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ABSTRACT With the continuous development of E-commerce, warehouse logistics is also facing emerging
challenges, including more batches of orders and shorter order processing cycles. When more orders need
to be processed simultaneously, some existing task scheduling methods may not be able to give a suitable
plan, which delays order processing and reduces the efficiency of the warehouse. Therefore, the intelligent
warehouse system that uses autonomous robots for automated storage and intelligent order scheduling is
becomingmainstream. Based on this concept, we propose a multi-robot cooperative scheduling system in the
intelligent warehouse. The aim of the multi-robot cooperative scheduling system of the intelligent storage
is to drive many robots in an intelligent warehouse to perform the distributed tasks in an optimal (e.g.,
time-saving and energy-conserved) way. In this paper, we propose a multi-robot cooperative task scheduling
model in the intelligent warehouse. For this model, we design a maximin-based multi-objective algorithm,
which uses a one-by-one update scheme to select individuals. In this algorithm, two indicators are devised to
discriminate the equivalent individuals with the same maximin fitness value in the environmental selection
process. The results on benchmark test suite show that our algorithm is indeed a useful optimizer. Then it is
applied to settle the multi-robot scheduling problem in the intelligence warehouse. Simulation experiment
results demonstrate the efficiency of the proposed algorithm on the real-world scheduling problem.

INDEX TERMS Many-objective optimization, multi-objective optimization, maximin fitness function, one-
by-one update scheme, multi-robot scheduling optimization.

I. INTRODUCTION
Recently, with the widespread application of autonomous
robots, these cheap, small and smart robots have been
widely employed in the intelligent storage management of
the logistic industry [1]. In principle, the basic task of the
warehouse system in the intelligent storage management
is to transport goods, store goods and distribute goods
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efficiently [2]. Accordingly, the multi-robot coordination
mechanism, if being really efficient and robust, it will make
the entire intelligent warehouse management system more
efficient [3], [4]. In the multi-robot coordination, a set of
individual tasks needs to be scheduled (e.g., allocated and
executed) in an optimal way. Such multi-robot schedul-
ing problem can be formulated as a task allocation model
where a group of autonomous robots should cater to a set
of orders (tasks) in optimal routes satisfied with certain
criteria [5].
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There are already some heuristic approaches to deal with
the multi-robot task scheduling problems for the intelligent
storage scenarios [6]. Milica have proposed a scheduling
problem of a single robot in the process of cargo transporta-
tion and employed a whale optimization algorithm (WOA) to
resolve [7]. Elmi formulated a robotic scheduling problem for
a blocked hybrid workshop and solved it by simulated anneal-
ing method [8]. A multi-objective evolutionary algorithm is
proposed by Nastasi to solve a management problem of auto-
mated warehouse [9]. Xing exploited ant colony optimization
algorithm (ACO) to solve the picking path optimization of
storage and retrieval machines [10]. Xin proposed the prob-
lem of multi-robot coordinated path planning in intelligent
warehouse [11]. Li proposed a multi-task robot scheduling
and task allocation optimization problem under the dynamic
requirements of customers and employed an improved par-
ticle swarm optimization heuristic algorithm (PSO) to solve
it [12]. Chen proposed an on-line route selection method
based on ACO to find picking routes for multiple robots in
uncertain picking time [13].

However, most of the existing works focus on minimizing
the total time cost of multiple robots without balancing the
individual travel cost of each robot [14]–[16]. How to evenly
allocate tasks to each robot, reducing the energy consumption
of the robots in the warehouse, has become a key issue. For
this problem, we need to consider two goals about the robot
energy consumption, i.e., to minimize the total energy of all
the robots, and to minimize the individual energy of each
robot while each robot in the warehouse is not overused.

Therefore, we research the multi-robot cooperative
scheduling optimization problem by considering above goals,
where the energy consumption of each robot needs to
be formulated as an objective function of minimizing the
total energy and the individual energy of the robots. Obvi-
ously, such multi-robot cooperative scheduling problem is an
MaOP [17], where multiple objectives, each of which is spec-
ified by a robot, need to be optimized simultaneously. With
the increase of the robots, the task allocation of the multi-
robot cooperative schedulingmodel will become increasingly
difficult.

