used
in common game engines to make highly interactive games. Furthermore, all of our processes are parallel-
friendly. We implemented a virtual reality digital content creation tool based on the proposed method to
demonstrate the effectiveness and feasibility of our method.

INDEX TERMS Real-time sculpting, terrain generation, virtual reality, volumetric sculpting.

I. INTRODUCTION
Three-dimensional models are widely used in games, indus-
trial design, and film production. The emerging demands for
3Dmodels makes it important to develop a friendly modeling
tool to create a large amount of materials. In this work,
we aim to design a modeling application which can be eas-
ily used by non-professional user to express their creativity.
The 3D modeling process can be divided into the follow-
ing categories: parametric modeling, non-uniform rational
B spline (NURBS) modeling, polygonal modeling, polyg-
onal sculpting, and volumetric sculpting. Parametric mod-
eling, NURBS modeling, and polygonal modeling methods
require highly professional ability to create models and are
not friendly for beginners. Sculpting based methods provide
a more intuitive model editing process which allows the user
to draw a model based on the shape of the brush without
knowing the basis of the model (i.e., the vertices, edges,
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and triangles). This work targets at developing a modeling
software which can be intuitively used in real-time applica-
tions, and therefore we choose to use the modeling method
based on volumetric sculpting.We investigate the problems of
volumetric sculpting method and propose the corresponding
solutions.

For traditional modeling software, the user edits the model
through the 2D screen, keyboard, and mouse. It is difficult
to control the brush in a 3D virtual space through the 2D
screen. The user needs to constantly change his/her view to
edit various areas of the model, which makes it difficult for
beginners to create even a simple prototype of 3D model.
With the rise of virtual reality (VR), there are many applica-
tions proposed for artistic creation in a virtual space [1]–[7].
These VR applications allow the user to directly ‘‘draw’’ 3D
content in the 3D environment. The success and rapid pop-
ularity of Oculus Medium [6] and Kodon [7] prove that 3D
modeling based on the volumetric method is efficient enough
for VR interaction, and the flexibility of editing allows the
user to freely draw in any area in the 3D space. Moreover,
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the VR environment is suitable for multi-person cooperation
and we have developed a collaborative VR sculpting proto-
type based on conventional scalar field based method [8].
Users enjoy co-creating with others in the VR environment;
however, we encountered the problem of large memory usage
when drawing a large scale model. In this work, we propose
a memory efficient method for real-time sculpting, which
allows the user to create larger-scale models.

The flexibility of editing is an attractive feature to general
user. Also aiming at allowing flexible editing, Minecraft [9]
uses low-resolution blocks and variousmaterials to enable the
user to construct the scene easily with the charming of voxels.
ASTRONEER [10] uses simple intuitive editing operations to
achieve highly destructible terrain, which shows the potential
of volumetric based applications. In this work, in addition
to developing a sculpting application, we also hope that the
created content can be exported and imported to another
application for further usage, such as being taken as part
of destructible objects in another game to interact with the
player. Therefore, we have to consider the compatibility to
make the system easy to be integrated with the existing game
engines (e.g., Unity 3D [11] and Unreal Engine 4 [12]).

In this work, we develop a volumetric based real-time
VR sculpting and terrain generation system, which allows the
user to flexibly edit the 3D content. The main contributions
of our system are summarized as follows:
• We propose a memory efficient data structure for vol-
umetric sculpting based on the concept of layered
depth-normal images (LDNIs) [13].

• Based on the proposed data structure, We design com-
monly used sculpting tools including drawing, erasing,
smoothing, and deformation.

• A seamless multi-resolution mechanism is proposed to
efficiently represent models with different resolutions.

• A GPU-aided implementation pipeline is introduced for
real-time volumetric sculpting. The overall pipeline of
the proposed method is shown in Fig. 1.

The rest of this manuscript is organized as follows.We first
review the related researches in Section II. The proposed data
structure is introduced in Section III. The details of model
manipulation and mesh extraction methods are described
in Section IV, Section V, and SectionVI. The implemen-
tation details and the experimental results are discussed in
Section VII and Section VIII, followed by the conclusion and
future work in Section IX.

II. RELATED WORK
The 3D modeling process can be divided into the follow-
ing categories: parametric modeling, non-uniform rational B
spline (NURBS) modeling, polygonal modeling, polygonal
sculpting, and volumetric sculpting. We first introduce com-
monly used modeling methods and software.
• Parametric modeling method is commonly used in
computer-aided design (CAD) software such as SOLID-
WORKS [14] and Autodesk Inventor [15]. A 3D model
is generated according to the parameters set by the user

FIGURE 1. The overall pipeline of the proposed rel-time volumetric
sculpting method. When the user manipulates the model, the system first
edits the stored data according to the drawing instruction. Then the voxel
information is extracted from the data and a multi-resolution mechanism
is applied in order to extract seamless triangle mesh. After obtaining the
vertices and triangles, the normal vector of each vertex is calculated and
then used for rendering the model. The steps in the left red box are
computed on CPU and the steps in the right red box can be computed on
CPU or on GPU.

(e.g., the thickness or radius), and these parameters
strictly restrict the appearance of the model. Since each
instruction/operation is affected by the previous ones,
the parametric design requires careful planning and
highly professional ability. The advantage of parametric
modeling is that the intermediate instructions/operations
can be easily reused and composed to create similar
models through simple parameter adjustment.

• NURBS modeling method [16] uses mathematical for-
mulas to accurately represent the geometry of objects,
and it is suitable for modeling curved objects. NURBS
modeling software (e.g., Rhino [17]) is often used
in industries that require high surface quality of the
designed model, such as automobiles and aerospace.

• Polygonal modeling method [18] directly operates on
the vertices of the mesh. Famous 3D modeling software
such as Maya [19] and Cinema 4d [20] use this kind of
modeling technique. Compared with parametric model-
ing and NURBS modeling methods, directly operating
on the model provides a more intuitive editing way for
the user. Since all objects in polygonal modeling are
composed of polygons (e.g., triangles or quadrilaterals),
there is no real sphere or arc, which needs to be approx-
imated by multiple continuous polygons. Although the
surface of the model is not as smooth as that in paramet-
ric modeling or NURBS modeling, polygonal modeling
is more efficient in terms of rendering. The polygonal
models are mostly used in the industry of movies, ani-
mations, and games.

