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ABSTRACT This paper proposes a unified procedure for evaluating the resonant frequencies and the corre-
sponding resonant modes for an arbitrary source region, based on the general expression for the difference
between the stored magnetic and electric field energies in terms of the source current distribution. It is
shown that the resonant frequencies and the corresponding resonant modes are governed by a homogeneous
integral equation. By following a standard procedure of the method of moments (MoM), the integral equation
can be discretized into a real homogenous algebraic equation, from which the resonant frequencies and the
corresponding resonant modes can be determined by requiring that a non-trivial solution exists for the real
homogeneous algebraic equation. Different from other modal theories that expand the fields by a linear
combination of fundamental field patterns that are derived from the boundary conditions, the proposed
theory of resonant modes is derived from the difference of stored field energies for an arbitrary source
region. As an application of the theory of the resonant modes, a crossed-dipole antenna, a dual-band bowtie
antenna, and a dual-band circular polarization antenna are designed through the appropriate excitations of
the resonant modes on the three selected source regions, and they are validated by independent simulations
and experiments.

INDEX TERMS Theory of resonant modes, stored electromagnetic field energy, crossed-dipole antenna,
bowtie antenna, dual-band circular polarization antenna.

I. INTRODUCTION
The modal theory for a scatterer plays an important role
in antenna theory and designs. The basic idea behind the
modal theory is to introduce a number of fundamental field
patterns, called modes, so that the fields outside the scatterer
can be expanded into a linear combination of these modes [1].
The modal theory becomes extremely useful wherever the
linear combination is dominated by a few modes so that they
can be easily excited. The modal theory for a scatterer is
closely related to antenna resonance. An antenna is said to be
resonant if its input reactance is zero, and the corresponding
frequency at which the resonance occurs is called resonant
frequency. Physically, this implies that stored electric field
energy is equal to the stored magnetic field energy around
the antenna.

There have been several modal theories for studying radia-
tion problems (exterior boundary value problems). The tem-
poral singularity expansion method (SEM) is based on the
analysis in complex frequency domain [2]–[6]. The natural
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resonant frequencies arise from the requirement that a non-
trivial current distribution exists on a conducting scatterer
without incident fields, formulated by the electric field inte-
gral equation (EFIE) [7], [8]. The corresponding field pat-
terns are called natural resonant modes. The natural resonant
frequencies and natural resonant modes for dielectric bodies
can be evaluated in terms of the Poggio, Miller, Chang,
Harrington, Wu, and Tsai (PMCHWT) equations [9], [10].
The natural resonant modes are complex in SEM, which sig-
nificantly increases the computational time and the difficulty
in numerical implementations.

Another modal theory is called eigenmode expansion
method (EEM), which expands the currents and the radi-
ated fields in terms of the eigenmodes of an integral oper-
ator [11], [12]. The EEM may be considered as an extended
theory of the temporal SEM. Same with the temporal SEM,
the eigenvalues and the eigenmodes for EEM are complex
numbers.

As another popular modal theory, the characteristic
mode (CM) analysis is carried out in the real frequency
domain [13]–[29], of which the characteristic values (eigen-
values) and characteristic modes are all real, and depend on
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frequency. Generally, the characteristic values range from
−∞ to +∞, among which those of smallest magnitudes are
most important for radiation and scattering problems. The
external resonant modes correspond to the zero characteristic
values [29], and can be determined approximately by sweep-
ing the frequency. It is noted that the CM formulations (as
well as the temporal SEM and EEM formulations) depend
on the medium properties of the scatterer. The characteristic
modes for perfectly electric conducting (PEC) bodies are
found by EFIE [13]–[16], while PMCHWT equations are
applied to calculate the characteristic modes for dielectric
and magnetic bodies [17]–[22]. The characteristic modes for
the composite metallic-dielectric objects are obtained by the
combinations of EFIE and PMCHWT equation [23]–[28].
To the best knowledge of the authors, there are no unified
formulation that can simultaneously solve the CMs of scat-
terers with different medium parameters for now. The basic
concepts of the temporal SEM, EEM, and CM techniques and
their relationships have been discussed in [30].

