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ABSTRACT The current global bandwidth shortage in orthogonal frequency division multiplexing
(OFDM)-based systems motivates the use of more spectrally efficient techniques. Superimposed train-
ing (ST) is a candidate in this regard because it exhibits no information rate loss. Additionally, it is very
flexible to deploy and it requires low computational cost. However, data symbols sent together with training
sequences cause an intrinsic interference. Previous studies, based on an oversimplified channel (a quasi-
static channel model) have solved this interference by averaging the received signal over the coherence time.
In this paper, the mean square error (MSE) of the channel estimation is minimized in a realistic time-variant
scenario. The optimization problem is stated and theoretical derivations are presented to attain the optimum
amount of OFDM symbols to be averaged. The derived optimal value for averaging is dependent on the
signal-to-noise ratio (SNR) and it provides a better MSE, of up to two orders of magnitude, than the amount
given by the coherence time. Moreover, in most cases, the optimal number of OFDM symbols for averaging
is much shorter, about 90% reduction of the coherence time, thus it provides a decrease of the system delay.
Therefore, these results match the goal of improving performance in terms of channel estimation error while
getting even better energy efficiency, and reducing delays.

INDEX TERMS OFDM, superimposed training, time-variant channel, channel estimation, least squares,
optimization, averaging.

I. INTRODUCTION
Wireless communications have becomemore demanding and
complex with each generation, and the fifth generation (5G)
expects to improve on the capabilities of the preceding ones
by several orders of magnitude, either in data traffic, lower
latencies or multi-connectivity. Last but not least, it espouses
the green goal of reducing energy consumption require-
ments [1]. Furthermore, the global bandwidth shortage moti-
vates the deployment of underexploited transmission ranges
like millimeter wave (mmWave) regime [2], [3]. However,
if the utilisation of these bandwidths is not efficient and with
proper techniques or suitable waveforms, the problem will
persist.
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approving it for publication was Chen Chen .

Orthogonal frequency division multiplexing (OFDM) has
become the most appealing scheme for multiple reasons, e.g.,
it provides high data rates with efficient management of the
frequency resources, it requires low computational cost, and
is robust in front of multipath scenarios, among others [4],
[5]. Nevertheless, it usually requires an accurate channel
estimation in order to compute a coherent demodulation. The
common approach is to use pilot-symbol assisted modula-
tion (PSAM) techniques which set aside some OFDM sym-
bols to allocate training sequences [6]. Several compressed
sensing (CS) techniques also proved to obtain accurate chan-
nel estimations [7], particularly when tracking time-variable
underwater accoustic (UWA) channel models [8]. In any
case, this exclusiveness in training resources is aggravated
in high mobility scenarios where time variability of the
channel requires a high density of tracking pilots. Besides,
massive multiple-input multiple-output (MIMO) candidate
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schemes hamper the deployment of non-overlapping training
sequences [9], [10].

Therefore, superimposed training (ST) may become an
attractive solution because these techniques superimpose
the pilot symbols over the data stream. Thus, ST better
exploits the bandwidth efficiency, there is no loss of infor-
mation rate, and it is easier to avoid pilot contamination
issues. Then, the channel estimation can be performed using
techniques like maximum likelihood (ML), minimum mean
square error (MMSE) or least squares (LS), as well as their
linear simplifications or more accurate iterative methods [6],
[11]–[15]. Finally, the pilot contribution is usually retrieved
after equalization so the original data symbols can be recov-
ered. The main drawback of these schemes is that the channel
estimation deteriorates because the superimposed data sym-
bols introduce an additional interference [16].

ST schemes tend to be very flexible since different pilot
configurations may be set over the OFDM grid. In [6], it was
proven that the optimum MSE under ML and MMSE chan-
nel estimation techniques is obtained when equally spaced
superimposed pilots are deployed. In this case, those positions
which do not have a superimposed pilot may either employ
or interpolate the channel estimation from nearest-neighbour
positions.

Moreover, ST techniques are known to be remarkably
easy to deploy over other schemes. For example, it may
be employed when refining the frame synchronization [17],
in cooperative relay scenarios [14], as well as in unmanned
aerial vehicles (UAV) assisted systems [18]. Adaptation to
other waveforms like filter bank multicarrier (FBMC) [19] or
to other technologies such as non-orthogonal multiple-access
(NOMA) [20], visible light communications (VLC) [21],
MIMO systems with sparse channels [15] or with many
access devices [22] is feasible, too.

The contribution of [11] conceives a trade-off between
the MSE and the throughput when the channel estimation
is performed by LS and MMSE methods. It also computes
the optimum power of the superimposed pilot in a closed-
form solution. Following this analysis, [12] optimizes the data
interference by introducing an additional control parameter
that improves the MSE and capacity performances. In all the
above works, before performing the LS channel estimation,
the first order statistics of the received signal, i.e. the mean,
is empirically computed. Actually, this averaging of the signal
is mandatory in order to ensure a valid channel estimation
and data detection (see Section III). Additionally, it helps to
reduce the noise and the interference giving more accurate
channel estimations.

In terms of channel modeling, most studies define the
channel to behave under quasi-static constraints, which mean
that for a specific number of time symbols, whose dura-
tion is given by the coherence time, the channel coeffi-
cients remain completely constant. This simplification is
usually employed for two reasons: firstly, the averaging of
the received signal over these specific symbols guarantees
a better estimation because the channel has not changed,

and secondly, the simpler model allows closed-form MSE
expressions or their respective optimization solutions to be
obtained.