• Sculpting based modeling methods provide a more
intuitive model editing process than polygonal model-
ing. The user can draw a model based on the shape
of the brush without knowing the basis of the model
(i.e., the vertices, edges, and triangles). The sculpting
based modeling methods can be classified into polyg-
onal sculpting and volumetric sculpting. In a polygonal
sculpting software (e.g., Zbrush [21]), the user directly
operates on the vertices and surfaces of the model.
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For example, the user can edit the model by moving the
positions of the vertices, adding new vertices, or deleting
existing vertices. The advantage of directly operating on
the model is that the user can build a precise model by
assigning the vertices to specific positions. However, it is
more complicated to calculate the new topology after
adding/deleting a vertex. The user needs to plan ahead
with the base mesh. Moreover, the user cannot extrude
endlessly or hollow out the mesh. Therefore, polygonal
sculpting is more suitable for hard bodied surfaces, like
armour and buildings. In a volumetric sculpting software
(e.g., 3D-Coat [22]), the system divides the space into
voxel grids and then stores the model data in these small
grids like pixels in the image. The user operates on the
implicit data (e.g., the scalar field) instead of the mesh,
and the system directly renders based on the implicit data
or extracts the mesh by a specific method (e.g., March-
ing Cubes [23]) first for rendering. Because each voxel
is independent and does not interfere with each other,
volumetric sculpting is more flexible than polygonal
sculpting. For volumetric sculpting, the current state of
the model does not affect the following editing process.
Moreover, it is easy to merge different objects for the
user. However, the fineness of the model is limited by
the resolution of voxel. Volumetric sculpting is suitable
for creating quick concept or organic stuff, which does
not require sharp features. Since our target is to develop
a modeling software which can be intuitively used in
real-time application, we choose to use the volumetric
sculpting based method, investigate the problems of
this modeling method, and propose the corresponding
solutions.

In addition to develop a sculpting application, we also aim
at allowing the user to intuitively create interactive objects
(especially terrain) for game development. Here, we intro-
duce commonly used approaches of terrain generation.
According to the requirement of different applications, terrain
generation can be implemented with different approaches.
Due to the characteristic of the terrain, two-dimensional
heightfield is themost common data structure used for storing
and rendering. Two-dimensional heightfield is suitable for
real-time editing and rendering of large-scale terrain because
we only store and operate on 2D data. Moreover, the topology
of the grids is fixed, which means the results can be calcu-
lated quickly with efficient memory usage. This technique is
adopted by the terrain system in popular game engines such
as Unreal Engine 4 and Unity 3D. However, the heightfield
cannot represent terrain structures with multiple vertical lay-
ers such as overhanging cliffs, caves, or arches. Feature-based
methods are commonly used in the application of rapidly
automatic procedural generation of large-scale terrain. The
system automatically generates terrain according to rough
user input such as simple outlines of the terrain, material type
of the specified terrain [24], [25], or other external forces such
as the extrusion of plates [26]. It would be useful for game
developer to create terrain in the developing stage, but the

player cannot modify the details of the terrain while playing.
Compared with heightfield and feature based methods that
are suitable for editing terrain in the game developing stage,
volumetric methods have the advantage of allowing players
to edit the terrain during the playing stage.

The concept of volumetric sculpting was first introduced
by Galyean et al. [27]. The 3D space is divided into voxel
grids, each voxel is marked as inside or outside the solid
region, and then Marching Cubes algorithm is used to extract
the isosurface based on the state of the cell (eight neighboring
voxels construct a 3D cell). Each vertex of the mesh is located
at the midpoint of one cell edge. With the advancement
of computing power, many volumetric sculpting methods
based on scalar field have been proposed [28]–[30]. The
value of the scalar field represents the distance from voxel
to the surface of the solid region (A positive value indicates
that a sample lies in the empty space, and a negative value
indicates that a sample lies in the solid space). We can use
these values to extract more precise vertex positions and
keep more details. However, a critical problem of the scalar
field methods is the inefficiency of memory usage. Therefore,
researchers are committed to exploring a method that can
effectively save memory and simultaneously achieve accept-
able data access time. Since the values of the scalar field
are important only around the surface of the model, we can
store only the narrow-band data (also known as truncated
signed distance field (TSDF)). For example, we only store the
value between -1 and 1. The voxel values outside the model
and far from the surface are all set to 1, while the values
inside the model and far from the surface are all set to -1.
In most cases, if the model is not too broken, the scalar field
values of -1 (as well as 1) appear continuously as a cluster
in the voxel space, and therefore the model representation
can be compressed by different methods such as octree [31],
hierarchical run-length encoding [32], and dynamic tubular
grids [33]. However, these methods would have additional
computation burden of decompressing data if the user want
to access or modify the model. Another way is to only store
the voxel chunks around the surface without compression.
With the spatial hashing technique [34], [35], we can store
data densely, which is beneficial for streaming between CPU
and GPU. However, the size of a voxel chunk is fixed and part
of the memory space is not used, resulting in more memory
waste than just storing the narrow-band data. Volumetric
Dynamic B+ tree (VDB) [36] provides dynamic scalar field
data compression and access functions. The B+ Tree based
structure can support constant-time random access opera-
tions like lookup, insertion, and deletion. The overall goal
of VDB is to consume only as much memory as is required
to represent active voxels, that is, only narrow-band data are
stored. In Section VIII, we will show that the memory usage
for storing narrow-band data is still about twice than our
method. With the rise of deep learning techniques, there have
been many works compressing the volumetric data through
neural networks [37], [38], and these methods can achieve
high compression rate. However, these methods are lossy
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compression methods, and the reconstructed results would
contain noises. In addition, the computation process of neural
network inference is time consuming and not suitable for the
real-time sculpting application.

A volumetric based terrain generation method named
Transvoxel was introduced in [39], which provides the the-
oretical basis and implementation details of a complete
and practical real-time voxel-based terrain rendering system.
Well-known modeling tools such as Oculus Medium and
Voxel Plugin [40] for Unreal Engine 4 are developed based on
this method. They use three-dimensional scalar field to store
the volumetric information, and Marching Cubes algorithm
is applied to extract the isosurface. In order to develop the
LOD system, they introduce an algorithm named Transition
Cells [41] to patch the seams, cracks, and holes between
chunks of different resolutions by inserting an additional spa-
tial structure. They further introduced methods for applying
texturemaps and advanced shading techniques to voxel-based
terrain meshes. In this work, to significantly reduce the mem-
ory usage, our data structure is designed based on the concept
of LDNIs instead of using the scalar field data. Moreover,
we propose a new method of the multi-resolution mecha-
nism, which does not require inserting additional structures
between chunks and can be easily applied to achieve the LOD
system.