All the aforementioned modal theories have their pros
and cons. One common feature is that they are all related
to the external resonant modes of the scatterer in a certain
way. The external resonant modes, corresponding to the real
resonant frequencies, are commonly used in antenna designs,
and in many situations, antenna operates in the state of
a single resonant mode. Multiple resonant modes are also
frequently used for enhancing antenna bandwidth. For this
reason, understanding the intrinsic resonances of scatterers is
of vital importance in antenna design.

In this paper, we propose a unified procedure for evaluating
the resonant modes for an arbitrary current source region,
which is based on the expression for the difference between
the stored electric and magnetic field energies. When the
source region is assumed to be resonant, the condition that
the difference between the stored electric and magnetic field
energies vanishes leads to a homogeneous integral equation
for the modal currents. After discretization, the integral equa-
tion is reduced to a real homogenous algebraic equation.
By enforcing the condition that a non-trivial current dis-
tribution exits in the source region, the determinant of the
coefficient matrix of the algebraic equation must be zero,
which determines the resonant frequencies.

Compared with the modal theories studied previously,
the theory of resonant modes (TRM) proposed in this paper
determines the resonant modes based on the general expres-
sion for the difference of the stored field energies. Once the
resonantmodes are determined, the rest is to use excitations to
realize the resonant modes in the selected source region. The
paper is organized as follows. Section II presents the integral
equation formulation and the implementation procedure for
the determination of resonant modes in an arbitrary source
region. Section III discusses the applications of the TRM in
the design of antennas. A crossed-dipole antenna, a dual-
band bowtie antenna, and a dual-band circular polarization
(CP) antenna are designed in terms of the TRM and validated
by simulations and experiments. Section IV compares the

TRM with the temporal SEM, EEM, and CM from different
aspects. Section V summarizes the main contributions of the
paper.

II. THEORY OF RESONANT MODE
An antenna is said to be resonant if its input reactance is
zero [31]. In this case, the stored electric field energy and the
stored magnetic field energy around the antenna are equal.
In general, an arbitrary scatterer (without an antenna input
terminal) is said to be resonant if the stored electric field
energy is equal to the stored magnetic field energy around
the scatterer. It is this latter definition that we will use in this
article.

A. FORMULATION
The concept of resonance can further be generalized to an
arbitrary source region V0 without reference to the medium
properties in the source region. Figure 1 shows an arbitrary
source region V0 bounded by ∂V0, in which a current distri-
bution J is assumed to be confined in the source region in free
space. It follows from the complex Poynting theorem that [32]

−
1
2

∫
V0

J̄ · EdV (r) =
∫
S

un · SdS + j2ω
∫
V

(wm − we) dV , (1)

where S = E × H̄/2 is the complex Poynting vector; wm =
µ0H · H̄/4 and we = ε0E · Ē/4 are the magnetic and
electric field energy densities; S is the boundary of a volume
V containing the source region V0, and a bar over a letter
designates the complex conjugate operation. The left-hand
side of (1) can be expressed as

−
1
2

∫
V0

J̄ · EdV (r) = −
1
2

∫
V0

J̄ · (−∇φ − jωA)dV (r), (2)

where φ and A are the scalar and vector potential functions

φ(r) =
ην

4π

∫
V0

ρ(r′)e−jkR

R
dV (r′),

A(r) =
η

4πν

∫
V0

J(r′)e−jkR

R
dV (r′),

with R =
∣∣r− r′

∣∣, η = √µ0/ε0 and ν = 1/
√
µ0ε0. Inserting

the above equations into (2) yields

−
1
2

∫
V0

J̄ · EdV (r)

=
ωην

8π

∫
V0

∫
V0

[
1
ν2

J̄(r) · J(r′)
R

−
ρ̄(r)ρ(r′)

R

]
× sin(kR)dV (r)dV (r′)

+ j
ωην

8π

∫
V0

∫
V0

[
1
ν2

J̄(r) · J(r′)
R

−
ρ̄(r)ρ(r′)

R

]
× cos(kR)dV (r)dV (r′).
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FIGURE 1. An arbitrary source region (without an input terminal) in free
space.

