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ABSTRACT Learners are expected to stay wakeful and focused while interacting with e-learning platforms.
Although wakefulness of learners strongly relates to educational outcomes, detecting drowsy learning
behaviors only from log data is not an easy task. In this study, we describe the results of our research to
model learners’ wakefulness based on multimodal data generated from heart rate, seat pressure, and face
recognition. We collected multimodal data from learners in a blended course of informatics and conducted
two types of analysis on them. First, we clustered features based on learners’ wakefulness labels as generated
by human raters and ran a statistical analysis. This analysis helped us generate insights from multimodal
data that can be used to inform learner and teacher feedback in multimodal learning analytics. Second,
we trained machine learning models with multiclass-Support Vector Machine (SVM), Random Forest (RF)
and CatBoost Classifier (CatBoost) algorithms to recognize learners’ wakefulness states automatically.
We achieved an average macro-F1 score of 0.82 in automated user-dependent models with CatBoost.We also
showed that compared to unimodal data from each sensor, the multimodal sensor data can improve the
accuracy of models predicting the wakefulness states of learners while they are interacting with e-learning
platforms.

INDEX TERMS Drowsiness, online education, e-learning platforms,multimodal learning analytics, physical
learning analytics.

I. INTRODUCTION
In recent years, e-learning has grown rapidly due to
advances in information technologies. Online education is
becoming mainstream worldwide thanks to the development
of underlying ICTwhich has made it feasible technologically,
economically, and operationally [1]. For instance, according
to a report on distance education in American universities,
from 2002 to 2012 both distance and overall enrollments
in higher education institutions witnessed annual growth,

The associate editor coordinating the review of this manuscript and
approving it for publication was Chia-Wen Tsai.

yet since 2012 distance education has grown in demand
steadily despite overall enrollment decline [2]. Moreover,
in response to the COVID-19 pandemic, there is a burgeoning
interest in e-learning and distance learning, and many
schools and universities all over the world have adopted
remote learning and teaching solutions [3], [4]. Despite
the increasing demand for e-learning globally, there are
still significant issues that lead to high dropout rates in
online courses. Studies reveal that student dropout rates in
e-learning are significantly higher than in traditional learning
contexts [5]–[7].
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High dropout rates in e-learning are caused by various
factors. Lee and Choi [8] have reviewed studies conducted
over 10 years on factors leading to dropouts in online
courses and have classified them into three categories
that affect learners’ decision to drop out: student factors,
course/program factors, and environmental factors. Student
factors include psychological and behavioral attributes such
as motivation and satisfaction during students’ interaction
with e-learning platforms. These measures and similar ones
are difficult to identify in e-learning settings with traditional
learning analytics approaches that are limited to the use of
log data. For instance, learner wakefulness during e-learning
is vital to effective engagement, which in turn impacts educa-
tional attainment [9]. However, mere clickstream data, widely
deployed in learning analytics studies, is not sufficiently
accurate to detect student wakefulness. On the other hand,
the emerging area of multimodal learning analytics [10] is
providing newmethods and innovations to leverage andmake
sense of physical data to interpret constructs that are hard
to measure and support with traditional learning analytics
approaches.

In this paper, we present our approach to measuring
learners’ wakefulness as they interact with an e-learning plat-
form using multimodal learning analytics. More specifically,
we explore the following research questions.

RQ1 What factors frommultimodal data collected can be
used to inform teacher and learner dashboards for
feedback and reflection on learners’ wakefulness?

RQ2 To what extent can students’ wakefulness be
detected with the help of multimodal data from their
heart rate, seat pressure, and facial expressions?

The current study contributes to the existing literature in
the following ways: (1) The results of the first research
question can have implications for the development of
teacher and learner dashboards to help generate explainable
insights into students’ wakefulness states. (2) The findings
of the second research question can have immediate implica-
tions for adaptive e-learning platforms to provide appropriate
feedback and notifications to enhance students’ learning
experience. (3) The findings of both research questions have
direct implications for student engagement and their learning
outcomes in e-learning settings.