LDNIs is a modeling method proposed for Computer aided
design (CAD). Compared with scalar field which stores 3D
voxel data, the LDNIs method stores the intersection points
and normal vectors of the model in images which are orthog-
onal in three-axis. The number of images required for each
axis is the maximum number of intersections between the
grid lines in that direction and the model. This method can be
beneficial for storing data in GPU memory. Since there are
not too many intersections between a grid line and the model
in general, the required memory can be reduced greatly.
In order to keep sharp features, the LDNIs method adopts
Dual Contouring algorithm [42] to extract the isosurface of
the model. The required input data of Dual Contouring algo-
rithm are the intersection positions and the normal vectors
of the model and the grids, which are exactly the values
stored in LDNIs. Based on the data structure used in LDNIs,
commonly used operations in CAD (e.g., boolean operations
and offsetting) have been implemented. Moreover, boolean
operations between complex static models can be computed
efficiently base on GPU. Inspired by LDNIs, in this work we
store the model by the intersections and the normal vectors,
which represent the model with less memory compared to
scalar field data. We further propose a suitable data structure,
several editing tools, and a multi-resolution mechanism to
improve the real-time sculpting performance.

III. DATA STRUCTURE
A two-dimensional example of a model intersecting with the
grid lines in the x − y plane is shown in Fig. 2. We connect
the intersections of the model and the grid lines (indicated by
gray and yellow points) to represent the shape of the model.

Two points form a segment which cover a solid region on a
grid line. In order to facilitate storage and calculation onGPU,
the LDNIs method stores the intersections in images orthog-
onal to x, y, or z axis. The number of images required for each
axis is the maximum number of intersections between the
grid lines in that direction and the model. As shown in Fig.3,
since the maximum number of intersections between a sphere
model and a grid line in the x direction is two, the LDNIs
method stores the data in two images (Fig. 3(c) and (d)).
However, this kind of data structure results in some unused
memory space (the white points in Fig. 3(c) and (d)) and does
not support random insertion or deletion. Furthermore, for a
real-time sculpting application in which the models are usu-
ally edited frequently by the user, the number of intersection
points changes all the time. If we store the data as images,
it not only wastes a lot of memory usage but also needs
to reallocate data frequently when the user edits the model.
To develop a real-time VR sculpting application in which
rendering requires a lot of GPU memory and computing
power, GPU resources are even more precious. Compared to
GPU memory, the main memory space is much larger and
allows us to edit the model at higher resolutions. In addition,
connecting chunks of different resolutions requires lots of
logical operations, which are more suitable to be calculated
on CPU than on GPU. Since when performing undo/redo
functions, the memory arrangement can be managed more
efficiently in the main memory, we choose to store the data
in the main memory and design a data structure to deal with
operations for real-time sculpting.

For each axis, we store segments on a grid line as a list
(as shown in Fig. 2). Each segment represents a solid region
on the grid line and consists of two points. These two points
represent the start and end of the segment, which are the
intersections of the model and the grid lines. The normal
vectors of the surface at the intersections can be also stored in
the list to extract the isosurface. It is worth noting that points
on the same grid line have the same two coordinate values
(e.g., the same x and y), and therefore we only need to store
the value in the rest direction (e.g., the z value). Segments
in a list are sorted according to the stored values. As illus-
trated in Fig. 2, we can observe that for a manifold model,
the number of intersections between the model and each grid
line should be even, and each intersection pair represents the
two endpoints of a solid section. Therefore, we can use a set
of segments S to represent a manifold model. Fig. 3(b) shows
the 3D illustration of the proposed data structure. The white
lines indicate the grid lines in the x direction, and a segment
list is used for storing the intersections on each grid line.

Shown in (a) into the proposed representation and LDNIs
in the x axis.

IV. MODEL MANIPULATION
In this section, we first introduce how to perform drawing and
erasing mesh based on the segment list data representation
(Section IV-A) and show how to edit data with different
shapes of brushes (Section IV-B). Section IV-C describes the
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FIGURE 2. Two-dimensional example of the proposed data structure in
the x − y plane. The gray and yellow points indicate the intersections of
the model and the grid lines. The yellow points are the endpoints of the
segments on a grid line in the x direction. The yellow lines indicate the
region covered by the segments which also represent the region inside
the model. For each grid line, a list is used to store the segment
endpoints and these endpoints are sorted by the stored values. Two
adjacent values in the list represent a segment (indicated by red box).

FIGURE 3. Illustration of the difference between the proposed
representation and the LDNIs representation.(a) A sphere model. (b) For
our proposed representation, each white line indicates a grid line in the x
direction and the points indicate the intersections between the model
and the grid lines. For each grid line, we use a list to store the positions
of the intersections. On the other hand, LDNIs representation uses
images to store the intersection information. (c) and (d) are LDNIs
representation of the sphere model in (a). The colors of the points
(from yellow to red) represents the normalized position in the x axis
(from 0 to 1), and the white points are unused memory space.

implementation details of some special tools (e.g., smooth-
ing and deformation) developed based on the proposed data
structure. We also implement the color and material system
based on the proposed method (Section IV-D).

A. SEGMENT MANIPULATION
Updating the segment set S of the whole 3D scene can be
decomposed to updating segment lists {li}. A segment list li

FIGURE 4. (a) A brush (indicated by a blue circle) is used to edit an
existing model. (b) The result of drawing. (c) The result of erasing.

represents the unit spatial information in one direction (x, y,
or z) and is composed of several segments. Assume there are
n segments s0, . . . , sn (i.e., 2n points) in li, two successive
points construct either a solid section or an empty section.
When drawing or erasing a new segment s to li, we need
to update the list based on the current section states and the
new segment state (solid for drawing and empty for erasing).
Algorithm 1 illustrates the updating method. To be more
specific, we observe the states of sections where the start
and end points of the new segment (ss, se) are located. If the
state is different from the new segment, the point is inserted
into the list, and if state is the same, no action is required.
Finally, we delete all the points between (ss, se) in the list.
The model we draw generally does not have too many points
in a list; therefore, computation for drawing or erasing can be
very fast. We discuss the computation performance in detail
in Section VIII.