Despite that, more realistic time-variant channel models
have been presented in the literature [23]. The classical
approach is described in [24] and [25] where densely scat-
tered rays are received with an omni-directional antenna and
the spread in frequency domain is dependent on the relative
speed between the user equipment (UE) and the base station
(BS). Later, [26] proposed a finite-impulse response (FIR)
filter that correlates independent Gaussian random variables
into a realistic time variability similarly to [24].

Several works have attempted to discuss the implemen-
tation of ST in more realistic channel models. In [27],
the coefficients of the channel were defined as Fourier basis
expansions which were then approximated by a truncated
discrete Fourier basis. Other approaches implemented the
time-varying models of [28] which expressed the chan-
nel with discrete prolate spheroidal basis, particularly with
Slepian sequences as the basis functions, [29]. Even though,
both studies were more realistic than previous works that
considered quasi-static constraints, they did not optimize the
averaging since the expressions of the channel became too
complex.

In this paper, for the first time to the authors’ knowl-
edge, the optimal averaging in ST schemes under realis-
tic time-varying channels that follow a simplified version
of [26], is studied. Hence, the correlation of the channel
is no longer quasi-static nor is the channel created using a
basis expansion approach. In this scenario, a closed-form
expression for the MSE of the LS channel estimation is
obtained. Then, a classical differential calculus optimization
is performed and the optimum number of averages can be
computed by solving a transcendent equation. It is shown that
the quasi-static approach overestimates properties that highly
deteriorate the theoretical results whereas the proposed chan-
nel model matches the realistic one. Finally, the consideration
of averaging the quasi-static period, given by the coherence
time, is disapproved and an optimal number of time aver-
ages are computed for a specific signal-to-noise ratio (SNR).
Moreover, it is found that using the optimal values determined
by these derivations outperforms previous works in terms of
MSE of the channel estimation and even leads to a reduction
in delay.

The remainder of this paper is organized as follows:
in Section II the system model is described, and the pro-
posed channel model is compared with other state-of-the-art
approaches. In Section III, the analyticalMSE of the LS chan-
nel estimation is computed, first under quasi-static constraints
and then under the proposed channel model. Section IV
provides the optimum number of averages in time, where
a second derivative test gives a rule of thumb to prove the
minimum condition. Section V shows the simulation results
and validates the MSE expressions. Finally, in Section VI
some conclusions are pointed out. Also, some computations
are detailed in Appendices A-D.
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Notation: For simplicity, the analysis is element-kind and
non-vectorial notation is required, except in the Appendices,
which are self-contained; (·)∗ denotes complex conjugate,
b·e and d·e represent the nearest and the next integer value
operation, respectively, E{·} is the expectation, Em{·} is the
mean over m and Var {·} refers to the variance.

II. SYSTEM MODEL
In this analysis, a ST scheme is implemented in an single-
input single-output (SISO) downlink (DL) scenario and a
superimposed pilot is added in every position of the OFDM
grid.

For ease of notation, a single antenna system is defined
because the scope of this work is to analyze the channel
estimation stage, where the LS does not involve any spatial
processing and each link estimation is treated independently.

A. TRANSMITTER
An OFDM system with K subcarriers is deployed and every
time-frequency resource contains data and a superimposed
pilot. In the frequency domain, the complete symbol x for
the k-th subcarrier and the m-th time symbol is,

xkm = skm + c
k
m ,

{
∀ k ∈ [0, · · · ,K − 1]
∀m ∈ N0

(1)

where ckm and skm are pilots and data symbols, respectively,
and N0 is the set of non-negative integers.
Also, the power of skm and ckm , defined as Ps and Pc,

respectively, are related as follows,

P = Ps + Pc

{
Ps = (1− β)P
Pc = βP

(2)

with P being the total power of xkm and β the power alloca-
tion factor, a parameter that determines the amount of pilot
power within the total power. This parameter is bounded
between 0 and 1, where 0 would represent a system without
pilots and 1 would imply a system without data.

After creating the symbols, these are introduced into the
transmission scheme of the OFDM system where some
guardbands are added in order to prevent cross-talking
between adjacent systems, a K -point inverse fast Fourier
transform (IFFT) converts the signal into the time domain and
a cyclic prefix (CP) is added in order to prevent inter-carrier
and inter-symbol interference (ICI and ISI, respectively).

B. RECEIVER
It is assumed that the temporal signal is correctly received
with perfect synchronization and the receiver removes the
CP, then a K -point fast Fourier transform (FFT) converts
the signal back to frequency domain and the guardbands are
discarded. The received symbol y for the k-th subcarrier and
m-th time symbol is,

ykm = H k
mx

k
m + w

k
m = H k

ms
k
m + H

k
mc

k
m + w

k
m (3)

where H k
m is the channel coefficient and wkm is the

additive white Gaussian noise (AWGN) of the system,
both in the frequency domain, too. Their statistics follow

H k
m ∼ CN

(
0,

σ 2h
K

)
andwkm ∼ CN

(
0, σ 2

w
)
, with σ 2

h being the

power of the channel (σ 2
h = 1, by convention) and σ 2

w the
noise power.