The paper is structured into 6 sections. Section II describes
the motivation of the study and the literature on learner
engagement and wakefulness detection. Section III describes
the methodology we have adopted, and section IV presents
the findings. The results are discussed in section V, which is
followed by a conclusion and future work.

II. BACKGROUND AND RELATED WORK
In face-to-face learning contexts, teachers can often identify
learners’ internal states, such as engagement, boredom,
concentration, and wakefulness, and are able to adapt
their pedagogical approaches and teachingmaterials/methods
accordingly. In e-learning settings, however, real-time

adaptation is not easy due to physical distance and asyn-
chrony. To address this problem, prediction methods are
used to infer a variable based on other variables extracted
from learning log data, such as response times to predict
engagement [11] and conversational cues to predict affective
states of boredom, confusion, flow, and frustration [12].
However, due to the complexities of learning processes and
the non-linear relationships between observed and reported
cognitive and emotional states, exclusively relying on log
data to decipher complex internal states of learners is
insufficient [13], [14]. To validate findings from log data,
new technologies such as biometric sensors are used to
unobtrusively gather physiological data from learners, but
systems that use such data to monitor and predict learners’
internal states as inferred from their physiological signals are
still under development.

One aspect of learners’ psychophysiological states that
has garnered significant attention is engagement. Fredricks
and colleagues have identified three forms of engagement,
namely behavioral, emotional, and cognitive [15]. Behavioral
engagement is associated with learners’ participation and
involvement in the learning process. Emotional engagement,
as the name suggests, refers to learners’ emotional attitudes
towards teachers, peers, and learning, and cognitive engage-
ment involves components that foster the learning process
such as focused attention,memory, and creative thinking [16].
Wakefulness during online coursework can be considered
an instance of behavioral engagement and thus essential
to ensure improved learning outcomes. However, this type
of behavioral engagement is largely under-researched in
learning contexts.

There is very limited research specifically measuring
students’ wakefulness with multimodal learning analytics
during their engagement with e-learning platforms. For
example, in the context of writing tasks, [17] deployed
a video-based estimation approach to investigate learners’
engagement with the platform. In particular, they analyzed
facial expression data as captured by Microsoft Kinect Face
Tracker and heart rate measures from video-based sensing,
using photoplethysmography. They were able to estimate
engagement with a high level of accuracy as measured
against concurrent and retrospective learner self-reports. Area
under the ROC Curve (AUC) was used to evaluate classifier
accuracy, and AUC = .758 for concurrent annotations and
AUC = .733 for retrospective annotations were achieved.
Despite the fact that fusion of multimodal data yielded overall
best results, face tracking data alone was shown to be the
best indicator. In another study, [18] examined students’
drowsiness in online classes using a smart chair with a
pressure sensor. There was no robust evaluation of the results;
however, an average accuracy of 75.2% was reported for
student engagement measure. In addition to these two studies,
a past publication from our research group is one of the few
previous studies we know of to date that explores learner
wakefulness using facial expression and head pose analysis in
a video-based online learning context [19]. Due to the limited
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number of such studies, it can be argued that existing research
on measuring wakefulness during students’ engagement with
e-learning platforms is at its early maturity level.