From the above equation and (1), we obtain [1]

W̃m − W̃e = Wm −We =
η

16πν

×

∫
V0

∫
V0

[
J̄(r) · J(r′)+

1
k2
∇ · J̄(r)∇ ′ · J(r′)

]

×
cos(kR)
R

dV (r)dV (r′), (3)

where W̃m and W̃e stands for the total stored magnetic and
electric field energies surrounding the source region (the
radiator); and k is the wavenumber.
It is noted that the expression (3) can also be obtained

by the general expressions for the stored energies around a
radiator [33]. The difference between the stored field energies
can be written as an inner product

W̃m − W̃e = (L̂J, J), (4)

where the integral operator L̂ is defined by

L̂J =
η

16πv

∫
V0

[J(r′)+
1
k2

(∇ ′ · J(r′))∇]
cos(kR)
R

dV (r′). (5)

The source region V0 is said to be resonant if (4) vanishes.
In order to find the resonant frequency and the correspond-
ing current distribution J that makes (4) vanish, a sufficient
condition is

L̂J = 0, (6)

which is valid throughout the source region V0. Apparently,
the derivation of (6) does not rely on the medium parameters
of the source region V0. One can now follow the standard
procedure of themethod ofmoments (MoM) to solve (6) [34].
For simplicity, the source region V0 will be assumed to be a
surface in this paper, so that (6) becomes a surface integral
equation. The current may be expanded in terms of the well-
known Rao–Wilton–Glisson (RWG) basis functions fn [35]

J =
N∑
n=1

jnfn. (7)

Introducing (7) into (6), we obtain the following homogenous
matrix equation by Galerkin method

[L(ω)][J ] = 0, (8)

where [J ] = [j1, j2, . . . , jN ]T , the matrix elements of [L(ω)]
are given by

Lmn =
η

16πν

∫
S0

∫
S0

[
fm(r) · fn(r′)−

1
k2
∇
′
· fn(r′)∇ · fm(r)

]

×
cos(kR)
R

dS(r)dS(r′). (9)

The necessary and sufficient condition for the existence of a
non-zero solution of (8) is that the determinant of its coeffi-
cient matrix is zero

det([L(ω)]) = 0. (10)

The above equation determines the resonant frequencies ω
and the corresponding resonant current modes can be found
from (8).

It is noted that (10) is a sufficient condition that makes (4)
vanish. We now show that (10) is also a necessary condition.
In fact, after following the above discretization, (4) can be
written as a quadratic form

(L̂J, J) = [J ]T [L][J ]. (11)

Since [L] is symmetric, there exists an orthogonal matrix [O]
such that

[O]T [L][O] = [D],

where [D] = [λ1, λ2, . . . , λN ]T is a diagonal matrix. Intro-
ducing a new vector [Y ] = [y1, y2, . . . , yn]T defined by

[J ] = [O][Y ]

and substituting this into (11), we obtain

(L̂J, J) = [Y ]T [D][Y ] =
N∑
n=1

λny2n. (12)

If the above quadratic form is required to be zero for an
arbitrary current distribution J (thus an arbitrary [Y ] by defi-
nition), we must have λn = 0(n = 1, 2, . . . ,N ). This implies

det[L] = det[D] =
N∏
n=1

λn = 0 (13)

since [O]T [O] = [I ], where [I ] is the unit matrix of order N .
Thus we have proved that (10) is also a necessary condition
that make (4) vanish.

B. IMPLEMENTATION PROCEDURE
To evaluate the resonant modes for an arbitrary source region,
the numerical solution process is implemented in MAT-
LAB [36] and may be summarized into three steps.

1) Discretization of the source region: The open-source
software Gmsh [37] is employed to generate the mesh
of the source region.

2) Determine the resonant frequencies: The bisection
method is applied to search the solutions of (10) in the
selected frequency range.
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TABLE 1. Convergence of the resonant frequencies between 1-5 GHz for
rectangular plate.

3) Visualize the resonant current modes and field pat-
terns:Resonant current modes can be obtained from (8)
by using the null function in MATLAB, once the reso-
nant frequenciesω are determined. The far-field pattern
can be determined from the integral representation of
the fields.

C. NUMERICAL EXAMPLE
In what follows, the source region V0 will be called scatterer.
To demonstrate the TRM, we will take a 100 mm × 40 mm
rectangular plate as the scatterer to examine its resonant
modes.