This expression shows that the received signal is composed
of the transmitted symbol with the interference of the super-
imposed pilot, both modified by the channel, and the white
Gaussian noise. In this case, the amount of data interference
is proportional to the ratio of powers between pilots and data,
which is controlled by β.

Then, the ST scheme estimates the channel and employs
the estimation to retrieve the original data by removing the
pilot contribution and equalizing the signal.

Finally, the SNR is defined as

ρSNR =
Pσ 2

h

σ 2
w
. (4)

C. CHANNEL MODEL
Previous studies of ST defined a quasi-static channel model
which guaranteed that for a specific number of symbols,
determined by the coherence time, the channel was com-
pletely constant. However, the coherence time or coherence
symbols are a rough estimation in which the channel remains
fairly constant. Better simplifications may be used that con-
sider a smooth evolution of the channel coefficients.

This correlation in time can be implementated by filtering
independently each component of the randomly generated
channel. As a result, the k-th frequency coefficient of the
channel has the following correlation between the m-th and
the m′-th time symbols,

E
{(
H k
m

)∗
H k
m′

}
=
σ 2
h

K
ρt (γ 1m) ,

1m =
∣∣m− m′∣∣ , γ = 2π

fd
1f

(
1+

Lcp
K

)
(5)

where ρt (·) is the correlation profile of the channel model, γ
is a constant that considers the impact of the OFDM scheme,
1f is the subcarrier spacing, Lcp is the number of samples of
CP and fd is the Doppler frequency of the scenario, which
is computed as fd = v

c fc, with v being the relative speed
between the UE and the BS, c the speed of light constant and
fc the carrier frequency in which the signal is modulated. The
proof of (5) from the temporal domain definition is shown in
Appendix A.

The possible expressions of ρt (·) are shown in Table 1.
In [25], a commonly used channel correlation, referred
as Clarke’s model, is proposed. However, a more realistic
approach is defined in [26], where J0 and J0.25 are the 0-th
and fractional 0.25-th order Bessel function of the first kind,
0(·) is the Gamma function, A is a normalization factor and
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wH is a Hamming window implemented in order to reduce
the Gibbs effect.

Nevertheless, these expressions are intractable when com-
puting analytical solutions. As a consequence, in order to
obtain closed-form expressions of the MSE, a further simpli-
fication is preferred using the unnormalized sinc (·) function.
In order to verify the validity of the proposed model,

in Figure 1 the different models of Table 1 are shown when
the mobility of the UE relative to the BS is 30 km/h.

TABLE 1. Summary of correlation profile implementations ρt (γ1m).

FIGURE 1. Channel correlation models of a UE moving at 30 km/h.

The system considered in the simulations implements the
5G New Radio (NR) numerology [30]. The modulation of
the signal is performed in the mmWave regime with a carrier
frequency of 28 GHz, and a subcarrier spacing of 120 kHz.
The resultant CP overhead is about 7% of the symbol length.
This configuration yields a coherence time of 60 symbols
(light blue area) when it is computed with the rule of thumb
Tcoh = 0.423

fd
[31].

As Figure 1 shows, the validity of the proposed sinc (·)
model (green dashed line) is proven since it coincides with the
realistic model of [26] (blue dash-dotted line), at least within
the coherence time regime. It is true that these expressions
do not perfectly match in highly uncorrelated time symbols,
e.g.1m = 100, however, since the optimum number of aver-
ages will not be within these ranges, a perfect overlap is
therefore not crucial. Moreover, a numerical simulation of a
channel created from filtering independent Gaussian random
variables with the correlation weights of the realistic model
of [26] (solid black line) is plotted. Indeed, this simulated

curve matches the correlation profile employed in its filtering
stage (the realistic model), hence, it matches the proposed
model, too. Surprisingly, both curves differ substantially from
the channel model of [25] (red dotted line), especially at the
coherence time edges. Obviously, the state-of-the-art quasi-
static approach (light blue area) is the worst overestimated
simplification.

Finally, for the sake of simplicity, since the time and
frequency domain effects can be modeled independently,
it will be assumed that the channel is flat in the frequency
domain. Otherwise, an additional analysis could be derived
discussing the inaccuracy of the estimation due to the uncor-
relatedness of the subcarriers. Analogously to the analysis
of this paper in the time domain, the correlation profile
in the frequency domain would be linked to an additional
error. For this reason, since the scope of this study is to
analyze a time-variant channel, i.e. the correlation in the time
domain, all the previous channel’s notation is considered to be
k-th subcarrier-independent and the k index may be omitted.
The rest of the manuscript is consistent with this assumption.

III. CHANNEL ESTIMATION PERFORMANCE ANALYSIS
For LS channel estimation in ST, the received signal must be
averaged in order to avoid signal cancellation when the super-
simposed pilot is retrieved [11], [12]. Also, this averaging
computation improves the quality of the signal by reducing
noise and interference.

In previous works, the averaging was performed for all
the coherence symbols of the channel. The estimation was
accurate since it was assumed that the channel coefficients
remained constant during the coherence time. However,
in reality they evolve smoothly and averaging more symbols
than the optimal value may induce an additional error. In this
section, the complete MSE is computed, and the optimum
number of averages is discussed in extreme scenario situa-
tions.