Due to the scarcity of research in this area within
educational settings, we draw upon previous research in the
field of driver drowsiness. In this area, drivers’ wakefulness
measures have been a significant point of focus with multiple
research examples. As there can be fatal consequences
of drowsiness while driving, there are a large number of
technologically mature studies conducted to detect driver
wakefulness, as reviewed by [20]. In general, three types
of measures have been identified for monitoring driver
drowsiness: (1) vehicle-based measures (2) behavioral mea-
sures, and (3) physiological measures. The first category
of measures includes a number of metrics specific to the
task of driving and not applicable to learning contexts.
On the contrary, behavioral measures, such as eye closure
and head pose, as well as physiological measures, such as
EEG (electroencephalogram) and ECG (electrocardiogram)
signals, can be collected from learners during e-learning
using a range of devices from simple web cameras to EEG,
heart rate, and eye tracking sensors. Those studies show the
benefits of hybrid over single-mode measures and provide
evidence for the potential of multimodal data to gain insights
into detecting drowsy behaviors automatically. However,
the motion patterns and psychological states of drivers may
differ significantly from those of learners. Therefore, further
research is needed to investigate the value and effectiveness
of multimodal data for drowsiness detection in e-learners.
Here, we use multimodal data from students’ heart rate,
seat pressure, and facial expressions and implement them in
measuring their wakefulness during their interaction with an
e-learning platform.

III. METHOD
In this section, we present information on the experimental
design, multimodal data feature extraction, and the wakeful-
ness estimation method based on multimodal data.

A. EXPERIMENTAL DESIGN
1) PARTICIPANTS AND LEARNING CONTEXT
Fifty-three first-year undergraduate students who were
enrolled in an introductory computer science course agreed
to participate in our study. The computer science course
is a blended learning course consisting of an asynchronous
e-learning session and a synchronous face-to-face session
per week. Each e-learning session includes a number of
video lectures of approximately 10 minutes of length each
(Table 1). The videos are voice-over PowerPoint slideshows
as displayed in Fig 1. Data for this study was collected as
students were watching the video lectures. We asked the
participants to come to an experiment room where they took
the e-learning sessions. Therefore, a number of students were
not able to join the experiment for some sessions. Tomaintain
data balance, we discarded the data from all those students

TABLE 1. The overview of the video lectures and the number of slides.

FIGURE 1. Screenshot of a sample video slide.

who took only one lecture in the experiment and had missing
data. The remaining valid data was collected from 48 students
(mean age of 18.4).

2) DATA COLLECTION
Three main sources of data informed the findings of this
study: (1) heart rate and other related parameters measured
with wearable heart rate meters manufactured by Union
Tool Co., (2) seat pressure measured with Smart Rubber
Soft Vision seat pressure detection sensors from Sumitomo
Riko Co. Ltd., and (3) facial expression videos recorded
with Bandicam. Heart rate meters recorded R-R interval
(RRI), body temperature, heart rate variability measures
of low frequency/high frequency (LF/HF), and heart rate
(HR). Seat pressure sensors yielded data on moving distance
from center of gravity position, length of moving state,
length/position/pressure of static state, etc.

3) PROCEDURE
The experiment was run on notebook computers
(17.3-inch screen). While the participants took the e-
learning session, we collected the multimodal data mentioned
above and recorded their screens with recording software
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FIGURE 2. The number of slides covered by each learner as well as their wakefulness states.

FIGURE 3. Generating multimodal features from every slide. Multimodal data is divided based on the time each slide is shown and
features are calculated per slide.

(Bandicam, 30fps). After the e-learning session, each
screen capture and its corresponding face recording were
combined into one video. The participants watched this
video and self-reported their wakefulness, understanding,
and motivation per slide on a 4-point Likert scale. This
study used only wakefulness data (1: Asleep, 2: Drowsy,
3: Awake, 4: Wide Awake). To minimize variability of
self-assessments, we counted level 3 and 4 as ‘‘Awake.’’
Figure 3 shows the number of slides covered by each
learner as well as their wakefulness states from the
observation data.

B. MULTIMODAL DATA FEATURE GENERATION
As presented in figure 3, the features are calculated for each
slide since the self-reported data were collected per slide to
reduce the burden of annotation work. Table 2 shows 40-
dimensional features that were extracted from multimodal
data.