The resonant frequencies of the rectangular plate can be
determined from (10). The first five resonant frequencies are
listed in Table 1 in boldface, and the corresponding resonant
modes (the modal current distributions) and their far-field
patterns are shown in Figure 2. The first resonant mode is the
fundamental mode, which is a half-wavelength mode along
the long sides of the rectangular plate and vanishes at the two
short ends. The second resonant mode is a full wavelength
mode along the long sides and vanishes at the two short ends
as well as in the middle of the plate. The third and the fourth
resonant modes are resonated along the short sides of the
rectangular plate. Note that the current directions along the
two short sides for the third resonantmode are the same, while
those for the fourth resonant mode are opposite. The fifth
resonant mode is one-and-a-half-wavelength resonant mode
along the long sides and the resonant current distribution has
two zeros which divide the rectangular plate into three parts.
The current direction of the central part is opposite to that of
the other two parts.

Table 1 shows the convergence of the theory of the reso-
nant modes as the mesh density increases. In general, using
λmin/10 (Here λmin represents the wavelength corresponding
to the highest frequency 5 GHz) as the mesh size is enough
for the first resonant frequency. Finer meshes are needed for
the higher order resonant frequencies.

D. DISCUSSION
The numerical implementation for the TRM is to find the
zeros of a determinant which is similar to temporal SEM.
However, the calculation of the external natural resonant
mode for temporal SEM is carried out in complex frequency
domain. Compared with TRM, the numerical solutions of the
characteristic values and characteristic modes for CM are first
obtained from a generalized eigenvalue equation, and then

FIGURE 2. Modal currents distributions and their far-field patterns for the
rectangular plate.

one needs to sort and track the characteristic values in a wide
frequency band. Only the frequencies with the characteristic
values close to zero can be considered as the resonant fre-
quencies. In addition, many non-resonance modes (inductive
modes and capacitive modes) are obtained by the temporal
SEM and CM, which not only increase the computational
time and difficulty, but also cause many confusions for the
antenna designers while these modes are applied to enhance
the antenna bandwidth.

The TRM directly determines the resonant modes from
the difference of the stored field energies. Once the resonant
modes are determined, the rest is to use various excitations
to realize the resonant current modes in the selected source
region.

III. APPLICATIONS OF THE RESONANT MODES
In many applications, antenna operates in the state of a single
resonant mode, while multiple resonant modes are often used
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to enhance antenna bandwidth. In this paper, we focus on the
realization of modal currents by planar metal conductors via
proper excitations for easy implementation. In what follows,
we will demonstrate the applications of the TRM in the
design of antennas through three examples: a crossed-dipole
antenna, a dual-band bowtie antenna, and a dual-band circular
polarization antenna. The resonant current modes are first
determined by TRM. Input terminals are then introduced and
positioned at the maximum of the current modes to excite
the corresponding field modes. To validate TRM, the three
examples are also simulated by the Integral Equation Solver
Module in CST Studio [38] and further verified by experi-
ments.

A. CROSSED-DIPOLE ANTENNA
The idea of crossed-dipole antenna was originated from
a circular polarization (CP) antenna, proposed by Bolster
in 1961 [39]. Although the crossed-dipole antenna was theo-
rized in [39] and demonstrated experimentally in [40], there
was barely a theory that explains clearly about its resonant
properties.

Consider a cross (i.e., the source region V0) consisting
of two planar metal strips shown in Figure 3(a), where the
lengths of the horizontal and vertical strips are l1 = 118 mm
and l2 = 97 mm respectively, and the width of the strips is
set as w = 2 mm.

1) RESONANT MODES
From (10), the first three resonant frequencies of the cross
are found to be 1.190 GHz, 1.428 GHz, and 1.443 GHz,
respectively. The corresponding modal current distributions
are depicted in Figure 3 (b) to Figure 3(d). As shown in Fig-
ure 3(b), the fundamental (the first) modal current concen-
trates on the horizontal strip. In contrast, the third modal
current is along the vertical dipole, as indicated by Fig-
ure 3(d). The second modal current, shown in Figure 3(c),
has a distribution that is quite different from the first and the
third. It has two different current paths. The first path consists
of the top vertical arm and the right horizontal arm of the cross
and the second path consists of the bottom vertical arm and
left horizontal arm.

