
Received July 30, 2021, accepted August 11, 2021, date of publication August 16, 2021, date of current version August 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104841

A Multi-Stage Graph Aided Algorithm for
Distributed Service Function Chain
Provisioning Across Multiple Domains
GODFREY KIBALYA 1, JOAN SERRAT-FERNANDEZ 1, (Life Member, IEEE),
JUAN-LUIS GORRICHO 1, DOREEN GIFT BUJJINGO2,
AND JONATHAN SERUGUNDA2, (Member, IEEE)
1Department of Network Engineering, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
2Department of Electrical and Computer Engineering, Makerere University, Kampala, Uganda

Corresponding author: Godfrey Kibalya (godfrey.mirondo.kibalya@upc.edu)

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 777067 (Novel Enablers for Cloud Slicing (NECOS) project) and the national project TEC2015-71329-C2-2-R [Ministry of Economy
and Competitiveness/ European Regional Development Fund (MINECO/FEDER)].

ABSTRACT Network Service Providers (NSPs) envisage to support the divergent and stringent requirements
of future services by instantiating these services as service chains, commonly referred to as Service Function
Chains (SFCs), that are customized and configured to meet specific service requirements. However, due
to the limited footprint of the Infrastructure Providers (InPs), these SFCs may have to transcend multiple
InPs/domains. In this regard, determining the optimal set of InPs in which to embed the SFC request emerges
as a complex problem for several reasons. First, the large number of possible combinations for selecting the
InPs to embed the different sub-chains of the request makes this problem computationally complex, rendering
optimal solutions only after long computations, especially in large scale networks, which is unfeasible for
delay sensitive applications. Second, the unwillingness of InPs to disclose their internal information, which
may be vital for making embedding decisions, usually implies the provisioning of single-domain solutions,
which are unsuitable in this working scenario. In this regard, this paper first formulates the multi-domain
service deployment problem under multiple request constraints, such as bandwidth or delay, among others.
Then, due to the NP-hardness nature of the above problem, this paper proposes an algorithm that is aided by
a multi-stage graph for computing a request embedding solution in a distributed manner, solving the problem
in acceptable run-times. Results from different simulations reveal that the proposed algorithm is optimized
in terms of acceptance ratio and embedding cost, with up to 60.0% and 88.7% improvements in terms
of embedding cost and execution time, respectively, for some scenarios, in comparison with a benchmark
state-of-the-art algorithm.

INDEX TERMS Service function chaining, distributed algorithm, multi-domain embedding, network
function virtualization.

I. INTRODUCTION
Network Function Virtualization offers great prospects for
building logical networks with the ability to support the
divergent and stringent requirements of future services
through the softwarization of the network functions, hith-
erto implemented by middle-boxes coupled to proprietary
hardware [1], [2]. By this approach, NFV provides the

The associate editor coordinating the review of this manuscript and

approving it for publication was Tu Ngoc Nguyen .

possibility of migrating those network functions from ded-
icated hardware appliances to general purpose computing,
storage, and networking solutions [3], [4]. This facili-
tates a dynamic network management by allowing multiple
service-specific virtual networks to be deployed on a shared
infrastructure [5], [6]. In this regard, end-to-end services will
be instantiated as service chains consisting of an ordered set
of Virtual Network Functions (VNFs), commonly refereed to
as Service Function Chains (SFCs), which can be easily and
dynamically deployed, scaled or migrated [7]–[9].

114884 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7053-3756
https://orcid.org/0000-0002-4551-9880
https://orcid.org/0000-0002-6280-1546
https://orcid.org/0000-0001-7184-4102

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

The problem of service deployment considering a single
administrative network infrastructure has been extensively
addressed in the literature [10]–[14]. However, for a number
of practical scenarios such as Internet-of-Things applications,
the geographical location at which the data is generated
may be different from where it will be accessed, processed
or consumed [15], [16]. This, coupled with the location
dependencies of certain network functions, and the limited
footprint of InPs, may necessitate the SFCs to transcend
multiple domains, and then, involve several infrastructure
providers [17], [18]. Therefore, the end-to-end service sup-
porting such applications must be materialized by a chain
of service instances supported by different InPs. This brings
extra complexity regarding how to efficiently deploy the
different service chains onto an underlying infrastructure
belonging to multiple providers, while meeting the stringent
constraints associated with the requests in terms of both
required amount of resources and end-to-end delay. The
problem is further exacerbated by the unwillingness of the
different InPs to disclose information related to their internal
network topology, although, that information would be vital
to make efficient mapping decisions [19]. Fig. 1 shows an
example of several IoT systems in which information from
medical and road traffic domains are relayed to a core data-
center (with the possibility that there are multiple core cloud
servers belonging to different InPs) through several access
networks (wireless and optical) comprised of multiple InPs.

Algorithms for a multi-domain service deployment are
either centralized or distributed: centralized algorithms rely
on a centralized entity that uses global information to make
decisions about the different InPs for hosting the requests.
This may affect the scalability of such approaches when
considering large scale networks. Moreover, different enti-
ties cannot compute mapping solutions in parallel, affect-
ing the execution time of the algorithm [20]. On the other
hand, deciding the placement of any request when using
distributed algorithms involves the participation of different
InPs. Unlike centralized algorithms, as discussed in [21], dis-
tributed algorithms are well suited when considering dynamic
network environments, and they are also suited to protect the
privacy of the different InPs, hence, working with limited
information disclosure as considered in this work. However,
distributed approaches are penalized by an increasing pro-
cessing delay and signaling overhead when making request
provisioning decisions as the number of participating InPs
increases, hence, compromising their scalability. To over-
come this challenge, this paper proposes an algorithm for
the distributed provisioning of service requests across mul-
tiple infrastructure providers which incorporates two inno-
vative features: first, unlike other distributed algorithms,
such as in [22], where a messages exchange occurs between
any node and all its neighbors, the messages exchange in
our work involves only a pre-computed set of candidate
nodes, thanks to the use of a candidate extraction step; sec-
ondly, we incorporate a message processing technique in
which, upon receiving message blocks from other InPs, each

candidate InP processes the received messages and forwards
only a single message, based on all the received messages,
to a given sub-set of InPs. This, significantly reduces the
computational overhead of the different InPs participating
in the solution to be computed. Moreover, it is possible to
detect unfeasible requests in early stages when running our
proposed algorithm, further enhancing the algorithm time
performance, hence, rendering a well suited approach for
delay sensitive applications. Moreover, different from exist-
ing works addressing the multi-domain service problem, our
work incorporatesmultiple intra-domain performance param-
eters, such as processing costs, intra-domain delays, VNF
activation costs or energy costs, among others.

FIGURE 1. An illustration of multi-domain service deployment.

Therefore, our contributions in this work can be summa-
rized as follows:

1) An algorithm for the provisioning of service requests in
a distributed manner across an underlying infrastruc-
ture belonging to multiple InPs. The computation of
the solution is based on the use of a multi-stage graph
composed of a sub-set of InPs, enhancing its execution
time with no degradation in its performance.

2) A formal description and formulation of the SFC place-
ment problem across a multi-provider network infras-
tructure while satisfying end-to-end delay constraints.

3) A candidate selection algorithm to pre-compute the set
of candidate InPs to participate in the solution compu-
tation of the embedding algorithm. This minimizes the
number of InPs participating in the computation of the
embedding solution.

4) Extensive simulations considering both offline and
online scenarios. From the simulation results, the pro-
posed algorithm is found to be scalable when increas-
ing both the network size and the request demand.
Moreover, the proposed algorithm is also found to be
optimal in terms of some selected performance metrics,
including the provisioning cost and the execution time,
compared to a state of the art benchmark algorithm.

The rest of the paper is organized as follows: section II
presents the related work. The network modeling and prob-
lem description is presented in section III. The proposed

VOLUME 9, 2021 114885

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

multi-stage graph based distributed algorithm is described
in section IV. The performance evaluation of the proposed
algorithm is presented in section V. Finally, the conclusions
are summarized in section VI.