1) HEART RATE FEATURES
The heart rate sensor we used in the experiment records
RRI, LF/HF, and heart rate which are calculated using the
data for the past 60 seconds, and body surface temperature.
RRI stands for R-R interval and is an index of heart rate
variability, showing cardiac beat-to-beat interval. LF and HF
are the ratio of low frequency (0.04 Hz – 0.14 Hz) power
and high frequency (0.14 Hz – 0.4 Hz) power in heart rate
variability. They are frequently used as indices of stress
and rest states. [21]. Two statistical values (mean, standard
deviation) were extracted from RRI, LF/HF, Heart Rate and
body surface temperature. In total 8 features were calculated
as heart rate features.

2) SEAT PRESSURE FEATURES
Seat pressure can be a proxy of a learner’s posture
change. As we presented in section 2, in a recent study

115168 VOLUME 9, 2021



R. Kawamura et al.: Detecting Drowsy Learners at Wheel of e-Learning Platforms

TABLE 2. List of multimodal features.

Nomura et al. (2018) used seat pressure data to estimate
student engagement. In this paper, we use some of the features
introduced in that study. For seat pressure features, the first
step was to classify each frame into a moving state (MS)
and a static state (SS) by using the distance of center gravity
position between the current and previous frames. For this
process, we used 0.1 as a threshold ofMS and SS by checking
the distribution of the distance as exemplified in previous
research. We calculated the mean time of MS, SS, and the
ratio of MS. These values represent how much a student’s
upper body moves. In addition, mean pressure and mean
absolute pressure difference between current and previous
pressure frames were also calculated as features. In total,
4 features were calculated from the seat pressure data for each
learner.

3) FACIAL EXPRESSION FEATURES
To extract features from students’ facial expressions, we used
the facial action coding system (FACS) created by Ekman
and Friesen [22]. FACS is commonly used to describe
facial expressions in terms of Action Units (AU). AUs
are fundamental motions of a facial muscle or a group of
facial muscles. In learning contexts, head poses are also
important indices of students’ postures. Therefore, we used
OpenFace [23] to extract AUs and head poses from facial
images. OpenFace outputs were intensity and occurrence
of 17 AUs and the 3-D transition and rotation of the student’s
head (yaw, pitch, and roll). We calculated the mean and
standard deviation of AU 2, 15, 26, 45, and head pose. These
AUs are Outer Brow Raiser, Lip Corner Depressor, Jaw drop,
and Blink, respectively. More specifically, AU 26 is related

to mouth opening and AU 2 and 15 are related to expressions
when struggling to stay awake. All these AUs are chosen
based on existing research on measuring wakefulness of
drivers as referred to in Vural et al. [24]. In total, 28 features
were extracted from facial images.

C. WAKEFULNESS ESTIMATION METHOD BASED ON
MULTIMODAL DATA
In order to investigate the relationship between wakefulness
levels and multimodal features described above to recognize
learners’ wakefulness, we conducted two types of analysis.

First, to find useful features to estimate learners’ sleepiness
level, we investigated differences in the features’ means
of each wakefulness level. As mentioned in section three,
we classified all features based on learners’ self-coding of
three wakefulness levels. We examined the mean difference
of three wakefulness levels (Asleep vs. Drowsy vs. Awake),
as well as two levels (Asleep vs. Others and Awake vs.
Others). Before the analyses, we conducted verification
for normality of variances and used the non-parametric
Friedman’s test to investigate the difference in three levels.
Wilcoxon signed-rank test was used to investigate the
difference between levels. All statistical analyses were
performed using SPSS 26.0.0.1.

Second, to investigate the potential of machine learning
techniques utilizing multimodal data to predict learners’
wakefulness automatically, we evaluated the classification
accuracy of several models. We opted for supervised machine
learning approaches. Existing research shows that super-
vised machine learning frequently outperforms unsupervised
learning in real-world classification problems [15]. More
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specifically, we have tested multi-class support vector
machines (SVM), Random Forest Classifiers (RF) and
CatBoost Classifiers [25] (CatBoost) to build wakefulness
estimation models in user-independent and user-dependent
settings for three types of classification; Awake vs. Others,
Asleep vs. Others and three levels of wakefulness state
(Asleep, Drowsy, Awake). Although in the user-independent
setting we tested the potential of the model for unseen
users, the influence of personalization in module building
was evaluated in the user-dependent setting. To evaluate the
accuracy of the models, we employed F1 scores as an index
of three degrees of wakefulness recognition.