2) SIMULATION AND MEASURED RESULTS
We now use the first and the third mode of the cross to build a
CP antenna. As indicated in Figure 3, the maximum values of
first and thirdmodal current are right at the center of the cross.
To excite these two modes, a voltage source is introduced at
the center of the cross. For this purpose, the cross is broken
into two separate parts to form a crossed-dipole antenna.
The first part consists of the top vertical arm and the right
horizontal arm, and the second part consists of the bottom
vertical arm and the left horizontal arm, with a small gap
at the center of the cross (see the inset of Figure 6(a)). A
discrete face port with 50 Ohm is applied across the gap in
the simulation with CST Studio to excite the first and third
modes simultaneously.

FIGURE 3. A cross and its modal currents. (a) Dimensions. (b) Modal
current at 1.190 GHz. (c) Modal current at 1.427 GHz. (d) Modal current at
1.440 GHz.

FIGURE 4. Photograph of the fabricated CP crossed-dipole antenna.

The fabricated crossed-dipole antenna is shown in Fig-
ure 4. Figure 5 is the reflection coefficient and axis ratio
value of the crossed-dipole antenna. Two distinct reflection
zeros occur approximately around the first and third reso-
nant frequencies in the simulated and measured results. The
measured reflection coefficient and axis ratio all agree with
the simulated results. The fractional bandwidth (FBW) of the
crossed-dipole antenna is 26.6% at −10dB of the reflection
coefficient. The bandwidth of the 3dB axis ratio in the direc-
tion of (θ = 0◦, ϕ = 0◦) is 6.1%, which is comparable with
the same type of CP antennas [41], [42]. The antenna exhibits
a bidirectional radiation pattern. In the direction of θ = 0◦,
it generates a left-hand circularly polarized (LHCP) wave,
while in the direction of θ = 180◦, the radiated wave exhibits
a right-handed circularly polarized (RHCP) behavior. More
CP characteristics about the crossed dipole antenna can be
found in [40].

Figure 6 shows the simulated resonant current distributions
of the crossed dipole at the two reflection zeros shown in
Figure 5(a). As expected, the resonant current at the first
reflection zero mainly concentrates on the two horizontal
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FIGURE 5. Simulated and measured results of CP crossed-dipole antenna.
(a) Reflection coefficient. (b) Axis ratio in the direction (θ = 0◦, ϕ = 0◦).

FIGURE 6. Simulated resonant currents at (a) 1.22 GHz. (b) 1.42 GHz.

arms (see Figure 6(a)) while the resonant current at the second
reflection zero is mainly distributed on the vertical dipole
(Figure 6(b)), agreeing with the simulated modal current
distributions shown in Figure 3.

The radiation patterns at xoz-plane and yoz-plane for the
first and third modal currents from the proposedmodal theory
are compared with the CST simulations and the measured
ones in Figure 7. Figure 7(a) and Figure 7(b) indicate that the
radiation patterns from the proposed modal theory, the CST
simulation, and measured ones agree well at the first resonant
frequency. The maximum gains from the proposed modal
theory, the CST simulation, and the measured ones at the two
cut planes are respectively 2.10 dB, 2.14 dB, and 2.17 dB. The
radiation patterns in Figure 7(a) and Figure 7(b) also indicates
that the radiation at the first resonant frequencymainly comes
from the two horizontal arms. Similar results can be found
in Figure 7(c) and Figure 7(d). In this case, radiation mainly
comes from the two vertical arms.

For the crossed-dipole antenna, the two vertical or hori-
zontal arms do not exactly form a straight line as in Figure
7(a) due to the introduction of a feeding gap. As shown in
Figure 7(a) and Figure 7(d), the difference of the patterns
appearing in x-direction or y-direction between proposed
modal theory, the CST simulation, and the measured results
is most likely caused by the small alteration of the geometry
from the original cross to the crossed-dipole antenna (with the
feeding gap), which brings a perpendicular feeding compo-
nent for the vertical strip (horizontal strip) at the first (second)
resonant frequency. The perpendicular feeding components
also lead to the unexpected currents that either distributes
along the vertical strip in Figure 6(a) or the horizontal strip
in Figure 6(b).

FIGURE 7. Comparisons of radiation patterns between proposed modal
theory, the CST simulation, and measured results. (a) Patterns at
xoz-plane at first resonant frequency. (b) Patterns at yoz-plane at first
resonant frequency. (c) Patterns at xoz-plane at third resonant frequency.
(d) Patterns at yoz-plane at third resonant frequency.