Moreover, since the channel is modeled to be flat fading
in the frequency domain, a bidimensional averaging may be
performed which allows noise and interference to be reduced
more drastically. The following constants Nf ∈ [1,K ] and
Nt ∈ N1 are introduced, with N1 being the set of positive
integers, which represent the number of subcarriers and time
symbols that are going to be averaged, respectively. Then,
the averaged received signal is computed with the subgrid of[
Nf × Nt

]
symbols,

ȳ =
Nt−1∑
m′=0

Nf−1∑
k ′=0

1
NtNf

yk
′

m′ . (6)

Also, following the system model of [11], [12], pilot sym-
bols are set index-independent (ck

′

m′ = c) within the subgrid.
The LS computation is defined from the following cost func-
tion [32],

Jcost (Hm ) =

∣∣∣∣ c∗βP ȳ− Hm
∣∣∣∣2→ ĤLS =

c∗

βP
ȳ (7)
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where ĤLS is the channel estimation that yields the LS to be
later employed in the

[
Nf × Nt

]
subgrid of symbols. The time

dependency in the cost function and in the channel estimation
are discussed in the following section in terms of MSE.

A. QUASI-STATIC SCENARIO
The statistical properties of the channel estimation error,
1H = H − Ĥ , when Nf subcarriers and Nt time symbols are
averaged in a quasi-static channel, are

E
{
1H

}
= 0, (8)

Var
{
1H

}
= 90 =

1
NtNf β

(
σ 2
h

K
(1− β)+

σ 2
w

P

)
, (9)

as [11] derived. The MSE of the estimation in this scenario
is defined as 90 and it will be used in the following analysis.
Since the channel is assumed to be constant within Nf

subcarriers and Nt time symbols, the error becomes index-
independent. Apart from that, it basically depends on the
power allocation and the number of averages, where averag-
ing as much as possible in any domain reduces the error by a
compounded inverse factor.

Equation (9) may be interpreted as the sum of the weighted
channel power per subcarrier and the noise power. The first
term shows how the data interferes with the channel estima-
tion and the second term represents the noise contribution
related to the signal power.

If β = 1 the MSE is equivalent to the PSAM scheme, there
is no superimposed data interference and the error is only due
to the AWGN, yet the spectral efficiency is nulled because
there is no data transmission. Instead, if β = 0, 90 → ∞

because the fact of not deploying pilots at all prevents any
kind of channel estimation.

B. TIME-VARIANT SCENARIO
As shown in (9), the averaging process drastically reduces
the MSE if the channel is quasi-static. However, the channel
model presented in Section II-C introduces an additional error
due to its variability that must be taken into account in the
MSE expression.

Considering this time-variant channel condition, the error
becomes time dependent, 1Hm = Hm − Ĥ , and after some
computations (see Appendix B), it is found that the mean
is E

{
1Hm

}
= 0, and the MSE, 9v(m), is given by (10), as

shown at the bottom of the next page.
It is shown that β does not penalize supplementarily the

9v(m), instead its effect is the same as in (9).
On the other hand, the temporal variability of the channel

introduces an additional error related to the integration of
ρt (·), which shows how the correlation profile of the channel
impacts on theMSE computation. Actually, this integration is
split into two sumswhere the first one represents the complete
integration and the second one behaves like a correction term
dependent on the m-th time symbol, as 9v(m) is defined.
The reason behind this dependence is proved by the accuracy
of the averaged estimation as opposed to the real m-th time

channel coefficient. In general, by the law of large numbers,
middle positions like m = dNt/2e will be more similar to
the averaged estimation than extreme positions, i.e. m = 0 or
m = Nt − 1.
In order to obtain an overall time-independent MSE and

get rid of the temporal variable, the mean overm is computed
in (11), as shown at the bottom of the next page, and the
complete error is defined as 9v.
Then, if the channel is defined as quasi-static during

Nt symbols
(
ρt (γ1m) = 1, ∀1m ∈ [0, · · · ,Nt − 1]

)
,9v is

reduced to90, which verifies the consistency with (9). In this
quasi-static case, averaging as much as possible while the
channel remains constant reduces the error of the estimation,
as stated before.

Instead, if an extreme time-varying scenario is emulated
and a Kronecker delta function is defined as the correlation(
ρt (γ1m) = 0 for1m 6= 0 and ρt (γ1m) = 1 for1m = 0

)
,

the MSE becomes

9extreme
v =

σ 2
h

K

(
1−

1
Nt

)
+90. (12)

This expression shows that any averaging performed in an
extremely fast fading channel will introduce an additional
error since the coefficients will have already changed. The
optimum solution would beNt = 1 which reduces the expres-
sion into 90. Nonetheless, in this scenario it is impossible to
reduce the noise or the interference by averaging in the time
domain.

IV. MSE OPTIMIZATION VIA TIME AVERAGING
In the previous Section III-B the complete expression for
MSE was computed and the optimum number of time aver-
ages in extreme scenarios was provided. In this section,
the optimum number of averages in time (Nt ) is derived
for any time variability by performing a classical calculus
optimization approach [33].

In relation to the optimization of other variables, it is
assumed that:
• N opt

f = K because the channel is considered to be
flat fading in the frequency domain and its impact is
inversely proportional in 90.

• βopt will not be discussed and the common defined
values by academia will be employed (β = 0.2) [6],
[11]–[13], [15], [22]. Usually, the optimization of β
requires further analysis related to the throughput which
is not covered in this paper. Also, many simulations with
different β values were performed over the course of
this study and the conclusions described in Section V
may be extrapolated because the behaviour of the MSE
is similar.