Recently, using multi-objective optimization algorithms
(MOEAs) to solve real-worldMaOPs has become an effective
way [18], [19]. Zhou proposed a multi-objective ant algo-
rithm to solve the airline crew rostering problem [20]. Fang
used an improved multi-objective evolutionary algorithm for
HQPM to solve the multi-objective problem for high quality
pattern mining (HQPM), where the objectives are support,
occupancy, and utility [21]. Sun proposed the multi-objective
immune algorithm to solve the multi-objective schedul-
ing problem [22]. Among those, one effective approach
is the indicator-based evolutionary algorithm (IBEA) [23],
which employs performance evaluation indicators to
ensure the convergence and distribution of the solution
set [24], such as HypE [25], R2-MOEA [26], and MOBI-
II [27]. Especially, compared with other MOEAs such as
Pareto-based algorithms [28]–[30] and decomposition-based

algorithms [31]–[33], IBEAs are more effective in solv-
ing MaOPs since they will not lose selection pressure in
high-dimensional space like Pareto dominance, or need the
support of a large number of reference vectors [34]. However,
the indicators in IBEAs are rather computationally expensive,
especially when dealing with a large number of objectives.

Based on the above consideration, we propose a novel
indicator-based algorithm to solve the multi-robot coopera-
tive task scheduling problem, which usually involves more
than ten objectives. In this algorithm, the maximin indicator,
which is computationally efficient, is used to evaluate the
solutions, and a one-by-one update scheme is devised for
the environmental selection. Especially, the maximin fitness
function has shown some effective properties for the opti-
mization (see Section III).

The main contributions of this paper are as follows.

• A multi-robot scheduling optimization model is pro-
posed in this paper, which is designed based on the
energy consumption of the robot, taking into account
the consumption of the robots in performing tasks and
the additional consumption in the process of task alter-
nation. In particular, for this model, a new chromosome
coding method and a special crossover mutation opera-
tor are proposed.

• Aiming to solve our proposed multi-robot scheduling
optimization model effectively, a novel maximin-based
algorithm calledMO-MOEA is developed by using one-
by-one update scheme and two environmental selection
indicators.

• Experiments verify the effectiveness and efficiency of
MO-MOEA. Through a large number of comparisons
and discussions, it is proved that the performance of our
algorithm is more competitive than comparison algo-
rithms.

The rest of this paper is organized as follows. Section II
proposes the model of multi-robot cooperative scheduling.
In Section III, the maximin fitness function and the proposed
algorithm MO-MOEA are shown. Experimental compar-
isons on benchmark test suites and multi-robot cooperative
scheduling optimization problem are provided in Section IV.
Section V outlines conclusions and future work.

II. MULTI-ROBOT COOPERATIVE SCHEDULING PROBLEM
A. MODEL
In the intelligent warehouse system, first we pass the task list
into the system, and the system completes task assignment
through the algorithm, and then the specific storage tasks are
handed over to autonomous robots to complete. In principle,
these storage tasks can be classified as follows:

(1) The warehousing task, which is the first task type of the
system. In this task, goods are transported to empty shelves
according to warehouse requirements.

(2) The transferring task, which is the task of moving
the goods in the warehouse according to user’s demands or
warehouse plans.
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(3) The shipment task, where goods are moved out of the
warehouse according to user demands.

Fig. 1 shows a two-dimensional warehouse environment
schematic diagram, where the black grids indicate that goods
are placed on the shelves, and white grids indicate that the
shelves are empty. The autonomous robot moves along the
aisle area to reach each shelf position. In general, the storage
area of the warehouse is regarded as a two-dimensional planar
grid map. Using this approach, a two-dimensional coordi-
nate system can be constructed, where goods, robots and
obstacles can be uniformly marked and calculated. For the
convenience of display, all goods are received from the left
side of the warehouse and transported out from the bottom of
the warehouse. Table 1 shows the list of tasks that the robots
need to complete. Based on the schematic diagram of this
intelligent storage environment, the multi-robot scheduling
model is established in the followings.

FIGURE 1. Schematic diagram of intelligent warehouse environment.

TABLE 1. Robot’s task list.

Specifically, the multi-robot scheduling model consists
of two parts: the task-specific consumption function and
the inter-task consumption function. Assume that there are
m free moving autonomous robots in an intelligent ware-
house {r1, r2, . . . , rm}, and n pending tasks to be processed
{t1, t2, . . . , tn}, which can be assigned to the warehousing
tasks, transferring tasks and shipment tasks, respectively. The
robot will encounter the following situations when complet-
ing its own series of tasks. For the shipment tasks and ware-
housing tasks, if the coordinates of the task ti is (xi, yi), under
the condition without considering the inter-task consumption,
the self-cost of autonomous robot performing task ti can be
defined as the function Cin(ti). In the intelligent warehouse
environment, the coordinate of the exit is defined as (fout , 0),
and the coordinate of the entrance is (0, fin). Therefore,
the task-specific consumption of the shipment task Cout (ti)
is

Cout (ti) = 2(|xi − fout | + |yi|) (1)

The task-specific consumption of the warehousing task
Cin(ti) is:

Cin(ti) = 2(|xi| + |yi − fin|) (2)

In addition, if goods are transported from a storage location
(xi, yi) to another location (x ′i , y