A. SOLUTION CONTEXT
The proposed solution is aligned with the ‘‘NFV Infrastruc-
ture as a service (NFVIaaS)’’ use case as described in [23],
and the ‘‘Network Services provided using multiple admin-
istrative domains’’ use case described in [24], both of them
applicable to scenarios where a single service provider is
unable to meet the requirements of its consumers. This is a
realistic scenario since, in practice, consumers may demand
services with a global span, yet, many service providers may
not have the capacity to deploy and provide resources around
the globe due to different reasons, including financial or
regulatory constraints, among others. Under such perspective,
an effective approach for any service provider comes from
using resources of different infrastructure providers. As artic-
ulated in [24], under the NFVIaaS use case, the tasks of:
the VNF placement decision, the management of software
images for the deployed VNFs, the SLA supervision or the
management of the intra-domain VNF infrastructure, among
others, are delegated to the NFVIaaS provider, with whom
the NFVIaaS consumer establishes an ‘‘a priori’’ commercial
agreement. This justifies our distributed approach for the tar-
geted problem, since in practice, a given InP will have limited
control and visibility of the network operations happening in
another InP domain.

The different architecture options, through which the
logical interconnection and service orchestration in a
multi-provider scenario can be supported, are proposed and
described in the ETSI report [24]. The ETSI NFV-MANO
architectural framework described in [25], and shown
in Fig. 2, serves as the basis for the aforementioned
multi-domain architecture options, with additional enhance-
ments of the interfaces and reference points where nec-
essary, depending on the specific architecture option. The
ETSI NFV-MANO architectural framework is constituted of
a set of functional blocks, data repositories used by these
blocks, and the respective interfaces and reference points
through which the different blocks can exchange information
in order to effectively manage the virtualized infrastructure
and the corresponding services within a given administrative
domain. The key building blocks of the architecture are:
the NFV Orchestrator (NFVO), the Virtualized Infrastruc-
ture Managers (VIMs) and the VNF Manager (VNFM). The
NFVO is responsible for the orchestration of NFVI resources
across multiple VIMs and the life-cycle management of
the deployed network services. The VNFM is responsible
for the life-cycle management of VNF instances, including
VNF instantiation, modification, healing and termination,
among others. On the other hand, the VIM is in charge
of controlling and managing the NFVI compute, storage
and network resources within a given domain. In order to
achieve a multi-domain connectivity, the architecture options

permit the exchange of information among different domains,
including IP addresses of the distinct functional blocks to
be interconnected, such as the NFVO, the unique identi-
fiers of the administrative domains to be interconnected,
and the administrative organization they pertain to, among
others. Moreover, the proposed architecture options may
allow for auto-discovery mechanisms in which the different
NFV-MANO functional blocks of the different domains can
advertise their own information which can be exploited by
the discovery mechanisms to establish a connectivity rela-
tion [24].

The architecture option for the ‘‘Network Services pro-
vided using multiple administrative domains’’ use case is
shown in Fig. 3, which considers a case where there is a
single NFV Orchestrator (NFVO) per administrative domain.
In this case, a new reference point Or − Or is proposed to
be added to the NFV-MANO architecture to facilitate the
communication between the different NFVOs in order to
enable a life-cycle management of the deployed composite
service. In the shown architecture example, NFVO-1 (which
we denote as the master orchestrator in our work) is in
charge of the life-cyclemanagement of the composite service,
including initiation of scaling operations when necessary,
while NFVO-2 and NFVO-3 are responsible for the life-cycle
management of the nested services (NSs) running inside
their respective administrative domains. However, NFVO-1 is
unaware of the virtualized resources in the host domains of
both NFVO-2 and NFVO-3, with the interaction between the
VNFM of each domain being limited to the respective NFVO
of that domain. In this regard, a service deployment algo-
rithm that is cognizant of the limited information exposure
is well suited for service deployment under this scenario.
Moreover, abstracting the internal topology of the different
domains from the global orchestrator has been found to result
in a significant reduction in the solution computation time
with a tenable cost increment [18], [26], [27]. The authors
in [26] and [18], [27] analyzed the time reduction gain and
provisioning cost performance, respectively, resulting from
abstracting the internal topologies of the different domains in
the multi-provider service deployment problem.

II. RELATED WORK
There are significant contributions in the literature devoted
to solving the problem of the service embedding for single
domain environments; such as in [3], [28]–[31]. However,
such approaches rely on a full network topology exposure,
which is not a realistic consideration when extended to the
multi-domain scenario. The multi-domain service deploy-
ment problem has been addressed in the literature either as a
Virtual Network Embedding (VNE) problem or as a Service
Function Chain Placement (SFC) problem. We summarize
here the most representative works in both of these areas.

The authors in [17], [18], [27], [32], [33] adopt approaches
based on obtaining exact solutions for the multi-domain ser-
vice embedding. However, although these approaches result
in optimal solutions, they achieve that at the expense of an

114886 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 2. NFV MANO architecture.

increased processing time complexity, hence, they are not
well suited for delay sensitive applications as envisaged in
future networks, including 5G. Due to this challenge, a num-
ber of alternative heuristic approaches have been proposed
in order to embed services across multiple domains within
a feasible run-time. In [21], [34]–[36] several multi-domain
algorithms are proposed considering that the internal infor-
mation within each InP is visible from other InPs. However,
in practice, due to security and business competition issues,
InPs are reluctant to share their topological and internal pol-
icy information, hence, these approaches are unsuitable for
scenarios with restricted information disclosure. The works
in [5], [22], [37]–[39] adopt heuristic approaches to map
services across multiple domains under limited information
disclosure. In [5], the algorithm uses the exposed boarder
nodes to compute all the feasible paths from source to desti-
nation. Then, for each of these paths, the first InP on the path
receives the SFC request and selects a sub-SFC to bid for,
and forwards this and the SFC to the next InP along the path.
Then, the receiving InP also selects a sub-SFC among the
non-selected VNFs and also tries to compete for the sub-SFC
selected by the previous InP. This process continues until the
last InP along the path selects or competes for a sub-SFC of
the request. Then, the path for mapping the request is chosen
as the one which results in the least cost among all candidate
paths from source to destination. The work in [38] adopts a
similar approach in which the exposed boarder nodes are used
to obtain feasible abstracted paths connecting the source node
with the destination node. The algorithm, then, partitions the
SFC according to two criteria, namely, according to the num-
ber of domains crossed by the abstracted path, with the goal of

minimizing the end-to-end delay, and according to the avail-
able physical resources of the different domains constituting
the abstracted paths. The authors of the above work adopt
a similar approach in [40] and [39], with the added goal of
minimizing the energy consumption. However, as revealed
from the simulation results of this paper, using the exposed
boarder nodes to compute all possible paths from source to
destination has a high time complexity, which greatly affects
the running time of the entire algorithm. The work in [37]
introduces pSMART, a privacy-aware SFC approach that tar-
gets to jointly achieve privacy and a high multi-domain SFC
orchestration efficiency. However, like most existing works,
the work adopts a centralised approach in which the solution
is evaluated based on computing the K shortest paths between
the ingress and egress nodes, using an abstracted topology.
However, in practice, the provisioning cost may be affected
bymultiple intra-domain undisclosed costs, including energy,
processing, link and QoS violations, among others. In this
way, the shortest path may not necessarily result in the least
provisioning cost. Moreover, obtaining a near-optimal solu-
tion may require obtaining a large number of paths, which
compromises the execution time of the algorithm.