In essence, model construction and evaluation involved
four main steps:

1) Splitting data into train and test datasets: We split
data for cross validation of user-dependent and user-
independent settings.

2) Over/undersampling to deal with imbalanced label
distribution: To deal with imbalanced distribution of
wakefulness state in train dataset, we use SMOTE [26]
for oversampling and random sampling for undersam-
pling.

3) Standardizing train and test datasets: Both train and test
dataset are standardized to have zero-mean and unit
variance by using mean and standard deviation of train
dataset.

4) Building a model with train dataset and evaluating it
with test dataset: SVM, RF and CatBoost are used to
build the model.

To evaluate the model in the user-dependent setting,
we employed leave one-group out cross validation.
We divided 48 subjects into 6 groups, and every group was
used as test dataset at a time.

Similarly, in the user-independent setting, we used leave
one-group out cross validation. The data from one group is
used as test dataset, and the data from other groups is used to
train the model. These steps are repeated until every group’s
data is used as test. The output task was to recognize three
degrees of wakefulness (Asleep, Drowsy and Awake), and
two degrees of wakefulness (Asleep vs Others, Awake vs
Others).

In the user-dependent setting, the first one tenth of data
from the test group in each day’s lecture is included in the
train dataset. In this setting, train and test datasets include data
from the same participants. This setting is not an unrealistic
constraint. As a matter of fact, when a learner starts the e-
learning task, the camera can use the data from the first few
minutes as train data with labels (the person is expected to be
awake).

IV. RESULTS
A. ANALYSIS OF MULTIMODAL FEATURES
Firstly, we classified all features based on three wakefulness
levels (Asleep vs. Drowsy vs. Awake) and we ran Friedman’s
test, and post hoc tests (Scheffe’s test). We discarded the data

TABLE 3. Results of Friedman’s test in three-level wakefulness
classification.

TABLE 4. Results of Wilcoxon signed rank test in Asleep vs. others.

from those students who did not display all three patterns
of wakefulness, and finally analyzed the data from the
remaining 18 participants. Table 3 shows those featureswhich
yielded a significant difference. Post hoc comparisons show
that the mean occurrence of AU26 (JawDrop) in Drowsy state
is significantly higher than in other states (p< .01). Themean
of intensity of AU26 in Asleep state is significantly lower
than in other states. (Asleep vs. Drowsy: p < .01, Asleep vs.
Awake: p < .05). The mean occurrence of AU45 (Blink) in
Awake state is significantly lower than in other states (Awake
vs. Drowsy: p< .05, Awake vs. Aspleep: p< .01). The mean
of intensity of AU45 in Awake is significantly lower than in
Asleep state (p < .01). Mean body surface temperature has
a significant difference across all states (p < .01). The lower
the participants’ arousal levels, the higher their body surface
temperature.

Secondly, we classified all features based on two wake-
fulness levels (Asleep vs. Others and Awake vs. Others),
and we ran paired Wilcoxon signed rank tests. We present
the features that show a significant difference for Asleep
vs. Others in Table 4, and for Awake vs. Others in Table 5,
respectively.
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TABLE 5. Results of Wilcoxon signed rank test in awake vs. others.

TABLE 6. Average macro-F1 scores with features based on the results of
ANOVA.

The result of Asleep vs. Others comparison shows that
the SD of occurrence and intensity of AU02 (Outer Brow
Raiser), the SD of intensity of AU15 (Lip Corner Depressor),
mean intensity of AU45, SD of Pitch and Roll, mean head
transition toward y-axis, and mean body surface temperature
in the Asleep state are higher than the other states. On the
other hand, the mean occurrence and intensity of AU26 (Jaw
Drop), and SD of body surface temperature are lower than in
the other states.