′
i) by an autonomous robot,

it is called the transferring task, Different from the above
tasks, its task-specific consumption Ct (ti) is

Ctrans(ti) =
∣∣x ′i − xi∣∣+ ∣∣y′i − yi∣∣ (3)

In the intelligent warehouse, in addition to the consumption
during the execution of the task, there is an additional energy
consumption, i.e., the inter-task consumption function. Based
on the above model, the Manhattan distance can be used
to quickly measure the inter-task consumption of tasks. The
inter-task consumption functions are divided into four types:
1) the inter-task consumption between warehousing and ship-
ment tasks; 2) the inter-task consumption between ware-
housing and transferring tasks; 3) the inter-task consumption
between transferring and transferring tasks; 4) the inter-task
consumption between shipment and transferring tasks. Since
the robot will return to the origin when performing the ware-
housing task and shipment task, these two can be grouped into
one category when calculating the inter-task consumption.

Suppose that an autonomous robot performs awarehousing
or a shipment task ti, the final storage location of the task is
located at (xi, yi), while the initial storage location of another
warehousing or shipment task tj is (xj, yj). Then, the inter-task
consumption function ITC(ti, tj) of the task interval is

ITC(ti, tj) =
∣∣xj − xi∣∣+ ∣∣yj − yi∣∣ (4)

Obviously, for warehousing and shipment tasks, the
changes in the order of execution of tasks will not affect its
inter-task consumption function, i.e., ITC(ti, tj) = ITC(tj, ti).
Assume that a robot carries out the transferring task tm

from the storage location (xm, ym) to another location (x ′m, y′m)
while another transferring task tn from the storage location
(xn, yn) to another location (x ′n, y

′
n). Then, the inter-task con-

sumption function ITC(tm, tn) between transferring task and
transferring task can be formulated as

ITC(tm, tn) =
∣∣xn − x ′m∣∣+ ∣∣yn − y′n∣∣ (5)

Similarly, the inter-task consumption function ITC(tm, ti)
between the transferring task tm and the warehousing task ti
is defined as Eq. (6), and the inter-task consumption function
ITC(ti, tm) between the warehousing task ti and the transfer-
ring task tm is defined as Eq. (7), the inter-task consumption
function between the transferring task and the shipment task,
is same to the inter-task consumption function between the
transferring task and the shipment task:

ITC(tm, ti) =
∣∣xi − x ′m∣∣+ ∣∣yi − y′m∣∣ (6)

ITC(ti, tm) =
∣∣xm − x ′i ∣∣+ ∣∣ym − y′i∣∣ (7)

For a better efficiency of the task allocation, an efficiency
function based on the consumption of the autonomous robots
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is defined as

min f = (f1(r1, S1), f2(r2, S2), . . . , fm(rm, Sm))

fi(ri, Si) =
k−1∑
j=1

ITC(tij, ti(j+1))+
k∑
j=1

C(tij) (8)

where Si: ti1 → ti2 → ti3 . . . → tik represents the sequence
assigned to the robot ri, which is a linear sequence indicates
that the task sequence for the robot ri consists of k tasks.
fi(ri, Si) represents the energy consumption of autonomous
robot ri to complete the given task sequence Si. After the
above design, the final optimization goal is to minimize the
total consumption of the robots while minimizing the con-
sumption of each robot.

All consumption functions are evaluated by the Manhattan
distance, which can accurately reflect the travel distance
of autonomous robots in the warehouse. In this process,
the homogeneous autonomous robots with the same speed
and energy consumption are employed. The consumption
evaluation function based on Manhattan distance not only
reflects the energy consumption, but also reflects the task
execution time. Therefore, the proposed model covers the
two issues in the intelligence warehouse, i.e., the energy
consumption and time consumption.

B. CROSSOVER AND MUTATION
In the optimization process of the task sequence, sev-
eral effective chromosome crossover and mutation oper-
ators are designed to obtain better Pareto optimal
front.

To effectively reduce the solution space of the task allo-
cation scheme, we use a combined chromosome method,
as shown in Fig. 2, which also can enhance the converge
performance. In the figure, the task sequences are arranged
in order and evenly distributed. The first part of the encoding
is the sequence information of the tasks to be executed.
The second part is the number of tasks assigned to each
autonomous robot, which is composed of multiple randomly
generated positive integers, the sum is equal to the total
number of tasks to be assigned, and each number represents
the number of tasks assigned to each robot. As shown in the
figure below, five tasks are assigned to the first robot, then its
corresponding task number is the first five task numbers of
the first part, and so on.

FIGURE 2. Schematic diagram of combinatorial chromosomes.