B. DRAWING WITH BRUSH
The manifold model can be represented by a segment set, and
the result of performing constructive solid geometry (CSG)
operation based on twomanifold is also amanifold. Anyman-
ifold model can be taken as a brush, and CSG operation can
be performed directly on the segment-based data. For each
CSG operation, the brush model is converted into a segment
setB that operates on S (the segment set of the current model).
Here we use (⊕,	) to represent brush operations. For each
segment b0, . . . , bn in B, we perform Algorithm 1 based on
corresponding segment list in S. Each bi is set as solid when
applying S ⊕ B, and is set as empty when applying S 	 B.
In practice, any manifold brush can be used to edit the model
by calculating the intersections of the brush and the grids. The
example results of drawing and erasing operations are shown
in Fig. 4.

C. SPECIAL TOOLS
Brushes with some special functions are commonly used in
digital content creation, such as deformation and smoothing.
In order to implement these functions based on the pro-
posed data structure, all operations must be manifold. First,
we introduce how to perform smoothing. For each endpoint of
the segments inside the brush, we extract the voxel state setVc
and point setPc of all the cells around it to interpolate the final
position of the endpoint. Take Fig. 5 as an example, to cal-
culate the smoothed position of p (indicated by the yellow
point), which is stored in a y-directional list, we first extract
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Algorithm 1 Segment Manipulation
Input: ss (the coordinate value of the start point of the

input segment), se (the coordinate value of the
end point of the input segment), solids (state of
input segment), and l (the segment endpoint list
to be edited.)

index = 0;
flag = FALSE ;
while index ≤ length of l and l[index]< ss do

index ++;
flag = !flag;

end
if solids 6= flag then

Insert ss to l at index;
end
while index ≤ length of l and l[index]< se do

flag = !flag;
Remove the value at index from l;

end
if solids 6= flag then

Insert se to l at index;
end

its neighboring points on left, right, forward, and backward
direction, denoted as nl , nr , nf , nb, respectively. For example,
we examine edges e1, . . . , e5 in order to find the position of
the left neighboring point nl (as shown in Fig. 5(a)). Note
that we only extract one neighboring point in each direction
and average the positions of the four neighboring points to
interpolate the final position ps of the segment endpoint p
with a smoothing strength valuew (ranges from 0 to 1), which
is formulated as

ps =
(nl + nr + nf + nb)

4
× w+ p× (1− w). (1)

The smoothing strength value w affects how fast the model
is smoothed and the user can adjust the value while using our
system. Moreover, to achieve reasonable smoothing result,
if the extracted neighboring point is on edge e4, we sample
a point on edge e1 with the corresponding value y − d to be
the position of nl (as shown in Fig. 5(b)). Similarly, if the
neighboring point is on edge e5, we sample a point on edge
e3 with the corresponding value y+1+d ′ be the position of nl .
However, if we directly move the endpoint of the segment to
the calculated position ps (indicated by the blue point), it will
cause a non-manifold result. Therefore, we draw a sphere
automatically with a radius of 1/2 displacement at the center
between these two points. Fig. 6(a) and (b) show example
results of smoothing.

Deformation operations such as extruding or squeezing are
more difficult to be converted to manifold operations directly
based on the proposed data structure, but we can achieve that
in a more intuitive way described as follows. After apply-
ing isosurface extraction algorithm introduced in Section V,
we can obtain the triangle mesh inside the brush and directly

FIGURE 5. The process of the smoothing operation. (a) We use dark gray
points to represent the voxels inside the solid area. Red points and lines
indicate the segments. Edges e1, . . . , e5 are the sampling order of the
neighboring points of p. (b) After obtaining the smoothed position ps,
we draw a sphere with a radius of 1/2 displacement at the center
between these two points (indicated by a light red circle) to produce a
manifold result. (c) The result of smoothing.

move the vertices. The resulting segment data can be obtained
by calculating the intersections of the deformed mesh and the
grid lines. Note that in order to prevent self-intersecting of the
mesh, we constrain the step size of each vertex displacement
to 0.3. Fig. 6(c) and (d) show example results of deformation.

D. DRAWING MATERIAL
As shown in Fig. 7(b), the proposed data structure is sparse.
If we only store thematerial information alongwith the vertex
information, it would not be able to express the material
inside the model. For example, when the materials are differ-
ent at the start and end points of a segment, we do not know
the boundary of the two materials. To solve this problem,
we store material information in the same way as the vol-
umetric information. Unlike the volumetric segments which
need to be stored in three directions, the material segments
can be stored in only one direction because there is only one
material value for each cell. Eachmaterial segment represents
a sequence of consecutive voxels with same material. Based
on the above design, the user can modify the material or the
model individually when drawing. To achieve terrain texture
mapping, we adopt the triplanar projection algorithm [43] to
obtain the uv value of each vertex from the position and nor-
mal value. The user can use multiple materials for one chunk,
and the color of adjacent vertices with different materials is
interpolated accordingly.

V. ISOSURFACE EXTRACTION
Extracting the isosurface of the model is important for
applications such as path generation of computer numerical
control (CNC) tool, physical interaction, and parting line
generation of mold design. With the ability of extracting
isosurface of the model according to the user’s modifica-
tion in real-time, our system can be widely used in general
game engines. Well-known volumetric isosurface extraction
algorithms such as Marching Cubes, Surface Nets [44], Dual
Contouring, and Dual Marching Cubes [45] can be applied
to our system. In this section, we introduce how to extract
the surface of the model through Marching Cubes and Dual
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FIGURE 6. (a) The model before smoothing operation. (b) The model after
smoothing operation. (c) The model before deformation operation.
(d) The model after deformation operation.

FIGURE 7. Two-dimensional examples of a manifold model described by
(a) the scalar field based method and (b) the proposed method. We use
points with different colors to represent different signed distance
function values in the scalar field based method (from red to blue
indicate −1 to 1). For the proposed method, red points indicate the
endpoints of segments in x direction and yellow points indicate the
endpoints of segments in y direction. The blue lines indicate the region
covered by the segments.

Contouring algorithm based on the proposed data structure
and the comparison of the meshes extracted from Marching
Cubes and Dual Contouring algorithm is shown in Fig. 8.