The work in [41] proposes a service deployment frame-
work which incorporates innovative features, such as:
resource availability prediction and incremental learning,
among others, in order to realize a service deployment
solution that is adaptive to temporal variations in network
or request requirements states. In [42] the focus is set
on scheduling micro-services on multiple clouds, including
micro-clouds, that could belong to a single or multiple oper-
ators, using a fair weighted affinity-based scheme to solve

VOLUME 9, 2021 114887

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 3. ETSI proposed architecture option for Network Services provided using multiple administrative domains use case [24]. In this illustration,
domain A is the originating domain of the service request with NFVO-1 being the master orchestrator (MO) in charge of life-cycle management of
the composite service. NFVO 2 and 3 are restricted to the life-cycle management of the nested services inside their respective domains.

the scheduling problem. However, these works rely on a
full knowledge of the resources used within the different
clouds, whichmay not be accessible under partial information
disclosure. While considering a distributed cloud environ-
ment under a multi-stakeholder setting, the authors in [43]
target to optimise the utility of users, Service Providers and
the Infrastructure Providers by adopting an ILP formulation
that leverages a multi-layered auxiliary graph built for each
request to be provisioned.

In [22] a distributed algorithm is proposed in such a way
that, upon the arrival of a request, the centralized orchestrator
forwards the request to the different participating InPs. Then,
following their internal policies, each InP selects the sub-SFC
it can map. All the intra-domain mappings are then forwarded
to the orchestrator, and this one will select the optimal InPs
for hosting the request with the goal of minimizing the overall
provisioning cost. However, during the distributed compu-
tation, the algorithm requires the different InPs to forward
signaling requests to all their reachable neighbors, increasing
the time for making a mapping decision, especially as the
number of InPs increases. In [44], a distributed embedding
algorithm is proposed for the single VNE problem. In this
case, each node behaves as an autonomic agent. However,
the messages exchange overhead is unavoidable as the num-
ber of substrate nodes increases, since, even the unfeasible
nodes participate in the solution computation. Moreover,
the algorithm execution entails a path computation step which
involves computing paths between all nodes, which is very
time consuming.

In [2], [26], [45], [46] different multi-stage based
approaches are proposed for solving the service embedding
problem. The embedding solution in these works is obtained
by either applying the Viterbi-algorithm [45], [46], or a flow
based algorithm [2], [26], directly on the graph. However,
all these approaches require a centralized entity which has a
global view of the weights of the nodes and links constituting
the graph, something that is not feasible under a scenario
of partial information disclosure regarding those node and
link weights. Moreover, different from these approaches,
themulti-stage graph tool in our work is only used to establish
neighborhood relationships between the different candidates,
and it is not used for directly computing themapping solution.

III. SERVICE AND NETWORK MODELING - PROBLEM
DESCRIPTION
In this section we describe the mathematical modeling of the
SFC requests and the substrate network providing the service.
In addition, a description of the multi-domain service embed-
ding problem is given, also from a mathematical perspective.

A. SFC REQUEST
Considering a set ofR requests, each request r ∈ R is modeled
as a tuple 9r

=< Grv,Req
r
Nv , ρ

r ,Delrsd , τ
r
s , τ

r
d , τ

r
f > where

Grv is the SFC graph of the VNFs the user traffic must tra-
verse, including the virtual links interconnecting those VNFs.
We refer to each of such required VNFs as a request virtual
node or virtual node for convenience, denoted by npv ∈ Nv,
where Nv denotes the set of all such nodes, and p ∈ P denotes

114888 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

TABLE 1. Notations and variables.

the function type (e.g. firewall or NAT, among others) of
this node. The parameter ρr is used to denote the requested
packet rate of the user input traffic from the ingress node
τ rs to the egress node τ rd . Req

r
Nv denotes a set capturing the

requirements of the different request virtual nodes in terms
of CPU resources and location constraints, withCnpv ,r

dem and rn
p
v

denoting the CPU resource requirement and acceptable loca-
tion region of npv ∈ Nv, respectively. In practice, the amount
of CPU resources required by a node npv is proportional to the
packet rate to be processed by that node, i.e.Cnpv ,r

dem = ρ
r
npv
×Cρ ,

where Cnpv ,r
dem is the amount of CPU resources required by npv ,

with ρr
npv

and Cρ denoting the packet rate traversing npv and
the amount of CPU resources required to process each unit
of packet rate by that node, respectively. The termsDelrsd , τ

r
s ,

τ rd , τ
r
f are used to denote the end-to-end delay requirement of

the request, the ingress node, the egress node, and the request
life-time, respectively. Similarly, we denote by luv ∈ Lv the
request virtual link between request virtual nodes u and v, and
we denote the bandwidth requirement for such a link byBwrluv .
Note that the amount of required bandwidth may vary across

VOLUME 9, 2021 114889

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

different links, since the packet rate may be altered by the
traversed virtual nodes, for instance, as a result of filtering or
splitting of packets due to applying some kind of networking
functionality.

B. SUBSTRATE NETWORK
The substrate network considered in this work consists of K
InPs modeled as a weighted undirected graph Gs = (Ns,Es)
whereNs, Es denote the set of all physical nodes (e.g. servers)
and physical links, respectively. The substrate network of a
given domain k ∈ K is modeled as a weighted undirected
graph Gks = (N k

s ,E
k
s), where N

k
s and Eks denote the set of

substrate nodes and intra-domain substrate links within that
domain, where Gks ∈ Gs, N k

s ∈ Ns and Eks ∈ Es. Each
physical node nks ∈ N

k
s in the k th domain is characterized by:

i) a location specification locn
k
s , modeled as a point p(xsn, y

s
n),

where xsn and y
s
n are the x and y Cartesian coordinates; ii) a set

of function types that can be deployed onto this node, denoted
as f n

k
s ; iii) its residual CPU resources at a given time, denoted

by c
nks
res; iv) a CPU resource capacity, denoted by C

nks
max ; and

finally, v) the cost of processing each unit of packet rate at
this node, denoted by ζ kns . Similarly, we denote each physical
link by ek ∈ Eks within domain k . We also use eint ∈ Eint to
denote an inter-domain link, where Eint ⊂ Es denotes the set
of all inter-domain links. Each link ek ∈ Eks or eint ∈ Eint
is characterized by: i) a bandwidth capacity Be

k

max or Beintmax ;
ii) a residual bandwidth at a given time, denoted by Bwe

k

res or
Bweintres ; iii) a propagation delay δe

k
or δeint , and iv) a cost for

transmitting a packet rate unit ζ e
k
or ζ eint .

C. MULTI-DOMAIN SFC PROVISIONING PROBLEM -
DESCRIPTION AND FORMULATION
Given a service request to be provisioned, and an underlying
substrate network owned by multiple InPs whose internal
network topology and pricing information is considered con-
fidential, our objective is to obtain a set of InPs that satisfies
the request requirements while resulting in the least request
provisioning cost. In a general sense, this problem can be
decomposed into three main sub-tasks: the candidates search,
the request splitting and the request binding. The candidates
search task identifies a set of InPs that can potentially serve
that request, either partially or in full, by exploiting the public
information disclosed by all the InPs and the requirements
of the request. In this regard, this paper proposes a Can-
didate InPs Identification Algorithm (CIIA) that performs
this task. Since this task may associate each request virtual
node with more than one possible candidate InP, the request
splitting task focuses on selecting a sub-set of feasible InPs,
among all possible candidates, in order to optimize the map-
ping objective, e.g. the cost. In this paper, such a task is
implemented by a messages exchange among the candidate
InPs obtained from the first task. Once the optimal InPs
for embedding the request are identified, the binding task
carries out the reservation and allocation of the necessary
intra-domain and inter-domain resources along the selected

InPs in order to instantiate the end-to-end service. In this
work, the target of the service provisioning algorithm is to
minimize the average provisioning cost for each admitted
SFC request.Moreover, we consider a scenario where the cost
for each unit of any node or link resource may vary across
different InPs. In principle, minimizing the provisioning cost
of any request minimizes the operational cost of the service
provider and maximizes the resultant net revenue. We con-
sider the provisioning cost of any request to be influenced
by: i) the energy consumption cost associated with running
the different VNFs onto the substrate nodes of the different
domains; ii) the transmission cost of transferring the user
traffic from the ingress node to the egress node along all the
intermediate links; and iii) the processing cost incurred for
processing the user traffic at the different VNFs traversed.
Note, however, that other cost components, such as VNF
instantiation, could be easily integrated into the adopted cost
model of the algorithm. Therefore, the multi-domain service
provisioning problem target can be expressed as:

Minimize C(Gv) (1)

where C(Gv) denotes the average provisioning cost per
admitted SFC request, defined as follows:

C(Gv) =
1
|RA|

∑
r∈RA

Cr
p (Gv) (2)

where Cr
p (Gv) is the provisioning cost for a request r ∈ RA,

and RA denotes the set of all admitted requests, with |RA|
being the cardinality of that set. In order to evaluate Cr

p (Gv),
we define the following variables: σ eluv ∈ {0, 1} is a binary
variable, equal to 1 if the request virtual link luv is provisioned
by the intra-domain edge e ∈ Eks of domain k ∈ K, zero
otherwise; σ eintluv ∈ {0, 1} is equal to 1 if the request virtual
link luv is provisioned by the inter-domain edge eint ∈ Eint ,
zero otherwise; yn

p
v
nks
∈ {0, 1} is equal to 1 if the request virtual

node npv is provisioned onto substrate node nks , zero otherwise.
Then, the request provisioning cost can be evaluated as:

Cr
p (Gv) =

∑
luv∈Lv

∑
k∈K

∑
ek∈Eks

σ e
k

luv × ζ
ek
× ρr

+

∑
luv∈Lv

∑
eint∈Eint

σ
eint
luv × ζ

eint × ρr

+

∑
npv∈Nv

∑
k∈K

yn
p
v
nks
× ζ kns × ρ

r
+ χw

∑
k∈K

∑
nks∈N k

s

Enks

(3)

where the first and second terms of Eqn. 3 correspond to
the transmission costs due to the use of the intra-domain
and inter-domain edges, respectively, and the third and fourth
terms correspond to the processing costs, due to the use of the
selected substrate nodes, and the energy costs, respectively.
The parameter Enks from the energy cost term denotes the
energy consumption at node nks , and χw denotes the cost per
unit of energy consumption. Enks is computed using the model

114890 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

adopted in [47] as follows:

Enks = eidlenks
+ [ebusynks

− eidlenks
]× U

nks
til (4)

where eidlenks
, ebusynks

denote the idle and peak power consumption

of the node nks . The term U
nks
til refers to the utilization of

substrate node nks .
In order to increase competitiveness, the mapping inside

each domain is done with the objective of minimizing the
mapping cost for the sub-SFC that is bid for by the corre-
sponding domain. Complementary, the optimization criterion
expressed in Eqn. 1 should adhere to a number of constraints,
including the following:
• The total bandwidth consumption on a given edge ek ∈
Eks and eint ∈ Eint should not exceed the capacity of that
edge: ∑

r∈R

∑
luv∈Lv

σ e
k

luv × Bw
r
luv ≤ B

ek
max ∀e

k
∈ EKs (5)

∑
r∈R

∑
luv∈Lv

σ
eint
luv × Bw

r
luv ≤ B

eint
max ∀eint ∈ Eint (6)

• The end-to-end delay should not exceed the acceptable
delay of the request:∑
luv∈Lv

∑
k∈K

∑
ek∈Eks

σ e
k

luvδ
ek
+

∑
luv∈Lv

∑
eint∈Eint

σ
eint
luv δ

eint

+

∑
npv∈Nv

yn
p
v
nks
× δ

p
vnf ≤ Del

r
sd ∀r ∈ R

(7)

where δpvnf denotes the processing delay experienced
by a packet at a VNF of type p. The first and second
terms of equation 7 correspond to the propagation delay
of the intra-domain and inter-domain edges, respec-
tively, and the third term corresponds to the processing
delay at the different VNFs being traversed by the user
traffic.

• The CPU consumption at a given substrate node should
not exceed the node resource capacity:∑
r∈R

∑
npv∈Nv

yn
p
v
nks
× Cnpv ,r

dem ≤ C
nks
max ∀nks ∈ N

k
s , k ∈ K (8)

• Each request virtual node must be mapped onto a single
substrate node:∑

k∈K

∑
nks∈N k

s

yn
p
v
nks
= 1 ∀npv ∈ Nv (9)

• Each request virtual node should be provisioned on a
substrate node that is within its acceptable geographical
location:

dist(nks , n
p
v) ≤ dev(n

p
v) ∀ n

p
v ∈ Nv (10)

where dist(nks , r
npv) denotes the distance of substrate

node nks from the desired location of virtual node npv and

dev(npv) denotes themaximum acceptable deviation from
such a location.

• Each VNF of type p should be provisioned on a substrate
node capable of supporting that type of VNF:

γ
nks
p = 1 iff nks ∈ ϒ

p
vnf ∀ p ∈ P (11)

where ϒp
vnf is a set containing all nodes that can provi-

sion a VNF of type p.
• Similarly, a request virtual node npv is provisioned by
substrate node nks only if there is a VNF of type p already
provisioned on that node.

yn
p
v
nks
= min{yn

p
v
nks
, γ

nks
p } (12)

The problem as formulated above becomes an NP-hard
problem. As such, solving it using conventional solvers like
CPLEX or Gurobi is not feasible in terms of execution time,
especially when dealing with large scale networks. Therefore,
this paper proposes a heuristic approach that is able to achieve
near-optimal solutions within feasible run-times.

IV. PROPOSED MULTI-STAGE GRAPH BASED
DISTRIBUTED SERVICE PROVISIONING ALGORITHM
This section introduces the proposed multi-stage graph based
algorithm (MuL) for multi-domain service deployments.
Specifically, the steps involved in the algorithm execution,
including their corresponding pseudo-codes, are described
here. For the multi-domain service deployment problem,
the service embedding algorithm targets to obtain a set of
InPs that minimizes the service deployment cost while sat-
isfying the request requirements. Given the large number of
possible combinations for mapping the different VNFs of the
request, this problem is computationally intractable. Hence,
looking for exact solutions becomes unfeasible, especially
for large network scenarios. This is further exacerbated by
the reluctance of InPs to disclose information related to their
internal topology or policies. This way, it makes conventional
heuristics, such as those based on node-ranking, unfeasible
for this problem. With this motivation, this paper proposes
an approach that obtains the provisioning solution in three
phases that will be subsequently described, with the aim to
reduce the problem dimension successively. The proposal is
able to obtain near-optimal solutions in practical run-times
while preserving the privacy of the different InPs. The algo-
rithm consists of 3 main steps: a Candidate InP identification,
a Message exchange and a Consensus step. The proposed
algorithm uses a candidate search technique to identify poten-
tial InPs that can host a fraction or the whole request. Then,
these candidate InPs are used to build a multi-stage graph,
where, at each stage, all the candidate InPs of a givenVNF are
represented as a different node, and the interconnecting edges
between the nodes of consecutive stages are the available
inter-domain substrate paths. Using this multi-stage graph,
a message block is constructed at the leftmost stage (source
end) and propagated upstream towards the destination node.
Each node, through which the message block passes, updates

VOLUME 9, 2021 114891

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

the received message block by increasing the cumulative
mapping cost, the total cumulative delay and the list of tra-
versed nodes, before forwarding this message block to all the
nodes of the next stage. At the output end, the message block
associated with the least cost value is chosen as the optimal
message block, and the nodes through out which this message
block was transiting are chosen as the optimal nodes/InPs for
embedding the request. A detailed description of these three
steps follows below:

A. CANDIDATE InPs IDENTIFICATION STEP
This step exploits that each request virtual node of a given
SFC is constrained by a function/resource type and location.
Similarly, the corresponding virtual links between any two
virtual nodes are considered to be constrained by a delay
and a bandwidth requirement. Therefore, each request virtual
node of a given request may only be served by a sub-set
of the available InPs that satisfy the associated constraints.
The aim of this step is to associate each request virtual node
with a set of InPs that can satisfy its associated constraints.
Different to approaches such as in [22], in which all domains
participate in the distributed solution computation, selecting
a subset of InPs to participate in the solution computation
minimizes the execution time of the algorithm and the amount
of signaling information exchanged among the involved
participants.