For the common crossover operators, such as single-point
crossover, double-point crossover and multi-point crossover,
they cannot guarantee that newly generated individuals are
still completely allocated. Therefore, we adopt a combined
crossover operator based on the order crossover operator and
binary crossover operator. Specifically, the order crossover
operator is used for the task sequence part of chromosomes,
while the binary crossover operator is for the task number part
assigned by each autonomous robot.

The flow of order crossover operator is shown in Fig. 3.
First, two genes in a pair of parent chromosomes are selected
randomly as the start and end positions, while the selected
gene positions of each parent are the same. Then, two off-
spring are generated, and the genes between the start and
end gene positions are consistent with the parents. Finally,
the position of the gene selected in the first step is found out in
another parent, and then the remaining genes are put in order
in the offspring generated in the previous step. This crossover
operator can ensure that the newly generated offspring is a
scheme of complete task allocation scheme without conflict
detection.

FIGURE 3. Schematic diagram of order crossover.

Unlike the crossover operator, the mutation operator acts
on a single gene, and changes the individual effect by chang-
ing the value of individual or multiple genes. Generally
speaking, the mutation operator can improve the global ran-
dom search ability of the algorithm, maintain the diversity of
the population, and prevent premature convergence. In this
paper, the replacement mutation operator is used to mutate
the task sequence part of chromosome. The specific process is
shown in Fig. 4. Firstly, a sub-bit string is randomly selected
from individuals. Then, a mutation site is selected in the
remaining bit string. Finally, the selected sub-bit string is
inserted into the variant site to form a string of new genes.
For the part of number of tasks assigned by each autonomous
robot, simple Gaussian mutation can be adopted.
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FIGURE 4. Schematic diagram of displacement mutation.

III. PROPOSED METHOD
In the recent literatures, the great potential of IBEAs in
solving MaOPs has been demonstrated [35]–[39]. However,
the indicators in IBEAs are rather computationally expensive,
especially when settling many objectives (i.e., Hypervol-
ume). The maximin fitness function mentioned in this paper
is much less computational complexity than Hypervolume.
Other advantages and features of themaximin fitness function
have been described in the section III.A.

A. MAXIMIN FITNESS FUNCTION
In [40], Balling proposed the maximin fitness function,
within which the maximin function is developed to evalu-
ate the individual’s fitness. The maximin fitness function is
defined as:

fitnessi = maxj6=i(mink (fk (xi)− fk (xj)) (9)

where the minimum value is taken from objective 1 to m,
and the maximum fitness is taken on all solutions x from
population 1 to N , except for the same solution i.

From Eq. (9), we can obtain the following characteristics
of the maximin fitness function [40]–[44]:

1) The dominance relation can be determined by the
maximin fitness. If the fitness of individual less than or
equal to 0 means the individual is non-dominated or weakly-
dominated. The fitness of the individual larger than 0 means
the individual is dominated.

2) The clusters generated by non-dominated individuals
will be penalized by the maximin fitness function, as shown
in Fig. 5(a).

3) The maximin fitness of dominated individuals measure
their distance to the non-dominated front. See Fig. 5(b).

FIGURE 5. Characteristics of the maximin fitness function.

For multi-objective and many-objective optimization, the
above characteristics are useful to select promising solutions

with good diversity and convergence in the multi-objective
search space. However, in Eq. (9), the maximin fitness of
the non-dominated individuals are not only controlled by
other non-dominated individuals, but also by the dominated
individuals, as shown in Fig. 5(b), which may lower the
performance of search Pareto-optimal solutions.

Then, we can obtain a modified maximin fitness func-
tion [43]:

fitnessi = maxj6=i,j∈ND(mink (fk (xi)− fk (xj)) (10)

where ND is the non-dominated solution set. When Eq. (10)
is employed to evaluate individuals in the population, we can
see each non-dominated individual is only affected by other
non-dominated individuals. For example, in Fig. 5(b), indi-
vidual B is no longer controlled by individual D, so the
maximin fitness of individual B equals to −1.

B. ONE-BY-ONE UPDATE SCHEME
Through the maximin function, the contribution of individ-
uals to the convergence of the population, as well as the
distribution of individuals in the population can be reflected.
However, if the indicator is used directly to evaluate the qual-
ity of individuals in the population, the process of individual
selection will face the dilemma of equivalent selection. That
is, there may be individuals with the same fitness value and
cannot be selected. As shown in Fig. 6, individuals A to E are
evenly distributed in the population, so they have the same
fitness. However, in the environmental selection process, not
all individuals will be retained. For example, keep three of
them. Because all individuals have the same convergence,
it is necessary to consider the distribution, individuals A,
C, and individual E should be retained, and individuals B
and D should be discarded. However, if only considering
maximin fitness, the algorithm may not be able to make the
correct selection operation, which will affect the optimization
efficiency of the entire algorithm. To this end, this section will
propose a one-by-one update scheme.