TABLE 2. Parameters of dual-band bowtie antenna.

B. DUAL-BAND BOWTIE ANTENNA
Abowtie antenna is often used for wideband applications, and
its wideband characteristic is determined by the flare angle
and the size of the structure [43], [44]. We now apply the
theory of resonant modes to the design of a dual-band bowtie
antenna with a fixed flare angle and size. Consider a planar
slotted bowtie (without a feeding mechanism) shown in Fig-
ure 8(a), whose geometrical parameters are listed in Table 2.

1) RESONANT MODES
From (10), the first three resonant frequencies are found to
be 1.123 GHz, 2.521 GHz, and 3.568 GHz, and the corre-
sponding modal currents are plotted in Figure 8(b)-(d). The
first modal current distribution at 1.123 GHz is along the
two long edges of slotted bowtie, which is similar to a half-
wavelength dipole. The second modal current distribution
is similar to a full-wavelength dipole while the third modal
current distribution to a one-and-half-wavelength dipole.
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FIGURE 8. Planar slotted bowtie and the modal current distributions.
(a) Dimensions. (b) Modal current at 1.123 GHz. (c) Modal current at
2.521 GHz. (d) Modal current at 3.568 GHz.

2) SIMULATION AND MEASURED RESULTS
We now break the slotted bowtie structure into two separate
parts and introduce a small gap in the middle of the bowtie.
To excite the first and third modes of the slotted bowtie,
a discrete face port with 50 Ohm is applied across the gap
to form a dual-band bowtie antenna.

The fabricated dual-band bowtie antenna is presented in
Figure 9. The simulated and measured reflection coefficients
of the dual-band slotted bowtie antenna are shown in Fig-
ure 10, in which two reflection zeros occur at 1.111 and
3.514 GHz in simulation, very close to the first and third
modal resonant frequencies. The measured reflection coef-
ficient indicates that the first resonant frequency is identical
with simulated one while there is a small deviation between
the measured and the simulated results for the second reso-
nant frequency, which may be caused by fabrication error of
the antenna and the feeding gap introduced in order to build an
antenna. The simulated resonant current distributions at the
center frequencies of the two bands are shown in Figure 11,
agreeing well with the modal currents demonstrated in in Fig-
ure 8.

The radiation patterns for the modal currents at the first
and third resonant frequencies are compared with the CST
simulations and the measurements, and are shown in Fig-
ure 12. The simulated and measured radiation patterns at
xoz-plane and yoz-plane at the first resonant frequency are
depicted in Figure 12(a) and Figure 12(b) and agree well with
those obtained from the theory of resonant modes. Similar
results can be found in Figure 12(c) and Figure 12(d) for
the third resonant frequency. The slight difference of the
radiation patterns between the proposed modal theory and the
simulated results with CST at the third resonant frequency is
most likely caused by the small feeding gap introduced to feed
the slotted bowtie.

C. DUAL-BAND CP ANTENNA
We now combine the slotted bowtie element with the crossed-
dipole element to form a dual-band CP antenna. As shown in
Figure 13(a), the slotted bowtie element is set in the horizon-
tal direction and the crossed-dipole element is placed in the
vertical direction. The detailed dimensions of this new cross
structure are listed in Table 3.

FIGURE 9. Photograph of the fabricated dual-band bowtie antenna.

FIGURE 10. Simulated and measured reflection coefficients of dual-band
bowtie antenna.

FIGURE 11. Simulated resonant currents at (a) 1.111 GHz. (b) 3.514 GHz.

1) RESONANT MODES
The first seven resonant frequencies of the new cross struc-
ture are found to be 1.022 GHz, 1.212 GHZ, 1.261 GHz,
2.841 GHz, 3.498 GHZ, 3.763 GHz, and 3.922 GHz, respec-
tively. The corresponding modal current distributions are
shown in Figure 13(b) to Figure 13(h). The modal current
in Figure 13(b) is mainly distributed on the surface of the
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FIGURE 12. Comparisons of radiation patterns from proposed modal
theory, the CST simulation, and the measured results. (a) Patterns at
xoz-plane at first resonant frequency. (b) Patterns at yoz-plane at first
resonant frequency. (c) Patterns at xoz-plane at third resonant frequency.
(d) Patterns at yoz-plane at third resonant frequency.