Whenever a request arrives, we take the orchestrator of
the domain receiving that request as the Master Orchestrator
(MO), and we assume that this orchestrator has access to the
global information disclosed by all the InPs. This information
includes the type of resources available in each domain and
the boarder nodes of the different domains, which can be used
to infer the span of a given domain. However, note that we are
considering a restricted information disclosure. The amount
of available resources, their location, the network topology
or the price of each unit of resource is assumed to be private
information. In this regard, the MO is responsible for com-
paring the specifications of the request with the global infor-
mation disclosed by the orchestrators of the different admin-
istrative domains, with the goal of identifying the potential
domains that could host the SFC request. The set of candidate
InPs is obtained by matching the virtual nodes location and
resource type constraints with the disclosed information of
each InP, and also by matching the virtual links’ constraints
with the inter-domain links’ attributes. Thus, for an InP to be
among the candidate set of InPs for a given request virtual
node i, the set of offered resource types disclosed by this InP
must include the function type of node i, and the geographical
span of that InP must include the acceptable location of this
virtual node. Similarly, for two consecutive request virtual
nodes i and j to be hosted by InP A and InP B, where A¬B,
there should exist an inter-domain path between InP A and
InP B that satisfies the constraints of virtual link i − j. If we
denote by 0k , rn

p
v and ηkvnf as the geographical span of InP k,

the desired location of virtual node npv , and a set of VNF types
that can be provisioned inside InP k respectively, then an InP

is considered a potential candidate for virtual node npv iff :

rn
p
v ∈ 0k (13)

p ∈ ηkvnf (14)

Equation 13 requires that the acceptable location of virtual
node npv lies within the coverage span of InP k . From equa-
tion 14, such an InP should support the resource type required
by npv . The pseudo-code of the candidate InPs Identification
step is shown in Algorithm 1. The algorithm starts by initial-
izing the set of candidate InPs for the request, Cand rs , to an
empty set. Then, for each virtual node npv ∈ Nv of the request,
the algorithm extracts all InPs that satisfy the resource type
constraint, location constraint and also have a feasible con-
nection (in terms of bandwidth and delay) between the source
node Sn and destination node Tn, as potential candidates for
this virtual node npv , and stores these in the set Candn

p
v . In the

case that any VNF has no potential candidate, the request is
rejected at this point. Otherwise, the algorithm returns the
candidate set Cand rs made up of candidates for all the virtual
nodes of the request. Note that, although the requirement
to have a feasible path between candidate InPs for adja-
cent VNFs can be evaluated within Algorithm 1, we pro-
pose to evaluate this at the message exchange step. In this
way, the number of such path computations between InPs is
reduced due to the pruning of candidate nodes by virtue of
location and resource type constraints.

B. MESSAGE EXCHANGE STEP
The Message exchange step can also be viewed as a dis-
tributed computation step involving each candidate InP of the
request forwarding Message Blocks (MBs) to a given sub-set
of candidate InPs in order to deduce a mapping solution.
The Message exchange is guided by a multi-stage graph con-
structed by theMO and based on the obtained candidate InPs.
The leftmost stage in the graph corresponds to the source
node (originating InP) and the rightmost stage corresponds
to the destination node (terminating InP). Each intermediate
stage of the graph corresponds to a specific required VNF
of the request. The nodes considered at each stage of the
multi-stage graph are the candidate InPs for the provisioning
of the VNF at that stage.

An example of such a multi-stage graph is shown in Fig. 4
for a request in which the traffic has to traverse three VNFs,
a single source and a single destination, and candidate sets for
the VNFs being: VNF1 = {A,B}, VNF2 = {A,C}, VNF3 =
{D,E}. The connection between any two InP nodes X and Y
from adjacent stages of the graph, where X¬Y , corresponds
to the physical path connection between the peering nodes
connecting InPs X and Y . As such, the weight parameter ωXY
stands for the weight of that path in terms of features such as
delay, residual bandwidth, and monetary cost, among others.
For the particular case of the same InP being a candidate
for two consecutive VNFs, (i.e. X = Y), the connection
path and weight metric ωXY corresponds to the intra-domain
path between the candidate hosting nodes of these VNFs.

114892 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 4. An illustration of a multi-level graph for a request whose traffic must traverse three VNFs from the ingress to egress nodes. In this case,
each request virtual node has 2 InPs as potential candidates for provisioning its required VNF type, with InP A being a candidate for provisioning the
VNFs for the first and second request virtual nodes.

Algorithm 1 Candidate InPs Identification Algorithm
Input: Gs,Gv
Output: Candidate set,Cand rs
Initialise: Cand rs = ∅
for Each virtual node npv ∈ Nv do

Candn
p
v = φ

for Each Inp k ∈ K do
if rn

p
v ∈ 0k AND p ∈ ηkvnf then
if dijkstra(k,Sn) AND dijkstra(k,tn)6= Inf
then

Add k to Candn
p
v ;

end
end

end
if Candn

p
v = φ then

Reject Request
end
else

Add Candn
p
v to Cand rs

end
end

Each node k in the graph is characterized by a parameter φk
which represents the undisclosed information matrix of the
corresponding InP. This includes the cost per unit of resource
and the internal topology, among others, attributes that are
only known by the specific domain orchestrator.

To understand the executed procedure of this step, and
using Fig. 4 as an illustrative example of a possible

multi-stage graph for an SFC with 3 VNFs, we define the
following terms:

• Message Block (MB): This denotes a single mes-
sage unit built as a tuple <IDtrack,Edgetrack,Costcum,
Delcum>. The IDT rack component, which is initialized
as an empty list, stores all the IDs of the nodes/InPs that
have modified the message block at the different stages
(i.e. feasible candidates for the different VNFs through
which the MB has traversed) from source to destination.
As an example, if a message block from the source InP
traverses InPs B,C,D before reaching the terminal node,
then, the IDT rack for this MB at the terminal node will
be, IDT rack = [sn,B,C,D, τn]. The Edgetrack , initial-
ized as an empty list, stores all the inter-domain edges
that have been traversed by the message block from
source to destination. Considering the above example in
which IDT rack = [sn,B,C,D, τn], then Edgetrack =
[sn − B,B − C,C − D,D − τn at the terminal node.
The Costcum and Delcum components, initialized to zero
both of them, capture the cumulative cost and delay
respectively along the different paths traversed by the
message block (computing for both nodes and links)
from source to destination. Note that eachmessage block
corresponds to a possible mapping solution from the
source node to the VNF corresponding to the last index
in IDT rack . We denote by MBmn the message block sent
from node n to node m. Note that, in this case, the stage
of node n has to be to the left of that of node m.

• Message Block Set (MBS): This denotes a set of one or
more message blocks.

VOLUME 9, 2021 114893

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

• Optimum Message Block (MBopt): This denotes the
message block from the message block set that has the
least cost value among all valid message blocks in that
set.

• Pushing node set, knpush: The pushing node set of a given
node k ∈ K at stage n of the multi-stage graph denotes
the set of all nodes in the preceding stage (n−1) to which
the node k has a feasible connection. Any node in such
a set is called a pushing node with respect to k . As an
example, the pushing node sets for the nodes in the third
and fourth stages of Fig 4 are: A3push = {A,B}, C

3
push =

{A,B}, D4
push = {A,C}, E

4
push = {A,C}

• Receiving node set, knrec: A receiving node set with
respect to node k ∈ K at stage n refers to the set of all
nodes in stage (n+1) to which the node k has a feasible
connection. As an example, the receiving node set for
node C is C3

rec = {D,E}.