FIGURE 6. Schematic diagram of the dilemma of equivalent selection.

By using the one-by-one update scheme, we can effectively
deal with the dilemma of equivalence selection. The strategy
steps are as follows. First, use the maximin fitness function
to select the first individual of the new population, the max-
imin fitness function is used to calculate the individuals’
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maximin fitness according to the Eq. (11). Then the one-
by-one update scheme is adopted to select the individual
with the least fitness among the candidate individuals to
the new population. In this process, the new population can
maintain good distribution and convergence. As shown in
Fig. 7, individual0073 A to E are uniformly arranged in
the two-dimensional objective space, then three individuals
will be uniformly selected from them using the one-by-one
update scheme. In the first selection, since there is no selected
individual, set the ideal point as the reference point to calcu-
late the individuals’ maximin fitness according to Eq. (11),
as shown in Fig. 7(a). According to the fitness, individual A
or individual E is selected, and we assume individual A is
selected. In the second selection, according to the selected
individual A, the fitness of the remaining individuals will
be calculated. As shown in Fig. 7(b), since the fitness of
individual E is the smallest, individual E is selected. In the
third selection, the selected population includes individual A
and individual E, while the candidate individuals include
individual B, individual C, and individual D. After that, cal-
culate the fitness of the candidate individuals, the result is
shown in Fig. 7(c), individual C has the smallest fitness and
is selected. Finally, through this scheme, individual A, indi-
vidual C, and individual E are selected, as shown in Fig. 7(d),
maintaining a good distribution.

FIGURE 7. Schematic diagram of environment selection based on
one-by-one update scheme.

The following is the formula for selecting the first individ-
ual for the new population:

fitness_first i = max(mink (fk (xi)− z∗k )) (11)

where z∗ is the ideal point after normalization.

C. PROPOSED ALGORITHM:MO-MOEA
In this section, the overall framework of the algorithm is
given. The specific execution steps of Algorithm 1 are as
follows.

First, N individuals are randomly initialized as the initial
parent population (Line 1). Then, based on the maximin

Algorithm 1 General Framework of MO-MOEA
1: Objective normalization (P)
2: while the given termination condition is not reached do
3: P′ =MatingSelection (P, N );
4: P′′ = Variation (P’, N );
5: Q = P ∪ P′′

6: P = Environmental_Selection (Q, N );
7: end
8: return P

fitness value of each individual, a sufficient number of indi-
viduals are added to the mating pool (Line 3). Then, the sim-
ulated binary crossover operator and polynomial mutation
operator are used to perform crossover and mutation oper-
ation to generate offspring population P′′ (Line 4). After that,
a certain number of individuals are selected from the com-
bined populationQ through the Environmental Selection pro-
cess to form a new population P (Line 6). Continue the above
process until the given termination condition is reached. In the
following sections, the environmental selection process will
be introduced in Algorithm 2.

1) NORMALIZATION
In this paper, the Normalization is also indispensable, which
can be used to improve the algorithm’s ability to solve scaled
problems. Normalization has proved to be helpful in solving
the problem of different value ranges for each objective [45].
In the normalization process, the formula is defined as

f ′m(x) =
fm(x)− z∗m
znadm − z∗m

(12)

where z∗m is the ideal objective, znadm is the nadir objective,
m represents the index of the objective dimension, m ∈
{1, 2, . . . ,M}. Due to the Pareto optimal front is unknown,
we estimate the ideal objective and nadir objective from the
solution set.

2) ENVIRONMENTAL SELECTION
The steps of the Environment Selection are shown in Algo-
rithm 2. First, objective normalization is implemented for
each objective, the formula is defined in Eq. (12) (Line 1 in
Algorithm 2). Then, the individuals are selected according
to the similarity verifying method (Line 2 in Algorithm 2).
Then the number of non-dominated individuals ND in the
population S is determined according to the characteristic 1 of
the maximin fitness function (Line 3 in Algorithm 2). If the
size of non-dominated individuals is larger than N , we set
the ideal point as the reference point. According to Eq. (11),
the individuals with the smallest fitness are added to the
new population P. Then, by calculating the maximin fitness
between the new population P and the candidate individuals
in the population S according to the Eq. (9), the individuals
are selected one by one to the new population P (Line 5-15 in
Algorithm 2). If the number of non-dominated individuals is
not larger than the required number N , first, non-dominated
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Algorithm 2 Environmental_Selection (Q, N )
Input: Q (combined population), N (population size)
Output: P (output population)
1. Objective normalization (S);
2. S = similarity_verify (S, min_dif)
3. ND = Sort(S); /∗ The number of the non-dominated solu-
tions are determined according to the Eq. (9) ∗/
4. if |ND| > N
5. z∗: the ideal point of non-dominated solutions
6. P1 = argmini={1,2,...,|S|}{fitness_first i};
7. S = S P1;
8. for i = 1: N-1
9. MF = argmini={1,2,...,|S|}{fitnessi};
10. if |MF | > 1
11. MS = Niching (MF, P);
12. P = P ≤MS;
13. else
14. P = P ≤ MF;
15. end if
16. end for
17. else
18. P = P ∪ ND;
19. US = S P;
20. for i = 1: N-|ND|
21. MF = argmini={1,2,...,|US|}{fitnessi};
22. if |MF | > 1
23. MS = Niching (MF, P);
24. P = P ≤ MS;
25. else
26. P = P ≤ MF;
27. end if
28. end for
29. end if
30. end for
31. returnP