To start with, since the variable to find its optimum (Nt ) is
discrete, in order to find candidates of minimums by differen-
tiation it is necessary to extend it to the continuous domain.
This extension has been considered to be equivalent to the
discrete expression (11) since the selected correlation profile
function is bounded and differentiable. Also, the equivalence
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has been empirically observed in the following Section V.
By doing so, the new variable to be optimized is defined as
Nt → nt ∈ R>0 and discrete operations like summations are
substituted by integrals. The discrete MSE expression9v(Nt )
is now extended and renamed as the continuous expression
ψv(nt ).

Then, the channel model proposed in Section II-C, whose
integral is already defined as the Sine Integral with the fol-
lowing properties [34], is employed

Si (x) =
∫ x

0

sin(t)
t

dt, (13)∫ b

a
Si (x) dx = cos (x)+ x Si (x)

∣∣∣∣b
a
. (14)

Under these assumptions, after employing (13) and (14),
9v is rewritten as (15), as shown at the bottom of the next
page, (see Appendix C for detailed calculations).

In general, 9v(Nt ) (or ψv(nt )) shows an error floor when
Nt , nt → ∞, however, there are occasions where there
is a local minimum before rising into the error floor. With
the closed form expression (15) in continuous domain, it is
possible to find the minimum candidates by taking the first
derivative and computing its roots.

After applying the fundamental theorem of calculus in (13)
and the following trigonometric identity,

sin2
(
x
)
=

1
2

(
1− cos

(
2x
))
, (16)

the derivative respect to nt of (15) is shown in (17), as shown
at the bottom of the next page.

Then, their roots may be obtained by solving the following
transcendental equation,

Si
(
γ noptt

)
− γ noptt sinc2

(γ
2
noptt

)
−

γ
(
1+ K

ρSNR
−β

)
2Nf β

=0

(18)

which gives the optimum averaging N opt
t =

⌊
noptt

⌉
.

In order to verify that the candidate is a minimum, the sec-
ond derivative test must be fulfilled. In (19), as shown at
the bottom of the next page, the second derivative is com-
puted. Since the expression evaluated in noptt satisfies (18),
the curvature of ψv(nt ) is simplified by the following relation
(see Appendix D),

2 cos
(
γ noptt

)
+ γ noptt sin

(
γ noptt

)
− 2

minimum
≶

maximum
0. (20)

Then, the optimum averaging may be obtained by solv-
ing (18) and may be verified by checking (20). In case of (18)
not having a solution, it means that there is not a local mini-
mum before the error floor and the optimum averaging may
be obtained by averaging asmuch as possible (see Section V).

V. NUMERICAL RESULTS
In this section, several simulation results are shown which
graphically prove the consistency of the analysis. First of
all, the MSE equations including the time-variant channel
effect are plotted against the quasi-static approach. Then,
the same curves are compared with the expression that gives
the optimum number of averages. After, the MSE is stud-
ied in scenarios with different speeds (pedestrian, vehicular
and ultra-high-speed mobility) and the SNR dependence on
the optimum number of averages is exposed. Nf = K = 512
has been considered for all these simulations except for the
last ones, where realistic 5G-NR scenarios are emulated and
Nf 6= K since the transmission schemes set aside several
subcarriers as guardbands. In these simulations, the empir-
ical MSE of the channel estimation is compared with the
analytical expressions. Last but not least, all the presented
results are focused on the MSE of the channel estimation
because under the same power allocation factor β and symbol
modulation scheme, the bit error rate (BER) performance of
the superimposed symbols will improve as long as the MSE
is enhanced [11]–[13].

To start with, in Figure 2 a comparison of the analytical
MSE performance, given by (11), between the quasi-static
approach and the proposed realistic time-variant channel
model is shown. The speed of the scenario is 30 km/h and
the number of coherence symbols is Nc = 60 (computed in
Section II-C and plotted in Figure 1). The curves show low
and high SNR regimes, ρSNR = 0 and 20 dB, respectively.
As can be seen, the state-of-the-art MSE given by the

quasi-static model [11], [12] decreases until Nc since the
channel correlation is modeled as a binary square function
with a step width equivalent to the coherence time. On the
other hand, in realistic time-variant scenarios the MSE does
not match that performance at all. Actually, in high SNR
regimes (ρSNR = 20dB), averaging Nc symbols in a realistic
system yields an MSE that is one order of magnitude worse
than the optimum. Also, when averagingNc symbols, the true
MSE obtained in a realistic time-variant scenario (solid blue
line) differs by almost two orders of magnitude from the

Var
{
1Hm

}
= 9v(m) =

σ 2
h

K

 1

(Nt)2

Nt−1∑
m1=0

Nt−1∑
m2=0

ρt (γ |m1 − m2|)−
2
Nt

Nt−1∑
m1=0

ρt (γ |m1 − m|)+ 1

+90 (10)

9v = Em {9v(m)} =
σ 2
h

K

1−
1

(Nt)2

Nt−1∑
m1=0

Nt−1∑
m2=0

ρt (γ |m1 − m2|)

+90 (11)
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FIGURE 2. MSE with proposed correlation and quasi-static correlation
(relative speed 30 km/h).

expected value of the quasi-static model (black dashed line).
This shows the inaccuracy of the state-of-the-art approach,
given by the quasi-statical assumption.