TABLE 3. Parameters of dual-band dual-mode dual circular polarization
antenna.

bowtie element, exhibiting a half-wavelength resonant mode.
A similar distribution is also shown in Figure 13(f), which is
the one-and-a-half wavelength resonant mode of the bowtie
element. In contrast, the modal current distributions in Fig-
ure 13(c) and Figure 13(g) mostly concentrate on the vertical
dipole element, and the current distributions on the bowtie
element are very weak. Figure 13(c) is a half-wavelength
resonant mode of the vertical dipole element and Figure 13(g)
is a one-and-a-half wavelength resonant mode of the vertical
dipole element. In addition, one common feature found in
Figure 13(b), Figure 13(c), Figure 13(f), and Figure 13(g) is
that the maximum currents occur at the intersection of the
horizontal bowtie element and the vertical dipole element.
The fourth modal current distribution in Figure 13(e) has a
minimum current value at the intersection instead, while the
modal current distributions in Figure 13(d) and Figure 13(h)
change directions at the intersection.

FIGURE 13. The cross scatter and its modal currents. (a) Dimensions.
(b) Modal current at 1.022 GHz. (c) Modal current at 1.212 GHz. (d) Modal
current at 1.261 GHz. (e) Modal current at 2.841 GHz. (f) Modal current at
3.498 GHz. (g) Modal current at 3.763 GHz. (h) Modal current at 3.922 GHz.

2) SIMULATION AND MEASURED RESULTS
To realize a dual-band CP antenna, we separate the structure
in Figure 13(a) into two parts. The first part consists of the
top vertical dipole arm and the left horizontal bowtie arm,
and the second part consists of the bottom vertical dipole
arm and the right horizontal bowtie arm, with a small gap
at the center of the structure (see the inset of Figure 16).
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A discrete face port with 50 Ohm is applied across the gap in
the CST simulation to excite the first resonant mode, second
resonant mode, fifth resonant mode and sixth resonant mode
simultaneously.

Figure 14 is the photograph of the fabricated dual-band CP
antenna. The simulated and measured reflection coefficients
and the axis ratio of the antenna are shown in Figure 15. It can
be seen that each band has two reflection zeros. The simula-
tion indicates that four reflection zeros occur at 1.08 GHz,
1.14 GHz, 3.46 GHz, and 3.68 GHz, very close to the first
resonant mode, second resonant mode, fifth resonant mode
and sixth resonant mode. The antenna covers the frequency
bands from 0.983 GHz to 1.265 GHz and 3.362 GHz to
3.763 GHz. The fractional bandwidths of the two bands are
25.09% and 11.26% respectively. The simulated 3-dB axis
ratio bandwidths in the direction of (θ = 0◦, ϕ = 0◦)
are from 1.111 GHz to 1.164 GHz (4.66%) and 3.530 GHz
to 3.604 GHz (2.07%) with two CP center frequencies at
1.14 GHz and 3.57 GHz, respectively. The dual-band CP
antenna also exhibits a bidirectional radiation pattern, similar
to the crossed-dipole antenna. However, the dual-band CP
antenna exhibits a RHCP behavior in the direction of θ = 0◦

and a LHCP characteristic in the direction of θ = 180◦, due
to the position change of the longer dipole element.

The resonant current distributions at the four reflection
zeros are presented in Figure 16. The half-wavelength reso-
nant mode and the one-and-a-half-wavelength resonant mode
of the horizontal bowtie element are shown in Figure 16(a)
and Figure 16(c). The similar modal current distributions for
the vertical dipole element can be found in Figure 16(b) and
Figure 16(d). Comparing with the resonant modal current
distributions in Figure 13(b) and Figure 13(f), unexpected
current components appear on the vertical dipole elements
as shown in Figure 16(a) and Figure 16(c). These unexpected
current components are attributed to the feeding gap intro-
duced to build the antenna. The discrete port (see the inset of
Figure 16) brings a vertical current component for the vertical
dipole element during the excitation processes of resonant
modes of the horizontal bowtie element in Figure 16(a) and
Figure 16(c). Similar phenomena are seen in Figure 16(b) and
Figure 16(d) when the resonant modes of the vertical dipole
are excited.