individuals are added to the new population P. After that,
according to the maximin fitness of the candidate individuals,
individuals are one by one selected to the new population
P (Line 18-26 in Algorithm 2). The procedure ends when
the number of individuals in the new population exceeds the
population size. And Niching (Line 11,23 in Algorithm 2) is
designed to further address the equivalent selection problem,
the detail is described in Algorithm 3.

3) TWO PERFORMANCE INDICATORS
Although one-by-one update scheme can be used to select
individuals that are more suitable for the new population,
it may still have a small probability of facing the equiv-
alent selection problem, so other methods are needed to
select better individuals from individuals which have same
maximin fitness. The following two performance indica-
tors are employed to further select individuals. First of
all, convergence is an essential evaluation indicator when
solving MaOPs. The Euclidean distance from the candidate

Algorithm 3 Niching
Input:MF: sloutions which have same maximin fitness
Output: MS: solution with minimal angle and Euclidean
distance
1. ES = argminxi∈MF DIS(xi);/∗ ES is a set of solutions with
same Euclidean distance to the ideal point ∗/
2. if |ES| > 1
3. MS = argmaxxi∈ES,y∈Pangle(xi, y);
end
5. if |MS| > 1
6. MS = random (MS);
7. end
8. returnMS

individual to the ideal point obtained by Eq. (13) is applied
to evaluate the convergence of the candidate individual. This
indicator can effectively evaluate individuals with better con-
vergence in the objective space [46].

DIS(x) =

√∑M

m=1
f 2m(x) (13)

The individual with the smallest DIS value is regarded as
the closest one to the ideal point after normalization, and it
will be given priority in the next selection.

If the candidate individuals have the sameDIS value at this
time, considering from the perspective of population diver-
sity and propose a diversity indicator to evaluate individuals
according to Eq. (14). In high dimensional space, cosine value
is effective to measure the distribution of the individuals.
In this paper, the angle of the individual in the objective space
is used to measure the diversity, the formula is as follows:

angle(x, y) = arccos( f (x)T f (y)
||f (xi||||f (y)||

) (14)

where f (x) and f (y) are the normalized vectors of the two
individuals x and y in the objective space, respectively.
Niching is used to further solve the dilemma of equivalent

selection, as shown Algorithm 3. In this part, we use two
indicators to evaluate the individuals with the same max-
imin fitness, called the same equivalent individual set (ES).
First, the Euclidean distance to the ideal point of the ES
were compared, the individual with minimal distance to the
ideal point will be selected, called individuals with minimal
Euclidean distance (MS). If the size of MS is larger than 1,
the acute angle between MS and population P is used to
measure the distribution ofMS to the population P. Only one
individual will be selected and added to the new population P.
If more than one individual remains after selection by these
two indicators, an individual is randomly selected and added
into the new population P.

4) SIMILARITY VERIFICATION
In Algorithm 4, we proposed an approach to verify the indi-
viduals’ similarity. The individuals in S are selected one by
one if their similarity is smaller thanmin_dif, which is defined
in [43] (Lines 2-9 in Algorithm 4).
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Algorithm 4 Similarity_verification (S, min_dif)
Input: P: population, min_dif:
Output: S’: output population
1. S ′ = ∅, N= |S|/2
2. for i = 1 to |S| do
3. for j = 1 to M do /∗M is the number of problem’s
variables∗/
4. if |S[i].fj − S[i].fj| > min_dif
5. if |S ′| < NS ′ = S ′ ∪ S[i];
6. end
7. end
8. end
9. end
10. return S’

D. COMPUTATIONAL COMPLEXITY
First, the time complexity of objective normalization (Line 1
of Algorithm 2) is O(mN). The complexity of the similarity
verification process (Algorithm 4) is O(Nlog2N) in the num-
ber of comparisons. The maximin fitness calculation of the
population requiresO(mN) additions. The time complexity of
using the maximin function to one by one select individuals
is O(mN2). In the worst case, the computational complexity
of the niching process of Algorithm 3 is O(NES ), where NES
is the amount of ES. And NES �N. And the Algorithm 3 is
rarely used. In a word, the overall computational complexity
of one generation in MO-MOEA is O(mN2).