The result of Awake vs. Others comparison shows that
the mean and the SD intensity of AU02 and mean body
surface temperature in the Awake state are lower than in other
states. Additionally, the SD of body surface temperature in the
Awake state is higher than in other states.

B. EVALUATION OF WAKEFULNESS ESTIMATION
In this section, we initially present the baseline recognition
results of SVM, RF and Catboost classifiers and evaluate
thesemodels in user-independent and user-dependent settings
for three types of classification; Awake vs. Others, Asleep vs.
Others and three levels of wakefulness state.

1) AUTOMATED DETECTION OF LEARNERS’ WAKEFULNESS
STATE BASED ON THE RESULTS OF ANOVA AND T-TEST
Through ANOVA, we obtained a number of potential
features which yielded statistically significant differences
across wakefulness states (Table 3). These features are
considered to be effective for more accurate automated
detection of learners’ wakefulness. Therefore, we evaluated
the case of using these features to build a model and
estimated learners’ wakefulness state in user-dependent and
independent settings.

Table 6 shows the average macro-F1 scores with features
based on the results of ANOVA. In both user-independent and
user-dependent settings, all three types of classifiers mark the
same average F1-macro scores, 0.36 and 0.39. The scores in
the user-dependent setting are higher than that of the user-
independent.

TABLE 7. Average macro-F1 scores of Asleep vs Others features based on
the results of t-test.

TABLE 8. Average macro-F1 scores of awake vs others features based on
the results of t-test.

TABLE 9. Average macro-F1 scores of three degrees of wakefulness
classification in user-independent setting.

TABLE 10. Average macro-F1 scores of Asleep vs Others in
user-independent setting.

Table 7 and 8 show the average macro-F1 scores with
features based on the results of t-test for recognizing two
degrees of wakefulness state: Asleep vs Others, Awake vs
Others. In Asleep vs Others, the scores of Catboost in both
user-independent and user-dependent settings, 0.62 and 0.66,
are higher than other classifiers. In Awake vs Others, RF in
the user-dependent setting marks better performance than
other classifiers. On the other hand, in the user-independent
setting SVM yields the highest score, 0.56.

2) AUTOMATED DETECTION OF LEARNERS’ WAKEFULNESS
STATE WITH ALL MULTIMODAL FEATURES
For this task, we used unimodal (Face, SeatPressure,
HeatRate) and multimodal features as input to the machine
learning model. These features are explained in detail in
section 3.3 and summarized in Table 2. Table 9, 10, and 11
show the average F1-macro scores of three types of
classification task in SVM, RF, and Catboost with unimodal
and multimodal features in each output task, respectively.

In the user-independent setting, multimodal features and
HeartRate mark the highest scores, and there are no
differences among the three classifiers. Although multimodal
features outperformed other features in all classifiers in
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TABLE 11. Average macro-F1 scores of Awake vs Others in
user-independent setting.

TABLE 12. Average macro-F1 scores of three degrees of wakefulness
classification in user-dependent setting.

TABLE 13. Average macro-F1 scores of Asleep vs Others in
user-dependent setting.

TABLE 14. Average macro-F1 scores of Awake vs Others in
user-dependent setting.

Asleep vs Others setting, HeartRate feature in RF and
CatBoost marks a higher score than other features and
only multimodal features mark the highest score in Awake
vs Others setting. Compared to the results in Table 6,
the score of three-level wakefulness state recognition in
user-independent setting, 0.37 is lower than that in selected
features based on ANOVA. On the other hand, the scores
of two-level classifications (Asleep vs Others, Awake vs
Others) are higher than three-level. These results indicate that
effectiveness of feature value selection is limited.