Following the same system configuration, the equivalence
between expressions (11) and (15) is displayed in Figure 3
(top). Also, the proposed optimal averaging (green triangles)
is compared to the oversimplified Nc averaging employed in
the state-of-the-art [11], [12] (red circles). It is found that
a minimum MSE may be reached by averaging less than
in previous works, since in most cases N opt

t < Nc. Then,
the benefits are twofold: a lower MSE, indeed the minimum
MSE, and a shorter averaging which yields a smaller delay.
Additionally, this last benefit also involves an improvement in
terms of computational cost by a reduction of the number of
operations in the averaging computationwhich requires fewer
summands. The minimum values depend on the SNR of the
system and they correspond to the roots of the transcendental
equation (18) as Figure 3 (bottom) shows. Needless to say,
both optimum values satisfy the second derivative test of (20).

Once the equivalence is proved, theoretical simulations of
the rest of the section will be computed using (11) or (15)

FIGURE 3. Equivalence of (11) and (15) (top); Verification of (18) for the
optimum averaging computation (bottom) (relative speed 30 km/h).

indistinctly. The optimum number of averages will be con-
sidered to satisfy (18) and (20), too.

In order to study the dependence of the SNR in the MSE,
the following Figures 4–6 show the performance of the esti-
mation in pedestrian, vehicular and ultra-high-speed mobility
scenarios with different SNRs. In general, the curves with
lower MSE correspond to higher SNR systems. Also, each
figure plots the optimum number of averages and opposes
them to Nc.
In the lowest speed scenario (Figure 4), it is evident that

the optimum averaging is in general much shorter than the
coherence time (Nc = 360 symbols). In low SNR regimes,
since the noise power is important, the optimum averaging

ψv(nt ) =
σ 2
h

K

(
1−

2

(γ nt)2

(
cos (γ nt)+ γ nt Si (γ nt)− 1

))
+

1
ntNf β

(
σ 2
h

K
(1− β)+

σ 2
w

P

)
(15)

d
dnt

ψv (nt) =
σ 2
h

K

(
2

γ n2t
Si (γ nt)−

2
nt

sinc2
(γ
2
nt
))
−

1

n2t Nf β

(
σ 2
h

K
(1− β)+

σ 2
w

P

)
= 0 (17)

d2

dn2t
ψv (nt) =

σ 2
h

K

(
6

n2t
sinc2

(γ
2
nt
)
−

4

γ n3t
Si (γ nt)−

2

n2t
sinc (γ nt)

)
+

2

n3t Nf β

(
σ 2
h

K
(1− β)+

σ 2
w

P

)
(19)
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FIGURE 4. MSE of a pedestrian mobility system (relative speed 5 km/h).

FIGURE 5. MSE of a vehicular mobility system (relative speed 90 km/h).

implies a longer duration. In this case, the main effect of the
averaging is focused on reducing the noise presence. Also,
the MSE does not show a deep valley and the error-floor
appears directly. In contrast, in high SNR regimes, the aver-
aging is less productive since there is not so much noise that
can be reduced, and its contribution is focused on minimizing
the superimposed data interference. Thereby, a local mini-
mum appears before the asymptotic error floor. After that,
the channel has changed sufficiently so the data interference
blocks out any reduction of MSE by averaging.

In any case, these optimum values yield a superior MSE
performance than coherence time values while offering a
much lower latency, e.g., when ρSNR = −10 dB, the perfor-
mance is the same but the latency is reduced by 24.72%
(N opt

t = 271 symbols); or when ρSNR = 30 dB, the perfor-
mance is improved by two orders of magnitude and the
latency is reduced by 95.55% (N opt

t = 16 symbols).
The profile of the curves is similar in vehicular and ultra-

high-speed mobility, Figures 5 and 6, respectively. Overall,

FIGURE 6. MSE of an ultra-high speed mobility system (relative speed
300 km/h).

the valleys and error-floors increase for higher time variabil-
ities.

In high SNR regimes (ρSNR = 30 dB), previously made
assumptions may be extrapolated. The latency reduction is
almost preserved: 90% in vehicular (N opt

t = 2 and Nc = 20)
and 83.33% in ultra-high mobility (N opt

t = 1 and Nc = 6).
However, the improvement of the MSE is more modest but
is still one order of magnitude.

On the other hand, in low SNR regimes, the high variability
of the channel impedes the averaging to be useful when
reducing noise and interference. In these situations, since the
data interference over the superimposed pilot will possibly
not be reduced, the best strategy is to average as much as
possible even though the channel has already changed. Then,
at least the noise will be diminished until reaching the MSE
error floor.

A more in-depth study of the optimum strategy when
selecting the number of symbols to be averaged is shown
in Figure 7. The plot reflects the optimum number of averages
against the number of coherence symbols for several time
variabilities of the channel, given by the speeds, and different
SNR values. The coherence symbols are labeled in the bottom
axis, and their corresponding speeds are set in the top axis.

As is shown, almost all the proposed optimum averages fall
below the black dashed line, which represents the state-of-
the-art averaging, given by the coherence time. Also, in high
SNR situations the reduction of latency is enhanced, which
fulfills the previously stated assumptions. Conversely, in low
SNR situations where the optimum values match the coher-
ence time or higher values, the best approach is to average as
much as possible if latency is not a constraint. These latter
scenarios represent the cases where the MSE does not show
a deep valley and the only improvement may be reached by
averaging at the error floor regime.