IV. EXPERIMENTAL STUDY
This section includes two parts: 1) preformation validation
on benchmarks, which exhibits the advantages of the pro-
posed algorithm in many-objective optimization; 2) appli-
cation on multi-robot cooperative scheduling optimization
problem [47], [48].

A. EXPERIMENTAL RESULTS ON BENCHMARKS
This section gives comparison results between MO-MOEA
and other five start-of-art MOEAs, i.e., MOEA/D [31],
MOMBI-II [27], NSGA-III [49], RVEA∗[50], and MD-
MOEA [43], on the benchmark test suite MaF [51].
These contrast algorithms include three mainstream
methods: 1) Pareto-based algorithm, i.e., NSGA-III,
2) decomposition-based algorithm, i.e., MOEA/D, RVEA∗,
and 3) indicator-based algorithm i.e., MOMBI-II and MD-
MOEA. We use these classical algorithms to compare with
our proposed algorithm to verify its effect. Experiments are
performed on PlatEMO with MATLAB R2018b [52,53].
Each test problem is tested in 5-, 8-, 10- and 15-objective
instances. Then, each algorithm is run for 20 times on each
test instance independently [54]. We verify the performance
of the algorithm from two aspects: the image obtained by the
algorithm solving the instance and the widely used perfor-
mance indicators.

1) BENCHMARK TEST PROBLEMS AND PERFORMANCE
INDICATORS
MaF is a widely used test suite, which is adopted for empir-
ical comparisons in this paper. And MaF test suite includes
some ‘‘convex’’ DTLZ problems [55] and severalWFG prob-
lems [56]. Compared with other test suites, MaF test suite
shows some characteristics that are more in line with actual
problems, which represent the real scene well, and can more
effectively verify the effectiveness and effect of MO-MOEA.
This test suite is composed of optimization problems with
many different Pareto front. Therefore, the MaF test suite is
used for comparison between algorithms.

In this paper, we conduct experiment on problems with 5,
8, 10, and 15 objectives. The number of decision variables
is set to M + 9 for MaF1-6, MaF10-12, M + 19 for MaF7,
5 for the MaF13 and 2 for MaF8, 9. For the large-scale
case MaF14,15, the number of decision variables are M∗20.
A detailed description of the parameters can be found in [51].

In this work, we use IGD as metric to evaluate the exper-
imental results of the algorithms. IGD is a comprehensive
indicator to measure the convergence and distribution of
the solution sets. For more detail of metric IGD, refer
to [57], [58].

2) EXPERIMENTAL CONFIGURATION
1) Population size: As we all know, the population size
in MOEA/D, MOMBI-II, RVEA∗ and NSGA-III cannot be
arbitrarily defined. They are all specified by a two-level ref-
erence point strategy. For the fairness of comparison, the pop-
ulation size of other algorithms to the same value as the
previous algorithms. See the Table 2.

TABLE 2. Population size of different objective numbers.

2) Crossover and mutation: We use the commonly used
simulated binary crossover (SBX) [59] and polynomial muta-
tion [60] for crossover mutation. The probability of crossover
and mutation is set to 1.0 and 1/D (where D is the number
of decision variables). Set the distribution index of SBX and
polynomial mutation to 20 [61].

3) Termination Conditions: Each algorithm runs indepen-
dently 20 times. For MaF1-15, the maximum number of
fitness evaluations (FEs) of the algorithm is determined by
the decision variable, which is max {100000, 10000 × D}.
Details can refer to [49].

4) Other parameters: For MOEA/D, the Tchebycheff
approach is used and the neighborhood range is set to N/10.
On the algorithms MD-MOEA and MO-MOEA, min_dif =
0.0001 (minimum difference) are employed.
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TABLE 3. The mean and standard deviation of IGD on several MaFs.

TABLE 4. Average robot consumption provided by the algorithm in the 10-objective robot scheduling problem.

3) EXPERIMENTS AND ANALYSIS ON MAFS
In this section, the performance of MO-MOEA in solving
many-objective optimization problems is verified on theMaF
benchmark problems. Table 3 shows the experimental results
of the six algorithms after 20 runs and highlights the best
results (completed results are provided in the supplementary
file). The Wilcoxon rank sum test is used, where the signifi-
cance level is set to 0.05, and the statistics are performed. The
symbols ‘‘+’’, ‘‘−’’, and ‘‘≈’’ respectively indicate that the
compared MOEA performs significantly better, significant
worse or significantly similarly to the MO-MOEA.