Marching Cubes algorithm is usually used to extract sur-
faces from scalar field data. A positive value in scalar field
indicates that a sample lies in the empty space, and a negative
value indicates that a sample lies in the solid space. Therefore,
the voxel state set V (whether each voxel is inside or outside
the model) can be easily obtained from the sign of the dis-
tance function values. The point set P (the positions of the
vertices) of the model surface corresponds to the set of points
whose distance function value is zero. As shown in Fig. 7,
voxels are points uniformly distributed in the space, and four
neighboring voxels construct a 2D cell (eight neighboring
voxels construct a 3D cell). Generally speaking, each point
of P lies on the edge of the cell, where one endpoint has been
classified as lying ‘‘outside’’ in empty space and the other
endpoint has been classified as lying ‘‘inside’’ in solid space.
The exact position of the vertex can be calculated by linearly
interpolating the two scalar values that are connected by that
edge. After obtaining the point set P and the voxel state
set V , theMarching Cubes algorithm can be applied to extract

the triangle mesh. We examine the voxel states of the eight
corners of each 3D cell and generate one or multiple triangles
in each cell according to the look-up table [23]. The positions
of points in P are the intersections of the model surface and
the grids. We use segment set S to represent a manifold model
and take the endpoint set in S as Ps. The points in Ps and
the corresponding points in P are located on the same cell
edge, and therefore we can use Ps to replace P. The voxel
state of each voxel can be obtained by examining whether it is
covered by a segment. Since the vertex coordinates extracted
by Marching Cubes algorithm are limited to the edge of the
cell, sharp features are difficult to be retained. Marching
Cubes algorithm is more suitable for applications that do
not need to keep detailed features, such as natural terrain
construction. It only stores the intersection points and does
not require normal information, and therefore it reduces lots
of memory usage. In addition, it extracts the surface of the
model by looking up the table, which makes the calculation
fast and even in real-time on a single-threaded CPU.

Unlike theMarchingCube algorithm, the vertices extracted
by Dual Contouring algorithm can be anywhere in the cell,
so the extracted mesh can present sharp features. For applica-
tions requiring accurate model details (e.g., CAD, sculpting),
we can extract the isosurface by applying Dual Contouring
algorithm. Dual Contouring method requires Hermite data,
which are the intersection points between the model and the
grids and the normal vectors at intersection points. When a
cell has any edge that intersects the model (i.e., the distance
function value is zero), it implies there is a vertex in the cell.
The vertex position in the cell is obtained by minimizing the
error function defined based on all the intersections and the
normal vectors in that cell [42]. However, the optimization
process is time-consuming, which limits the amount of edited
content for CPU-based calculation. Since the vertex in each
voxel can be calculated independently, we further design a
GPU-aided pipeline as shown in Fig. 1 to enable the user to
edit a large region of the model.

We first extract the voxel information of the region that
is going to be updated, including whether the voxels are
inside the model, the intersections on the cell edges, and
the normal vectors. These data are then transferred to GPU
memory to calculate the vertex in each cell. Since the triangle
information can be extracted without knowing the vertices,
we use CPU for triangle extraction and connecting chunks
with different resolution levels. After extracting the triangle
information, we transfer these data to GPU memory and
combine the vertex information into complete mesh. Before
rendering, we smooth the normal vector based on the angle
between adjacent triangles. Given a triangle T , the normal
vector of each vertex on the triangle is calculated by weighted
average of the normal vector of the triangle T and the ones of
the adjacent triangles T ′as. Note that each adjacent triangle
Ta shares at least one vertex with the triangle T , and the
angle between Ta and T is less than 30 degrees. The weight is
calculated based on the area of the triangle. In this way, a ver-
tex shared by multiple triangles might have multiple normal
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FIGURE 8. The comparison of the meshes extracted from (a) Marching
Cubes and (b) Dual Contouring algorithm.

vectors. After rendering the mesh, the triangles, vertices, and
smoothed normal vectors are stored in GPUmemory to avoid
re-calculation.

VI. MULTI-RESOLUTION
Since volumetric isosurface extraction algorithms tend to pro-
duce a large number of vertices, multi-resolution mechanism
is important to improve rendering performance. We can use
fewer vertices to represent flat areas and more vertices to
represent details. This could also help us to build the LOD
system, which is commonly used in games to improve render-
ing performance.We divide the 3D space into chunks (a group
of cells), each chunk can be edited independently and has its
own resolution level. However, there will be gaps between
two chunks of different resolutions when using Marching
Cubes algorithm to extract mesh. In this section, we intro-
duce how to increase and decrease the resolution based on
the proposed data structure and patch the gaps between two
chunks without adding any other spatial structure.

A. INCREASING RESOLUTION LEVEL
In order to align the voxel data of chunks with different
resolution levels, we half the unit size of the chunk to increase
the resolution level of the target chunk, and it consequently
increases the number of the segment lists. In an intuitive way,
we can obtain the high-resolution information of the segment
lists by calculating the intersections of these newly added grid
lines and the current model. However, as shown in Fig. 9, for
each direction there are three new segment lists per unit cell
and two of them locate on the boundary of the cell. According
to Marching Cubes algorithm, the edges of triangle also lie
on the boundary of the cell. The floating-point error occurs
when calculating whether the triangles and the new grid lines
intersect with each other. In practice, a more robust, faster and
parallel-friendly method is used in our work. We extract the
voxel state set V and the point set Ps to determine the new
segment information of each cell individually. For the two
grid lines lie on the boundary, each one only passes one face
of the cell, and we consider this face to design the look-up
table for extracting high-resolution information, as shown
in Fig. 10. The blue line indicates an edge of the original
triangle and the dark gray point indicates the voxel inside the
model. We consider the states of the four corners in a cell
face, and there are totally 24 = 16 possible distinct cases.

For each case, we determine whether the model intersects
with the high-resolution grids (indicated by light gray lines)
based on the points on the four edges of the cell. If there is an
intersection, we ‘‘draw’’a new segment on the new segment
list. Note that this method cannot be applied on the grid line
passing through the center of the unit cell. Fortunately, this
centered grid line is less likely to locate on the boundary of
the triangles obtained by Marching Cubes, and therefore we
can directly calculate the intersections of this new grid line
and the current model. When the Dual Contouring algorithm
is adopted to extract the isosurface, problem that the newly
added grid lines are located at the edge of the triangle can be
avoided, so the intersection point can be directly calculated
to obtain the higher-resolution information.