Then, the execution of the Message exchange step is as
follows:

Starting from the leftmost stage (source node), the MO
initializesN message blocks, whereN is the number of candi-
date InPs at the next stage (i.e. the size of the receiving node
set for the MO), with each message block MBnMO intended
to be forwarded to a specific receiving node n. Then, for
each receiving node n, it computes the shortest available path
from the source node to node n, and obtains the delay, cost
and the inter-domain edges constituting this path. Then, for
each message blockMBnMO to be forwarded to each receiving
node n, the MO appends: its index into the IDT rack com-
ponent, the obtained inter-domain edges into the Edgetrack
component, and the cost and delay values to Costcum and
Delaycum components, respectively. Then, the MO forwards
to each receiving node n the corresponding MB, i.e. MBnMO,
for further processing. On receiving the MB, each node n at
stage l (l = 1 if received from the source stage) identifies the
receiving node set (i.e. the candidate nodes at stage (l + 1))
from the multi-stage graph. Note that these are the candidates
of the VNF to be enumerated in the next round. Then, for each
nodem, among the receiving candidates, node n performs the
following steps:

• Obtains the optimal message block MBn,mopt from all
the message blocks it has received. The MBn,mopt refers
to the message block at node nwith the least cost among
the feasible message blocks to be propagated to node m.
Amessage block is feasible to be forwarded to nodem of
the next stage if: i) the node m is not already part of the
IDtrack , unless it is the same as the current sending node
(i.e. it is a candidate for both the current VNF and the
next VNF, implying m= n); ii) the sum ofDelaycum and
the additional intra-domain delay to the substrate node
where the VNF is to be mapped inside node n does not
exceed the acceptable delay.

• Obtains the available shortest path from node n to node
m. Note that this path should not include already used
edges that appear in the Edgetrack of the MBn,mopt . This

is done in order to guarantee that the user traffic from
source to destination does not traverse the same edge
twice. The intra-domain delay and the intra-domain cost
(for nodes and links) is evaluated and added to the delay
and cost of the obtained shortest path from n tom. These
are then used to increase the Delaycum and Costcum,
respectively, of the MBn,mopt . Also, the index of node n is
added to the IDT rack component.

• Forwards MBn,mopt to node m. Node m and the following
ones will also execute the same steps until the message
blocks will reach the last stage. In the case that a node
is unable to push a message block to at least one of the
nodes of the next stage, that node mutes all the received
MBs and sends back a mute message to the MO. In the
event that all the candidate nodes at a given stage have
responded with a mute message, the request is rejected,
and the algorithm execution stops, since this means that
there is no feasible connectivity between the current
VNF and the VNF corresponding to the next stage.

C. CONSENSUS AND BINDING STEP
Once the node at the last stage of the graph has computed
its associated MBopt , it forwards its MBopt back to the MO,
the MO then selects the IDtrack component of the message
block with the lowest cost as the definitive mapping solution
for the SFC request. This is constituted by IDs of InPs that
result in the least mapping solution from the source to the
destination. Finally, the resources across the inter-domain
links and those inside the selected domains are reserved for
deploying the request.
In possible situations where the last stage could be associ-

ated with multiple nodes (e.g. in case of multiple alternative
servers in which the user may access content), then each of
the nodes in the last stage computes its correspondingMBopt
and forwards it to the MO. This, then, selects the MBopt
with the least cost as the definitive mapping solution. If this
algorithm is to be executed in a fully distributed fashion,
the execution of this step implies that the candidates of the
last stage know each other (through the multi-stage graph
which can be shared by theMOwith all the candidate nodes).
Then, once each node in the last stage of the graph has done
its internal computation and evaluation, it forwards a copy
of its resulting MBopt to each of the other candidates in this
stage. Then, each node inspects all theMBopt messages at its
disposal including its own. If the MBopt of such a node has
the lowest cost value, the node sends a ‘‘back−off ’’ message
to all the rest of the nodes, and it forwards its own MBopt to
theMO from which the definitive mapping solution is chosen
as the IDtrack component of the MBopt , with the Edgetrack
indicating the inter-domain edges of the solution.

For the intra-domain evaluation and mapping of the
assigned sub-SFCs, an InP can use any single-substrate
SFC provisioning algorithm such as [10]–[14] depend-
ing on its intra-domain policies. Moreover, under a multi-
domain setting, it is possible that different InPs run different
intra-domain algorithms for service provisioning. In this

114894 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

Algorithm 2 Distributed Computation Step
Input: Multi-level Graph, Gv
Output: Mapping Solution
j = 0
while j < J do

for Each level j ∈ J do
for Each recepient node m at level (j+ 1) do

RecMBm=[] F Collect received MBs
for Each forwarding node n at level j do

Evaluate the optimal MB,
MBopt ∈ RecMBn

UpdateMBopt
if n==Terminal node then

ReturnMBopt F Chosen mapping
solution

end
else

ForwardMBopt to RecMBm

end
end

end
if RecMBm ∀ m at level (j+1) then

Reject request
end
j=j+1

end
end

paper, we adopted the algorithm proposed in [10] for SFC
provisioning with some minor modifications to suit the sub-
SFC mapping. Using the intra-domain candidate nodes and
links for the assigned sub-SFC, the algorithm constructs a
multi-stage graph similar to the one in Fig. 4, with the chosen
peering nodes serving as the fictitious ingress and egress
nodes. The feasible nodes and links associated with the least
cost between the fictitious ingress and egress nodes, consid-
ering both resource and energy consumption, are chosen for
hosting the assigned sub-SFC. We refer the interested reader
in the details of the algorithm to consult reference [10].

D. TIME COMPLEXITY ANALYSIS
The main steps of the proposed algorithm are: the com-
putation of the candidate sets of InP for each VNF of the
request; the processing and forwarding of message blocks
from each node at each stage towards the receiving nodes
of the next stage; and the selection of the InP set for the
provisioning of the request. The time complexity of extract-
ing a candidate set of InP for each request virtual node
is linear in terms of the number of InPs K , 2(K). The
messages exchange step involves the use of the Dijkstra
algorithm to compute the shortest path between each node
i at stage n and each node j at stage (n + 1) of the
multi-stage graph, where i 6= j, as well as the evalua-
tion of the intra-domain cost for the mapping of the VNF
corresponding to stage n. The time complexity associated
with the shortest path computations can be approximated as

2((2CN + (M − 3)C2
N) × |K |log(|K |)) ≈ 2((V − 3)C2

N) ×
|K |log(|K |)), where CN is the number of candidate nodes for
each VNF (in practice, this may be different for the different
VNFs, and the same InP may be a candidate of more than one
VNF). V is the number of stages in the graph, including those
corresponding to the ingress and egress nodes. The time com-
plexity of the intra-domain cost evaluation depends on the
specific single domain algorithm used for the intra-domain
mapping. In general, the time-complexity of the entire pro-
posed algorithm is guaranteed to be less than2([(V−3)C2

N)×
|K |log(|K |)]+[K×(|Nv|−3)Ns)×|Ns|log(|Ns|)]), whereNv is
the number of VNFs and Ns is the number of substrate nodes
for an InP. In practice, the different InPs can only support a
finite number of VNFs, hence, limiting the number of can-
didates for each VNF. Moreover, due to the finite number of
VNFs that can be supported by each InP (due to resource type
and capacity constraints), the number of possible candidates
for each VNF decreases as the SFC size increases, binding the
time complexity of the algorithm as the SFC size increases.

V. PERFORMANCE EVALUATION
This section describes the performance evaluation of the
proposed algorithm including a description of the simulated
scenarios and a discussion of the obtained results. The evalu-
ation of the proposed algorithm is made against the following
bench-mark algorithms:
• Distributed Network Service Embedding (DistNSE)
algorithm proposed in [5]. This work exploits the dis-
closed public information to compute feasible paths
between source and destination, and from that the path
with the least cost is chosen for mapping the service
request. Considering all possible paths from source to
destination to obtain all feasible solutions, the bench-
mark DistNSE algorithm is optimal in terms of accep-
tance ratio, hence, it becomes a suitable algorithm for
performance benchmarking. In our comparison we con-
sidered the best performance scenario of the DistNSE
algorithm, in which all feasible paths from the ingress to
the egress nodes are evaluated, and from them the best
path was selected.