As shown, we can see that MO-MOEA has demonstrated
strong competitiveness, achieving first ranks on most of the
MaF instances. MD-MOEA performs poorly on the MaF test
suite. The reason may be that MD-MOEA uses a one-time
comparison method to select the solution. By contrast,
the reason for the promising performance of MO-MOEA
is that one-by-one update scheme makes a better diversity
between non-dominated individuals. This scheme ensures
that the algorithm considers convergence and diversity in the
process of selecting individuals. Through the above experi-
ments, it can be determined that MO-MOEA has performed
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TABLE 5. Average robot consumption provided by the algorithm in the 15-objective robot scheduling problem.

FIGURE 8. Final solution set of involved algorithms on the 10-objective robot scheduling problem, shown by parallel coordinates.

FIGURE 9. Final solution set of involved algorithms on the 15-objective robot scheduling problem, shown by parallel coordinates.

well in solving MaOPs, and MO-MOEA has also shown high
efficiency on large-scale problems.

4) OTHER EXPERIMENTAL RESULTS
The parallel coordinates of the final solutions of the algo-
rithm on 15 objectives on several MaFs are provided in

the supplementary file. As shown, the compromise surface
formed by the solution finally generated by MO-MOEA is
better than the surface generated by other algorithms in both
convergence and distribution, while MD-MOEA and RVEA∗
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are also competitive, but the effect is not very good from the
perspective of distribution.

B. EXPERIMENT RESULTS ON MULTI-ROBOT
SCHEDULING PROBLEM
The benchmark test suite proves that MO-MOEA is effective
in many-objective optimization. Then, the proposed algo-
rithm is used to optimize the multi-robot scheduling problem
of intelligent warehouse. Suppose that in the intelligent ware-
house with a length and width of 100m, the goods entrance
of the warehouse is at (0, 100) and the exit of the warehouse
is at (100, 0). There are 10 or 15 autonomous robots in the
intelligent warehouse, all of which run at a speed of 1m/s
and are initially located near the origin of coordinates. There
are 1,000 storage tasks to be processed, including 300 ware-
housing tasks, 300 shipment tasks, and 400 transferring
tasks in the intelligence warehouse. All tasks are generated
randomly.

To ensure that the experimental results are not affected
by randomness, the task list is executed 10 times inde-
pendently by the above algorithm MO-MOEA and the
other two indicator-based algorithms IBEA and MD-MOEA.
The population size of these algorithms is 500, and the max-
imum fitness evaluations is 100000.

Table 4 and Table 5 show the average motion distance of
each robot optimized byMO-MOEA, IBEA andMD-MOEA.
They also represent the energy consumption of each robot
to perform storage tasks. The above algorithms all realize
the scheduling and allocation of all storage tasks. It can be
found from the data that the consumption function values of
all autonomous robots are on the same order of magnitude,
so the load of each robot is basically balanced.

Fig. 8 and Fig. 9 show the coordinates of the final solu-
tions formed by the algorithms in the 10− and 15-objective
multi-robot scheduling optimization problem. As can be seen
from the figures that the compromise surface formed by the
solutions finally generated by MO-MOEA is superior to the
compromise surface generated by other algorithms in terms
of convergence and distribution, the energy consumption of
robots obtained by MO-MOEA is smaller in general. It can
be seen from the figure that the solution set optimized by the
MO-MOEA algorithm rarely has extreme solutions, that is,
it is rare that one robot undertakes most of the tasks and other
robots undertake a small part of the tasks.

We employ HV [62] to determine the effect of the algo-
rithm on actual problems. Choose a set of maximum val-
ues as the reference point for each objective of HV, such
as 200000 for each objective. Generally, the HV value of
MO-MOEA is larger than traditional indicator-based algo-
rithm IBEA and maximin-based algorithm MD-MOEA.
In other words, MO-MOEA can obtain a solution set with
better distribution and convergence. Through such experi-
ments, it can be learned that MO-MOEA can provide man-
agers with more diverse choices from the similar efficient
plans. After the above experiments, it can be shown that the

TABLE 6. Mean and standard deviation results of HV obtained by
involved algorithms on multi-robot scheduling problem.

proposed algorithm has also achieved good results in solving
multi-robot scheduling problem.

V. CONCLUSION
This paper formulated a multi-robot scheduling model in the
intelligence warehouse and designed a novel maximin based
algorithm to solve the model. This algorithm uses one-by-one
update scheme together with additional performance indica-
tors and similarity verification method to solve the dilemma
of equivalent selection within traditional maximin function.
Experimental results on a set of many-objective benchmarks
with up to 15 objectives show the effectiveness of our pro-
posed algorithm in solving MaOPs. Then our algorithm was
applied in the multi-robot scheduling problem, and received
promising results.

In the future, we will make further research on the effi-
ciency of the maximin fitness function in solving practical
problems. This approach will be used to resolve more com-
plex real-world multi-robot scheduling problems with more
objectives.
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