Table 12, 13, and 14 show the average F1-macro scores
of cross validation in SVM, RF, and Catboost with unimodal
and multimodal features in three types of classification.
As the table indicates, multimodal features outperformed
unimodal features with regard to all classifiers. In addition,
the scores of multimodal features, HeartRate and Face in the
user-dependent setting is higher than the user-independent
setting although there are minor differences in the scores of
SeatPressure. In two-level classification, Awake vs. Others
and Asleep vs. Others settings, multimodal features also
outperformed unimodal features and Catboost marks the
highest score in both Awake vs. Others and Asleep and
Others. Compared to Asleep vs. Others, the scores in HR
and SeatPressure are higher in case of Awake vs. Others.
This result indicates that HR and SeatPressure data have the

possibility to contain different kind information from facial
images. It can be assumed that the features we extracted are
affected by individual differences, and in the user-dependent
setting, the effect of individual differences is decreased since
data from the same person is included in the train and test
datasets.

Compared to the results of features selected based on
ANOVA and t-test in IV-B1, the results of all multimodal
features yielded higher scores. This is because ANOVA does
not take into account combination of features, and thus the
model based on it might be less effective than a model which
considers combined features.

V. DISCUSSION
Although the automated detection approach has good poten-
tial for adaptive instruction, in essence, our multimodal
learning analytics approach aims to provide explicit and
comprehensible ways of presenting information to learners
and teachers in order to support them in making informed
decisions [27]. Therefore, in our first research question,
we investigated the factors from multimodal data that can be
used to inform teacher and learner dashboards for feedback
and reflections on learners’ wakefulness. Our results showed
that particularly the facial features, the head position, and
body surface temperature were useful to identify character-
istics of learners’ drowsy behaviors. Before falling asleep
learners tended to blinkmore frequently, turn down their lip at
the corners, and move their heads more. Furthermore, similar
to previous research showing that increasing skin temperature
might affect sleep propensity [28], our investigation also
obtained similar results.

Our second research question was: To what extent can
students’ wakefulness be detected with the help of multi-
modal data from their heart rate, seat pressure, and facial
expressions? The results show that we can predict individual
learners’ asleep, drowsy, and awake states with a high
accuracy and confidence with the help of multimodal data.
The best performing machine learning model was built using
CatBoost Classifier algorithm. These results are comparable
to and outperform some of the state-of-the-art results in
measuring learner engagement with e-learning platforms
with multimodal data [17]. These kinds of automation
approaches are particularly useful for the provision of
personalized support to learners through intelligent tutoring
systems and adaptive e-learning platforms which can be
implemented at a scale.

In these investigations, one of our goals was to generate
transparency in models that predict learners’ drowsiness
from multimodal data. These insights can be used to
support teachers’ and learners’ interpretations of the machine
learning decisions in predicting drowsy learner behaviors.
Allowing opportunities for teachers and learners to interpret
and scrutinize analytics suggestions generated can lead to
better feedback and reflection opportunities. These insights
generated from the models can be deployed in multimodal
learning analytics tools that provide suggestions for interven-
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tions to teachers and learners. As our answer to the second
research question indicates, accurate detection of drowsy
learner engagement with e-learning platforms is important.
However, learners and teachers also need to know potential
reasons for the analytics predictions of learner states. This
increases human agency in transparent models which can also
lead to better adoption in practice [29].

VI. CONCLUSION
In this paper, we focus on the multimodal sensor data
to predict learners’ three states of Asleep, Drowsy, and
Awake during their engagement with an e-learning platform.
First, we generated some insights into the multimodal
characteristics of each state based on the results of the
statistical analysis. Second, we showed the potential of
the multimodal data and supervised machine learning for
the automated predictions of learners’ three engagement
states, especially in user-dependent settings.

Our findings have significant implications for improving
student engagement, and indirectly their learning outcomes,
in e-learning contexts. Compared to traditional log data
analysis and unimodal investigations, multimodal data pro-
vides significant improvements to the detection of learner
engagement in e-learning platforms. In our future research,
we plan to implement our prediction models in teacher
and learner dashboards to evaluate their value in improving
learning outcomes in e-learning contexts.
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