• Multi-level Aggregation Algorithm (MuL-Ag). We
designed this as a benchmark algorithm with its exe-
cution being similar to the proposed MUL. However,
at each stage, instead of each node evaluating the optimal
message block to be forwarded to the nodes of the next
stage, that node aggregates/combines all the received
messages into a message set and forwards all these to the
next stage nodes as it is the case adopted by distributed
algorithms in literature [22]. The target is to demonstrate
the gain resulting from our proposed technique of only
sending a single message from a node to another given
node.

A. PERFORMANCE METRICS
We evaluate the performance of the proposed algorithm con-
sidering a number of performance metrics discussed below:

VOLUME 9, 2021 114895

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

1) AVERAGE ACCEPTANCE RATIO, AR
This is computed as the ratio of the number of successfully
accepted requests to the total number of arriving requests,
i.e., the sum of both accepted and rejected. The ARmetric is a
direct indicator of the algorithm efficiency in using the under-
lying resources. Therefore, a service deployment algorithm
should target a high AR performance in order to maximize
the revenue returned to the Network Service Provider. This is
computed as follows:

AR =
No. of embedded requests
Total number of requests

(15)

2) AVERAGE PROVISIONING COST, C(Gv)
The C(Gv) is the average cost incurred by the MO on pro-
visioning the SFCs across different domains from source to
destination. This cost captures the cost of node mapping and
link mapping, and it is evaluated as shown in equation 2.

3) AVERAGE REVENUE, REV
This metric is used to express the average revenue, over time,
obtained by theMO. This is computed as the monetary return
from the use of the demanded CPU and bandwidth resources.
If we denote by revr (Gv) as the revenue received by a service
provider from embedding a request r ∈ RA, then, the total
from all admitted requests is defined as:

Revtotal =
∑
r∈RA

revr (Gv) (16)

Then, the average revenue obtained from each admitted
request can be evaluated as:

Rev =
1
|RA|

∑
r∈RA

revr (Gv) (17)

If we denote by γ nvc and γ evbw as the revenue received by a
SP for each unit of cpu and bandwidth resource, respectively,
charged for each virtual node and virtual link of the request,
the revenue obtained after embedding a given SFC request
r ∈ RA at time t ∈ T can be defined as below:

revr (Gv, t) =

∑

nv∈N v γ
nv
c demnvcpu+∑

∀ev∈Ev γ
ev
bwdem

ev
bw if zrt = 1

0 otherwise

(18)

where zrt ∈ {0, 1} is a binary variable equal to 1 if resources
are assigned to request r ∈ R at time t ∈ T , zero otherwise.
Therefore, the total revenue obtained in serving a request r
throughout its life-time is computed as:

revr (Gv) =
∑
t∈T

zrt × rev
r (Gv, t) (19)

where the term
∑

t∈T z
r
t ≤ τ

d denotes the total service time
of the request.

4) AVERAGE REQUEST PROVISIONING TIME, Avg_T
This is the average time it takes to the service deployment
algorithm to compute a mapping solution for any admitted
request. Aware that future services will have stringent latency
start-up requirements, a useful service deployment algorithm
must work with a low Avg_T . This is computed as:

AvgT =
1
|RA
|

∑
r∈RA

timrprov (20)

where RA ∈ R denotes the set of all admitted requests, and
timrprov denotes the time taken by the algorithm to obtain a
deployment solution for request r ∈ R.

B. SIMULATION ENVIRONMENT AND SETTINGS
1) NETWORK TOPOLOGY
Depending on the particular experiment carried out, this work
considers a substrate network composed of InPs varied from
4 to 12 participants, and with a connectivity probability
between InPs fixed to 0.5. Each InP is modeled by a real
network topology, namely a BIC topology as explained in
[48], composed of 33 nodes and 41 edges. The resource
capacity of the different intra-domain links and nodes follows
a uniform distribution U(200, 300). Any intra-domain link
delay, specified in milliseconds, follows a uniform distribu-
tion U(1, 6). The above settings are similar to those adopted
in [38]. The cost of transmitting and processing 1 GB of data
(approximately 16,384 packets of 64 KB size each) is consid-
ered to follow a uniform distribution of U($0.05, $0.12) and
U($0.15, $0.22), respectively, as also adopted in [49]. This
is aligned with common charging prices like those applied
by Amazon EC2. The processing delay of a packet at each
NF follows a uniform distribution U (0.045 ms, 0.3 ms), with
the processing delay of a service chain being the sum of the
processing delays of the constituent NFs.

2) SFC REQUESTS
Each request r ∈ R is generated with a random source τ rs
and a random destination τ rd from Gs, with τ rs 6= τ rd , and
with a packet rate demand ρ measured in packets/s following
a uniform distribution U (400, 4000). The end-to-end delay
requirement of each request follows a uniform distribution
U (10ms, 30ms). We consider 5 categories of network func-
tions: Firewalls, Proxies, NATs, DPIs and Load Balancers,
with their computing resource demands adopted from [50].
The number of VNFs constituting each SFC instance is
set different depending on the scenario under consideration.
Considering the online case, the arrival rate of requests fol-
lows a Poisson distribution with a mean value varied from
2 to 10 requests per window of 100 time units, but this is also
dependent of the experiment under consideration. Similarly,
the life-time of such requests is exponentially distributed with
a mean value of 1000 time units.

All simulations were carried out on a desktop computer
running a Windows Operating System with the following

114896 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

features: Intel(R) Core(TM) i7-8700K CPU@ 3.70GHZ and
64GB of RAM.

C. RESULTS AND DISCUSSION
This section presents and discusses the results obtained
from different online and offline experiments. Under the
offline scenario, all the requests to be served, including their
attributes, are known in advance. And these, once admitted,
do not leave the system until the simulation ends. Therefore,
the resources allocated to these requests cannot be reused by
other requests. The offline scenario is useful because it gives
us a clear insight into the algorithm’s ability to deal with per-
manent loading stress conditions [2]. For the online scenario,
the requests continuously arrive to the system according to
a given arrival distribution, besides, any request will have a
finite life-time, shorter than the simulation window. For this
last scenario, the resources assigned to an accepted request
are reclaimed upon the ending of the service. For each arriv-
ing request, the different steps of the algorithm are executed
to provision such a request. The obtained results are discussed
below.

1) OFFLINE SCENARIO
This section presents and discusses the results obtained from
different experiments considering the offline scenario:

In Experiment 1, whose results are shown in figure 5,
the impact of the demand size on the performance of the
algorithms is analysed. From figure 5(a), the 3 algorithms
have the same competitiveness (within a 4% margin) in
terms of acceptance ratio, with an average value of: 27.0%,
23.5% and 24.5% for MuL-Ag, DistNSE and MuL, respec-
tively, averaged across all the tested demand sizes. How-
ever, the DistNSE algorithm results in the worst performance
in terms of average mapping cost per admitted SFC, with
an average value of 5.45$, which is approximately a 60%
higher compared to MuL and MuL-Ag, whose average cost
values are: 2.11$ and 2.15$, respectively, averaged across
the different demand sizes. The poor performance of the
DistNSE algorithm in terms of mapping cost is attributed
to the fact that in DistNSE, InPs can compete only for the
previously mapped sub-SFC, as opposed to the multi-stage
algorithms, in which an InP can compete for any sub-SFC
of the request as long as it is a valid candidate. The results
in figure 5(c) demonstrate the superior performance of MuL
algorithm in terms of average processing time per admitted
request, with an average value of 1.35 seconds across all
demands. This translates into a performance improvement
of 44.1% and 88.79% compared to MuL-Ag and DistNSE,
respectively, whose average values are: 2.45 seconds and
12.1 seconds. For the MuL algorithm, each node at a given
stage forwards a single message block to each receiving
node at the next stage, this results in a lower processing
load at the receiving nodes, hence, reducing the execution
time compared to MuL-Ag, in which each node forwards
all aggregated message blocks to each receiving node at the
next stage. In terms of average revenue per admitted request,

MuL is as competitive as MuL-Ag (within a 2% margin),
and results in a 4.4% improvement compared to DistNSE,
as shown in figure 5(d). Moreover, the average revenue for
each admitted request tends to decrease when increasing the
demand size, due to the decreased resources in the network,
making it increasingly difficult to admit requests with high
revenue. In summary, experiment 1 has demonstrated that
MuL results in a better performance in terms of mapping cost
and execution time compared to DistNSE. In terms of AR,
cost and average revenue per admitted request, it is found to
be as competitive as MuL-Ag, yet, achieving up to a 44.1%
improvement in terms of execution time.