B. DECREASING RESOLUTION LEVEL
The proposed data structure stores the intersections of the
model and the grids. Resolution level only affects how
many points to be stored but does not affect the loca-
tion of these points. Therefore, we can directly discard the
high-resolution data when decreasing the resolution of the
stored data. The remaining low-resolution segment lists can
still form a manifold model. In the LOD system that main-
tains the high-resolution data, the low-resolution mesh can be
extracted from the low-resolution part of the high-resolution
segment lists without decreasing the resolution level of
the stored data. Conventional scalar field based method
has surface shifting problem [39] when triangulating the
low-resolution mesh. We need to examine the values at the
high-resolution part to construct the low-resolution mesh.
Then the low-resolution scalar field values can be directly
obtained based on the constructed mesh. In contrast, the pro-
posed data structure only needs to sample the segment lists
according to the resolution level, which allows us to build a
LOD system in an efficient way. Fig. 11 shows the isosurface
extracted from different resolution levels.

C. CONNECTING CHUNKS
As shown in Fig. 12(a), there are gaps between adjacent
chunks of different resolution levels when using Marching
Cubes algorithm to extract isosurface. Additional mecha-
nisms must be used to patch these gap areas. Fig. 13(a) shows
the segment lists on the connecting face, Fig. 13(b) shows
the low-resolution information extracted from these segment
lists, and Fig. 13(c) shows the high-resolution information
extracted from the same segment lists. It can be observed
that the high-resolution chunk keeps more details in the extra
voxels than the low-resolution chunk, which would produce
different meshes and result in gaps. Therefore, we adjust the
extra voxels in the high-resolution chunk to produce the same
result as the low-resolution chunk on the connecting face,
as shown in Fig. 13(d). We change the voxel state of v from
empty to solid and add a new point p to construct the edge.
The position of p is obtained by calculating the cross point of
the edge e in Fig. 13(b) and the grid line. It should be noted
that when the state of an extra voxel is changed, we must
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FIGURE 9. The newly added grid lines (indicated by red lines) in a unit
cell. Note that two grid lines (indicated by dotted lines) have already been
created by the adjacent cell.

ensure that the operation is manifold. That is, if we change
the state of a voxel in the x-y plane, we must also add a vertex
in the z direction. It is worth noting that these operations
only affect the voxel information extracted from the data,
i.e., V and Ps, but do not affect the original data. Since we
generate each chunk as an independent model during the
editing, the number of vertices in adjacent areas need not
be the same. However, when exporting the integrated model,
we need to split the triangle to connect chunks. The example
result of connecting chunks with different resolution levels is
shown in Fig. 12(b).
Dual Contouring method naturally supports multi-

resolution connection. However, unlike Marching Cubes that
generates triangles in each cell independently, the vertices
extracted by Dual Contouring are connected to the surround-
ing cells and the extracted surface of a chunk is related to
27 neighboring chunks (3 × 3 × 3). These 27 chunks might
be in different resolutions, which makes it complicated to
implement and calculate the results of chunk connection.
Therefore, we take the corner of the chunk as the center
to extract the isosurface when applying Dual Contouring
algorithm. Fig. 14 illustrates our idea in 2D case, in which a
bold square is a chunk. The yellow square shows that if we use
a chunk as the center, 8 neighboring chunks are referenced to
extract the isosurface. The red square shows that if we use the
corner of a chunk as the center, only 4 neighboring chunks are
referenced to extract the isosurface. For the 3D case, this idea
can reduce the number of referenced chunks to 8 (2× 2× 2).

VII. IMPLEMENTATION AND APPLICATION
In order to validate whether the proposed data structure can
be widely used, we implemented a VR sculpting and terrain
generation application with the Unity 3D Engine. The main
algorithm is written in C# language, andHTCVIVE is used to
build the VR environment. GPU computing and rendering are
respectively implemented in the compute shader and surface
shader in Unity 3D.

It is not practical to update the entire mesh map every
frame. We divide the space into cell chunks, and each cell
chunk is composed of w×w×w cell units (in this work w is
set as 16). A 2D example of the relation between voxel, cell,
segment list, and chunk is illustrated in Fig. 15. Every cross

FIGURE 10. A look-up table for extracting high-resolution information.
The blue line indicates an edge of the original triangle and the dark gray
point indicates the voxel inside the model. Images in the i − th row shows
the situations that i voxels are inside the model. A red line indicates a
new segment to be added in the high-resolution segment list.

FIGURE 11. (a) The red points and lines indicate the segments on the
low-resolution grids, and the yellow points and lines indicate the
segments on the extra high-resolution grids. (b) The high-resolution mesh
is constructed by the red and yellow points. (c) The low-resolution mesh
can be extracted from the low-resolution segment information.

point of the grid lines is a voxel. Each black point with an
arrow indicates a segment list storing the intersections of the
grid line and the model, and a group of segment lists compose
a segment list chunk. In order to extract the information of
a cell chunk, (w + 1) × (w + 1) × (w + 1) voxel values
are needed for the 3D case. For each cell chunk, we extract
the volumetric information from the corresponding segment
list chunk in x, y, and z direction, respectively. The size of a
segment list chunk is (w+ 1)× (w+ 1) for the 3D case.
Note that the voxel information is extracted from the corre-

sponding segment list only when the user modifies the voxels
in that chunk. When the user edits the model, the system first
modifies the corresponding data in the segment list chunks
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FIGURE 12. (a) The gap between adjacent chunks of different resolution
levels when Marching Cubes algorithm is applied to extract the
isosurface. (b) The result of applying the proposed patching method.

FIGURE 13. (a) The segment lists on the connecting face of two chunks
with different resolution levels. (b) The low-resolution information
extracted from these segment lists. (c) The high-resolution information
extracted from the same segment lists. (d) The extra voxels in the
high-resolution chunk is adjusted to produce the same result as the
low-resolution chunk in (b). We change the voxel state of v from empty to
solid and add a new point p to construct the edge. The position of p is
obtained by calculating the cross point of the edge e in (b) and the grid
line.

and then extracts the volumetric information of the edited
chunks (inside the brush range). Isosurface extraction algo-
rithm is applied to extract the triangular surface for rendering.
Since the voxel information is required only when updating
the mesh of the chunk, the memory used for storing the
voxel information can be reused for every chunk. For each
chunk, we store the extracted triangles, vertices and smoothed
normal vectors in the GPU memory for rendering.