Figure 17 shows the radiation patterns at xoz-plane and
yoz-plane for the first mode, second mode, fifth mode and
sixth mode obtained from the proposed modal theory, the
CST simulation, and the measurements. It can be seen that
the simulated andmeasured radiation patterns agree well with
those from the proposed modal theory. The slight differences
are due to the unexpected current distributions caused by the
feeding gap as mentioned above.

IV. COMPARISONS AND DISCUSSIONS
The temporal SEM, EEM, CM and TRM all belong to the
external resonant modes and are useful in providing guide-
lines for antenna design. However, the external resonant
modes for TRM are quite different from the resonant modes

FIGURE 14. Photograph of the fabricated dual-band CP antenna.

FIGURE 15. Simulated and measured results of the dual band CP
antenna. (a) Reflection coefficient. (b) Axis ratio value in the direction
(θ = 0◦, ϕ = 0◦).

FIGURE 16. Simulated resonant currents at (a) 1.08 GHz. (b) 1.14 GHz.
(c) 3.46 GHz. (d) 3.68 GHz.

resulted from three other methods for its mathematical for-
mulation and physical implication. The logic behind TRM
is to find the possible (intrinsic) current distributions in a
selected geometry. The current distributions are then realized
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FIGURE 17. Comparisons of radiation patterns from proposed modal
theory, the CST simulation, and the measured results. (a) Patterns at
xoz-plane at first resonant frequency. (b) Patterns at yoz-plane at first
resonant frequency. (c) Patterns at xoz-plane at second resonant
frequency. (d) Patterns at yoz-plane at second resonant frequency.
(e) Patterns at xoz-plane at fifth resonant frequency. (f) Patterns at
yoz-plane at fifth resonant frequency. (g) Patterns at xoz-plane at sixth
resonant frequency. (h) Patterns at yoz-plane at sixth resonant frequency.

by antenna designs through introducing input port (exciting
source) in a material body (such as a metal) that occupies the
selected geometry. There have been different ways to realize a
current distribution. For example, one can also use an antenna
array to approximate a continuous current distribution. Some
comparisons between TRM and three other modal theories
are presented in Table 4.

The external resonant modes for temporal SEM (JSEM) are
determined by seeking the zeros of the determinant of various
impedance Z operator defined by the boundary condition
(BC) in various mediums [7]–[10]. The external resonant

TABLE 4. Comparisons of different modal theories for external resonant
modes.

modes for EEM (JEEMn ) [11], [12] are evaluated equivalently
by seeking the zeros of the eigenvalues (νn = 0). The modal
theories of the temporal SEM and EEM are all confined in
complex frequency domain, whichmay significantly increase
computational time and implementation difficulty.

CM [15]–[28] makes use of the real part R and the imag-
inary part X of the impedance operator Z (Z = R + jX )
to solve a generalized eigenvalue equation that determines
the real characteristic values λn and the real characteristic
modes JCMn for a given frequency. One needs to sort and track
the characteristic values in a wide frequency band and only
the frequencies with the lowest characteristic values (close
to zero) can be considered as the resonant frequencies. The
complex operators of Z for CM are also developed from the
boundary conditions, which depend on themedium properties
of the source region.

Distinguished from the other three modal theories,
the mathematical formulation for the TRM is based on the
general expression for the difference between the stored elec-
tric and magnetic field energies in terms of the source current
distribution instead of the boundary conditions used in other
modal theories. Once the modal currents are determined,
the rest is to use various techniques to realize the current
distributions.

V. CONCLUSION
In this paper, a new modal theory is proposed in terms of the
general expression of the difference between the stored mag-
netic and electric field energies. Different from those modal
theories that expand the fields by a linear combination of
fundamental field patterns (modes) constrained by the bound-
ary conditions, the new modal theory directly determines the
resonant modes for an arbitrary source region without using
the concept of inductive or capacitive modes. The resonant
frequencies and the corresponding resonant modes are deter-
mined by requiring that a non-trivial solution exists for a
homogeneous integral equation, which can be discretized into
a real homogenous algebraic equation by a standard MoM
procedure. To validate the proposed modal theory, a crossed-
dipole antenna, a dual-band bowtie antenna and a dual band
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CP antenna have been designed by the new modal theory to
achieve various functions.
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