From this figure, it can be seen the linear correlation
dependence between the optimums in log-log scale. It could
be interesting to fit a regression curve with several input
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FIGURE 7. Optimum number of averages against the coherence symbols
for several time-variant channels.

parameters so the computation of these minimums would
be done straightforwardly and any transcendental equation
solution, like (18), would be avoided. In this parametric study,
the robustness of the approximated model and the sensibility
to non-perfect input of parameters such as the Doppler fre-
quency or the SNR would be advised.

To illustrate the robustness of the proposed model,
an example of the MSE deterioration when the input values
are inaccurate, is discussed. The case study is performed
for the presented model of solving transcendent equations,
and uses as the benchmark the curve of ρSNR = 10 dB from
the v = 90 km/h (fd = 2.3 kHz) scenario of Figure 5, where
the optimum averaging is N opt

t = 8. In this case, in order
to allow a worsening of less than 50% of the minimum
MSE, the range of averaging values must befall within
N robust
t ∈ [4, 16]. Then, in order to compute this optimum

value in its allowed range, considering a perfect knowledge
of the SNR, the relative speed between the UE and the BS
must be vrobust ∈ [35, 350] km/h, which in terms of Doppler
frequency is a range of f robustd ∈ [0.9, 9.5] kHz; on the other
hand, if there is a perfect knowledge of the Doppler fre-
quency, the SNR range of possible mismatching extends to
ρrobustSNR ∈ [3, 22] dB. Obviously, the presented model exhibits
a high robustness since the ranges of tolerance to input
imprecisions are very broad relative to the resultant MSE
computation worsening.

Finally, in the last Figures 8–10 a realistic 5G-NR system
is simulated where the configuration of the system model is
the same as in Section II-C and the speed is 30 km/h (like in
Figures 1–3), 90 km/h and 300 km/h, respectively. The main
difference is that the number of subcarriers averaged is no
longer 512, instead Nf = 384. It is because the bandwidth of
transmission is 50MHz, and 128 subcarriers must be reserved
for guardband. Also, the channel coefficients employed in

FIGURE 8. MSE curves of 5G-NR empirical simulation and theoretical
analysis with a relative speed of 30 km/h.

FIGURE 9. MSE curves of 5G-NR empirical simulation and theoretical
analysis with a relative speed of 90 km/h.

these figures have been created by filtering independent
Gaussian random variables with the correlation weights of
the realistic model of [26], like the solid black line shown
in Figure 1 for the scenario with a relative speed of 30 km/h.

Theoretical curves are plotted as black continuous lines
while coloured dashed lines represent empirical simulations.
As a matter of fact, both type of curves roughly match
in every scenario, which verifies the validity of using the
proposed channel model as the realistic scenario, and the
optimization algorithm solution as the optimum averaging.
Any discrepancy among curves may be attributed either to
the difference between models or to the requirement of using
more computational power so the randomness is smoothed
by performing more iterations. In any case, the optimum
averaging values overlap both curves.

In the end, it may be stated that the simplified correlation
model assumed in the analysis is sufficiently similar to the
realistic one. Thus, theoreticalN opt

t valuesmatch bothmodels
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FIGURE 10. MSE curves of 5G-NR empirical simulation and theoretical
analysis with a relative speed of 300 km/h.

while improvements in latency and performance are also
achieved.

VI. CONCLUSION
In this paper, ST techniques have been studied under a more
realistic approach where time variability of the channel is
continuous, following a Doppler fading spectrum, instead of
being a discrete quasi-static model. Also, in order to obtain
closed-form solutions for the MSE of the channel estima-
tion, a simplified channel model, yet similar to the realistic
scenario simulations, is employed. With this assumption,
the analytical MSE and its extended continuous version are
derived, and a classical calculus optimization is performed to
determine the duration of time averaging. Moreover, the can-
didates to be minima are verified through the second deriva-
tive test.

Simulation results have shown that ST techniques can
be accurate in channel estimation performance and efficient
in latency feasibility. Quasi-static channel simplifications
behave poorly, and proper channel models must be used.
The results reveal an intrinsic SNR dependence that may
be exploited by selecting the optimum number of averages
through an effective strategy. Finally, theoretical curves are
plotted against realistic 5G-NR simulations and the validity
and consistency of the presented results are proven.

APPENDIX A
TEMPORAL CHANNEL CORRELATION IN FREQUENCY
DOMAIN
The evolution of the channel is commonly studied through
the evolution of the sampled taps of the power delay pro-
file (PDP) in the time domain. In order to obtain (5) it
is necessary to transform the channel coefficients into the
frequency domain.

A channel with L coefficients, which are the resolved
multipath components, is defined with the h(t)m vector with
dimensions (L × 1). The total power of the channel is
σ 2
h and the power of the l-th tap is σ 2

tl , which fulfills

σ 2
h =

∑L−1
l=0 σ

2
tl . The evolution of each component is modeled

by the correlation,

E
{[

h(t)m
]∗
l

[
h(t)m′
]
l

}
= σ 2

tl ρt (γ 1m) . (21)

Even though this article is focused on single-tap channels,
the following proof satisfies any channel length.
The relation between the channel coefficients in the time

domain and the frequency domain is defined by the discrete
Fourier transform (DFT), which can be written using the
following matrix form,

h(f )m =
1
√
K
FLh

(t)
m (22)

where h(f )m =
[
H1
m · · ·H

K
m
]T

is a vector with (K × 1)
channel coefficients in the frequency domain and FL is
the front (K × L) submatrix of F whose components are[
F
]
k,l = e−j

2π
K kl .