Fig. 16 shows some screenshots of the proposedVR sculpt-
ing system and Fig.18(a) shows how the user draws with the
HTC VIVE. Through an interface similar to commonly used
2D drawing software, the user can create 3D models in 3D
environment based on our VR sculpting system. In addition to
the drawing and erasing functions for model editing, we also
develop many auxiliary tools for the user, such as line tool,

FIGURE 14. Two-dimensional example of referenced regions when Dual
Contouring algorithm is applied to extract the isosurface. The yellow
square shows that if we use a chunk as the center, 8 neighboring chunks
are referenced to extract the isosurface. The red square shows that if we
use the corner of a chunk as the center, only 4 neighboring chunks are
referenced to extract the isosurface.

alignment tool, layers, undo/redo, model data conversion
(converting general model representations into volumetric
representation), multi-player mode, saving/reading files, and
particle system. These tools are placed on a palette-like
user interface attached to the left-hand controller, and the
user uses the right-hand controller to choose the tool and
edit the 3D model. We also implement shortcut keys on
the right-hand controller so that the user can quickly switch
to different tools. Moreover, the user can press the buttons
on the left-hand controller to move, rotate, and zoom the
models in the selected drawing layer. As shown in Fig. 17,
the proposed VR sculpting system can be easily used to
create an interactive terrain for a game. The produced terrain
has the editable characteristics benefiting from the proposed
data structure. Moreover, it can be collided with the physics
engine in the game engine since we also extract the mesh of
the created models. Players can change the terrain through
intuitive actions such as launching bombs.

VIII. EXPERIMENTAL RESULTS
We developed the system on a PC with memory size 16GB,
Intel i5-9400F CPU, and Nvidia GeForce GTX 1660 GPU.
In order to investigate whether the proposed data structure
is suitable for real-time sculpting, we compare the mem-
ory usage and calculation speed with the scalar field based
method. The scalar field and the proposed data structure are
both stored in floating-point type. No special tricks are used to
speed up.We drew on a canvaswith the size of 160×160×160
cells (divided into 10 × 10 × 10 chunks). The brush was
set as a sphere with radius 5, 10, 15, 20 units, respectively.
We randomly generated 1000 editing instructions of drawing
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FIGURE 15. A 2D example of the voxel and segment maps with chunk
width w of 3 units. Every cross point of grid lines is a voxel, and each
black point with an arrow indicates a segment list. The size of the voxel
chunk is 4 × 4 (the size is 4 × 4 × 4 in 3D) and the size of the segment list
chunk is 4 (the size is 4 × 4 in 3D).

FIGURE 16. (a) The user interface of our VR sculpting application. The
user can adjust the parameters of the brush through the VR controllers.
(b) The user uses the sphere brush to draw the tail of the cat model.
(c) The user uses the smoothing tool to smooth the mesh. (d) The user
uses the painting tool to edit the color of the mesh.

and erasing, which were used to evaluate different methods.
For each instruction, we edited the volumetric data according
to the brush information and then extracted the mesh for
rendering. We list the average computing time to compare the
computation performance of our method and the scalar field
based method. The memory used by our method increases
with the complexity of the model. In contrast, the memory
size used by the scalar field is fixed. Therefore, we only
list the maximum memory usage for comparison. In addition
to conventional scalar field method, we also compare the
memory usage with a narrow-band scalar field method.

Compared with conventional scalar field based methods,
our method mainly differs in two aspects: (1) the way of
editing and storing the volumetric information and (2) the
method of extracting the point set P and the voxel state set V .
After extracting P and V , the remaining steps are actually
the same as the conventional scalar field based methods.

FIGURE 17. (a) The user draws the terrain roughly with the cube brush.
(b) The user adjusts the detail of the shape and the materials of the
terrain model. (c) The created terrain can be exported for game
development. (d) The player launches bombs to destroy the terrain, which
can be considered as using the erasing tool.

FIGURE 18. (a) The position and rotation of the HTC VIVE controllers and
head-mounted display are tracked by the lighthouse. The user can use the
controllers to draw and edit the model from different views. (b) The
experimental environment for the comparison of computing time and
memory usage. We executed random drawing/erasing instructions in the
VR environment.

Therefore, we compared the time of modifying the volumet-
ric data (denoted as Timed ) and the time of extracting the
point set and the voxel state set (denoted as Timev) with
the scalar field based methods (as shown in Table 1). For
the narrow-band scalar method, we applied the run-length
encoding (RLE) algorithm to compress the data based on
different bandwidths. However, extra calculation time for the
RLE algorithm is needed in addition to Timed and Timev.
The extra calculation time for the RLE algorithm (denoted
as TimeRLE−bandwidth) is also listed in Table 1 in terms of
different bandwidths. In fact, both our method and the con-
ventional scalar field method can be executed at very high
speed through parallel calculation on a high performance
PC. However, to further apply the proposed method to other
application scenarios (e.g., mobile games) in which the user
might use low-end hardware, we evaluate the computing
performance on a single-threaded CPU. When editing on
the scalar field data, we need to update the signed distance
value for each voxel covered by the brush. However, for the
proposed data representation, we only need to calculate the
intersection points of the brush and the grids, and then add
these points to the existing data in a segment manner. That
is, the computation complexity of scalar field based methods
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TABLE 1. Computation time of the scalar field based method and the proposed method with different brush sizes. We executed 1000 drawing
instructions and averaged the execution time of each instruction. The table shows the time of modifying the volumetric data (denoted as Timed ), the time
of extracting the vertices (denoted as Timev ), and the time of applying RLE algorithm (denoted as TimeRLE−bandwidth).

TABLE 2. The overall calculation time of our method based on different brush size, different isosurface extraction algorithms, and different hardware.
The time involves editing the volumetric data, extracting the isosurface, rendering the model, and storing the extracted mesh in each frame. Note that the
minimum interval between frames by default is about 11.17ms (90 FPS).

is O(n3) while the proposed method is O(n2), where n is the
brush size. For our method, we calculated the length of each
single segment list and found that the maximal length is only
11 (i.e., 22 intersection points) when we drew with a brush
with radius of 15. That implies the proposed method can
insert/delete a segment to/from the segment list very quickly
for an editing operation. When extracting the point set P from
the scalar field, the position of a point is calculated by linearly
interpolating two scalar values. As mentioned in Section V,
we can use the endpoint set Ps to replace P, and we just need
to place these points on the edges of the appropriate cell.
Therefore, our method has better performance than conven-
tional scalar field based methods in terms of computational
efficiency.

Table 2 shows the overall calculation time of our method
based on different brush size, different isosurface extraction
algorithms, and different hardware. The time involves editing
the volumetric data, extracting the isosurface, rendering the
model, and storing the extracted mesh in each frame. Since
the overall process includes both CPU and GPU calculations,
it is difficult for us to accurately calculate the calculation
time of the proposed algorithm. Therefore, we compare the
frame update speed of the entire system. Since the default
maximum frame rate in Unity 3D for VR rendering is 90 FPS
(11.17ms), the update timewould be 11.17ms even though the
computation speed is faster. In general situations, the brush
with radius of 5 to 10 is sufficient for the user. For editingwith
much larger brush size, we can use an additional multi-thread
mechanism to allow the user to draw a wide range solid
region. Another way to enable real-time editing with large

brush size is to avoid extracting triangles every frame. Editing
the segment data can be calculated very quickly, but extract-
ing triangles takes most of the time. Hence, we can update the
model with an appropriate time interval to achieve real-time
large-scale editing experience.

For the conventional scalar field based method, we store
the spatial information in 3D dense voxels. Although the
chunks can be dynamically allocated in the solid area,
the memory size used by each voxel chunk is fixed. When
the values of the signed distance function are restricted from
−b to b (where b is the width of narrow-band), there will be
many consecutive areas with the same value in a large region
of solid/empty space, which means that the compression
algorithm can be applied to achieve high lossless compression
rates. Our method only stores the segment data to represent
the solid area of the model, and the memory usage increases
with the complexity of the model.

FIGURE 19. (a) A Deer model with simpler structure. (b) A Coral model
with more complex structure.

We use the conventional scalar field method, the
narrow-band based method, and the proposed data structure
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TABLE 3. We convert a deer model (Fig. 19(a)) and a coral model (Fig. 19(b)) to the proposed representation and the scalar field representation and show
the memory usage at different resolutions.

TABLE 4. The maximum memory usage of the scalar based method, the narrow-band based method, and the proposed method with different brush sizes.

FIGURE 20. A portion of the Deer model (indicated as red box
in Fig. 19(a)) reconstructed in the resolution level of (a) 256, (b) 512, and
(c) 1024.

to represent two models, i.e., a Deer model with simpler
structure and a Coral model with more complex structures
as shown in Fig. 19. Table 3 shows the memory size used
for representing each model with different resolutions. Since
each grid line would not has too many intersections with the
Deer model, it requires less memory usage than the Coral
model. Fig. 20(a) to (c) show a portion of the Deer model
(the portion inside the red box in Fig. 19(a)) reconstructed
in different resolutions. We further compare the maximum
memory usage during the drawing process with the scalar
field based method. The memory usage of each method is
shown in Table 4. Note that we only calculate the memory
usage of the endpoints for the proposedmethod and the values
of the signed distance function for the scalar field based
methods, respectively. For the scalar field based method,
the amount of memory used by each chunk is fixed regardless
of the model. We list the memory usage of the narrow-band
based method with the bandwidth b set as 1 to 3. The larger
the value of b, the more helpful it is to preserve details and
prevent surface shifting when changing the resolution [39],
but the more memory it requires. Although only storing the
narrow-band value can greatly reduce the memory usage
compared to the conventional scalar field method, it results
in additional computation burden for maintaining the data

structure. Table 3 and Table 4 shows that our method outper-
forms the conventional scalar field based methods in terms of
memory usage.

IX. CONCLUSION AND FUTURE WORK
In this work, we develop a volumetric based real-time
VR sculpting system, which allows the user to flexibly edit
the 3D content in the 3D environment. The proposed system
has high interactivity because the extracted triangle mesh is
friendly for physical interaction calculations. It is also suit-
able for generating terrain and creating destructible objects
in game developing. A new data structure is designed based
on the concept of LDNIs to reduce memory usage when
generating the mesh in a volumetric way. We also intro-
duce a seamless multi-resolution mechanism, which can also
achieve the LOD system of terrain rendering.We demonstrate
that any manifold model can be easily used as a brush to
perform drawing and erasing. However, the proposed method
has the following limitations.
• For the narrow-band scalar field based methods,
the value stored in each voxel usually ranges from −b
to b (b would not be too large), while the value of
the segment endpoint is the position of a vertex in
a specific direction, which would be relatively large
and is prone to floating-point error. Since the precision
of a floating-point number is only 6 digits, in prac-
tice the data value (including intermediate data in the
whole calculation process) is limited to the range from
2−8 to 28. Therefore, if we would like to draw on a
large-scale canvas, we need to split the canvas first and
use an independent data system with its own coordinates
for each sub-canvas.

• Each editing operation in our system should be man-
ifold; otherwise there would be a problem of vertex
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missing. For an editing operation that does not directly
use a manifold brush, we have to design an additional
mechanism to convert it to a manifold operation. For
example, to deal with deformation-like operations such
asmoving, squeezing, and extruding, we directly operate
on the vertices of the trianglemesh and then calculate the
intersections with the grids. In the worst case, if there is
an operation that cannot be converted to amanifold oper-
ation, we can still convert the segment data to scalar field
data and process the operation by using conventional
methods. The segment data can be then obtained from
the mesh reconstructed based on the resulting scalar
field.

Bolier et al. [46] have shown that drawing in the VR space
can improve the spatial ability and mental rotation ability of
students. However, they draw in the 3D spacewith 2D brushes
just like A-Painter [47] and Tilt Brush. We have done simple
user tests on 36 junior high school students and all of them
prefer to use 3D brushes than 2D brushes. They also like to
drawwith their friends in the same virtual environment which
can improve the cooperation ability. With the multi-player
mode provided by our system, they can draw together even
if they are in different physical spaces. Since the proposed
method is fast and has high memory efficiency, it has lower
hardware requirements and can be more easily promoted to
art courses in school. In the future, we are going to investigate
whether drawing with 3D brush can be beneficial to improve
the spatial ability and mental rotation ability of the students.
We will also optimize the user interface to make our system
suitable for students, and design a teaching system for art
teachers.
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