Then, the components of the matrix product of (22) may
be written in a summation form which allows (21) to be
expressed in the frequency domain as follows,

E
{(
H k
m

)∗
H k
m′

}
=

1
K

L−1∑
l1=0

L−1∑
l2=0

E
{[

h(t)m
]∗
l1

[
h(t)m′
]
l2

}
· e j

2π
K k(l2−l1)

=
1
K

L−1∑
l1=0
(l1=l2)

E
{[

h(t)m
]∗
l1

[
h(t)m′
]
l1

}
{cross-terms = 0}

=
1
K
ρt (γ 1m)

L−1∑
l=0

σ 2
tl

=
σ 2
h

K
ρt (γ 1m) (23)

which gives the temporal correlation in terms of frequency
domain coefficients, as (5) stated.

APPENDIX B
CHANNEL ESTIMATION ERROR IN A TIME-VARIANT
CHANNEL
The channel estimation error in a time-variant channel is
expressed in (24), as shown at the top of the next page. This
expression shows how the true channel coefficient Hm

(
B
)

is not perfectly estimated but approximated by the averaging(
A
)
. If the channel is highly static, the average will be sim-

ilar to the true value. Thus, the error will be reduced, and the
estimation will be more accurate. However, if the mobility is
high, the average will not match the true channel and the error
of the estimation will increase. Moreover, the dependency on
the m-th time symbol is comprehensible since the averaging
is more accurate formiddle symbol positions than for extreme
ones.

The statistical properties show that the mean of the error,
like in the quasi-static approach, is 0, whereas the MSE, 9v,
is computed as the mean of all the cross-products of (24).
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1Hm = Ĥ − Hm =
1
Nt

Nt−1∑
m′=0

Hm′︸ ︷︷ ︸
A

− Hm︸ ︷︷ ︸
B

+
1

NtNf

c∗

βP

Nt−1∑
m′=0

Hm′
Nf−1∑
k ′=0

sk
′

m′ +

Nt−1∑
m′=0

Nf−1∑
k ′=0

wk
′

m′


︸ ︷︷ ︸

C

(24)

From this computation, the only cross-products that are not
cancelled are the following,

S1 = A ∗ · A =
1

(Nt)2
E


Nt−1∑
m1=0

Nt−1∑
m2=0

(
Hm1

)∗ Hm2


=

1

(Nt)2
σ 2
h

K

Nt−1∑
m1=0

Nt−1∑
m2=0

ρt (γ |m1 − m2|) , (25)

S2 = A ∗ · B = −
1
Nt

E


Nt−1∑
m1=0

(
Hm1

)∗ Hm


= −
1
Nt

σ 2
h

K

Nt−1∑
m1=0

ρt (|m1 − m|) , (26)

S3 = B ∗ · A = A ∗ · B = S2, (27)

S4 = B ∗ · B = E
{(
−Hm

)∗ (
−Hm

)}
=
σ 2
h

K
, (28)

S5 = C ∗ · C = 90. (29)

Finally, 9v(m) =
∑5

i=1 Si as (10) showed.

APPENDIX C
CONTINUOUS MSE COMPUTATION
The expansion into the continuous domain of (11) is straight-
forward except for the double summation factor. In order to
compute it, the double summation is transformed into the
double integral,∫ nt

0

∫ nt

0
ρt (γ |nt1 − nt2|) dnt1 dnt2 (30)

where the correlation is substituted by the even function
ρt (ζ ) = sinc (ζ ) and the absolute operator of the argument
can be dropped.

Then, the double integral (30) is solved after applying the
following change of variables with Jacobian 1/γ 2,(

u
v

)
= γ

(
1 0
1 −1

)(
nt1
nt2

)
which gives,∫ γ nt

0

∫ u

u−γ nt

1
γ 2 sinc (v) dv du

=
1
γ 2

∫ γ nt

0
Si (u)− Si (u− γ nt) du

=
2
γ 2

(
cos (γ nt)+ γ nt Si (γ nt)− 1

)
(31)

and (15) is finally computed.

APPENDIX D
SECOND DERIVATIVE TEST
The evaluation of (19) with the optimum candidate

(
noptt

)
,

which fulfills (18), is simplified as,

d2

dn2t
ψv

(
noptt

)
=
σ 2
h

K
2(

noptt

)2 (sinc2 (γ2 noptt

)
− sinc

(
γ noptt

))
. (32)

Considering that noptt > 0, the second derivative test of (32)
is equivalent to,

sinc2
(γ
2
noptt

)
− sinc

(
γ noptt

) maximum
≶

minimum
0. (33)

Finally, after applying (16) and performing some changes,
the previous inequality may be rewritten as

2(
γ noptt

)2 (1− cos
(
γ noptt

))
−

sin
(
γ noptt

)
γ noptt

maximum
≶

minimum
0

(34)

which results in (20).
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