Experiment 2, whose results are shown in figure 6, anal-
yses the impact of the request size, in terms of number of
VNFs, on the performance of the different algorithms. Con-
sidering the results of mapping cost shown in figure 6(a),
the average mapping cost per admitted request for all the
3 algorithms tends to increase as the number of VNFs per
SFC increases. This is something expected since SFCs with
more VNFs are associated with a higher consumption of both
node and link resources, resulting in a higher provisioning
cost. However, like in experiment 1, DistNSE results in the
worst performance in terms of cost, with an average value
of 9.97$, which is 33% higher than MuL-Ag, whose average
value is 6.67$, and 44.7% higher than MuL, whose average
cost value is 5.52$. The poor performance of the DistNSE in
terms of mapping cost is largely attributed to the inability of
the different InPs along the different paths to compete for all
the sub-SFCs that they could potentially map, as they only
compete for the previously mapped sub-SFC. The results of
total revenue from the admitted requests is shown in fig-
ure 6(b), where the average values for DistNSE, MuL-Ag
and MuL are: 10524.93$, 11486.16$, 9913.99$, respectively.
This shows that the MuL is competitive in this metric with
only a 5% and 13% difference compared to DistNET and
MuL-Ag respectively. The results in figure 6(c) demonstrate
the superior performance of the MuL compared to MuL-Alg
in terms of average execution time per admitted request.
In general, the average execution time per admitted SFC
grows with the increase in the number of VNFs per SFC
for the 3 algorithms. This is expected since each additional
VNF (and hence, virtual link) comes with an extra processing
time of any intra-domain mapping. However, as observed,
the time complexity of MuL-Ag tends to grow exponentially
when increasing the SFC size, resulting in an average value
of 17.03 seconds, which is 86.3%worse than theMuL, whose
value is 2.33 seconds, averaged across all SFC sizes. This is
attributed to the fact that, as the number of VNFs increases,
the number of stages of the multi-stage graph increases.
As a result, the number of messages received by each node
increases drastically for the MuL-Ag algorithm, especially
for the nodes at the rightmost stages, this increases the com-
putational load at these nodes, resulting into extremely high
execution times. On the other hand, for the MuL algorithm,
each node forwards only a single message block to each node
at the next stage. Therefore, the number of messages received

VOLUME 9, 2021 114897

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 5. Experiment1: Results of experiment 1 of the offline scenario in which the number of demands is varied from 100 to 600 considering
10 InPs.

FIGURE 6. Experiment 3: Variation of number of VNFs for offline Scenario: Results of experiment 2 of the offline scenario in which the
number of VNFs per SFC request is varied from 3 to 13 considering 8 InPs and demand size of 100 requests.

by a given node at a given stage is only dependent on the
number of pushing nodes in the preceding stage, and not on
the stage depth of the node. The DistNSE algorithm results
in a 83.4% increase in terms of execution time compared to
MuL, with an average value of 14.17 seconds.

In Experiment 3 of this scenario, whose results are shown
in figure 7, the impact of the substrate network size is

analyzed by varying the number of InPs from 4 to 12. The
3 algorithms have a close performance in terms of AR (an
approx. 4% difference) with average values of: 37.0%, 33.0%
and 35.8% for the MuL-Ag, DistNSE and MuL algorithms,
respectively. Moreover, the AR performance of the algo-
rithms slightly improves as the number of InPs increases
due to an increase in the amount of available resources. The

114898 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 7. Variation of number of InPs for offline Scenario: Results of experiment 3 of the offline scenario in which the number of InPs is varied
from 3 to 12.

results in figure 7(b) show that the average mapping cost
per admitted SFC for the 3 algorithms tends to increase as
the number of InPs increases. This is attributed to the fact
that, increasing the number of InPs, increases the prospects
of admitting requests with more VNFs and resource require-
ments, which are associated with higher costs. Moreover,
the probability of traversing multiple inter-domain paths
between ingress and egress nodes increases as the number
of InP increases. However, this figure also reveals that MuL
results in a 52.5% improvement in terms of average mapping
cost per admitted request compared to DistNSE, with an
average value of 2.54$ compared to 5.35$ from DistNSE.
The MuL-Ag results in an average value of 2.70$, repre-
senting a 5.6% difference with respect to MuL. Moreover,
in terms of execution time, MuL results in a significant gain,
especially as the number of InPs increases, with an average
value of 0.69 seconds, averaged across the different number
of InPs, as shown in figure 7(c). This translates into a perfor-
mance improvement of up to 15.9% and 98.0% compared to
MuL-Ag and DistNSE, respectively, whose average process-
ing times per admitted request are: 0.83 seconds and 34.4 sec-
onds, respectively. The exponential growth in execution time

of the DistNSE algorithm results from the path computation
step of the DistNSE, which requires computing all paths from
source to destination, which tends to grow fast as the number
of InPs increases. In a similar way, as the number of InPs
increases, the number of candidate InPs (hence, nodes at each
stage of the multi-stage graph) increases. This increases the
number of aggregated messages that are forwarded between
the different nodes of the multi-stage graph, hence, affect-
ing the computational complexity of the MuL-Ag algorithm,
since, each node forwards all feasible message blocks to its
receiving nodes under this approach. The total revenue from
the three algorithms is almost the same across the different
substrate network sizes, as shown in figure 7(d).

The results from the above offline experiments have
demonstrated that the MuL algorithm is only 3% inferior
compared to DistNSE and MuL-Ag considering the worst
case scenario across all applied metrics, yet, resulting in up
to 86.3% and 98.0% improvements in terms of execution
time with respect to MuL-Ag and DistNSE, respectively,
in some cases. Moreover, all the experiments revealed that the
MuL algorithm executes in linear time. Finally, the DistNSE
algorithm results in more than a 44.7% increase in terms of

VOLUME 9, 2021 114899

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 8. Experiment 4: Results of experiment 4 considering the online scenario with the arrival rates varied from 2 to 10 for each 100 time units for
a total of 10000 time units and considering 7 InPs.

provisioning cost per admitted request compared to MuL for
all considered experiments.

2) ONLINE SCENARIO
In this section we analyze the results obtained from the
experiments conducted while considering online requests.
The results of the different experiments for this scenario are
discussed below:

Experiment 4, whose results are shown in figure 8, anal-
yses the impact of the arrival rate of the requests. The AR
performance results shown in 8(a) reveal that the AR for
all algorithms decreases when increasing the arrival rate.
This is expected since increasing the arrival rate results in
an earlier exhaustion of the available resources, leading to
an increase in the request rejection rate. Moreover, DistNSE
and MuL have shown to have the same competitiveness
(i.e. within less than a 1% difference) in terms of AR, with
average values of: 36.03% and 37.2% for DistNSE and MuL
respectively, averaged across all arrival rates. MuL-Ag results
in a higher performance with an average value of 42.45%
(a 5.3% improvement over MuL), due to the fact that it
forwards all possible messages, increasing chances of finding
better solutions, albeit at the cost of higher run times. In terms

of average cost per accepted SFC, as shown in figure 8(b),
the average values of the DistNSE, MuL-Ag and MuL are:
4.80$, 3.01$ and 2.64$, respectively. Therefore, MuL results
in a 44.9 % improvement in terms of mapping cost com-
pared to DistNSE, and a 12.2% improvement compared to
MuL-Ag. Moreover, all the algorithms execute in polynomial
time for this scenario, with each algorithm executing even in
a fraction of a second, with average values of: 42.76 mil-
liseconds, 39.89 milliseconds and 39.67 milliseconds, for
the MuL-Ag, DistNSE and MuL, respectively, as reflected
in figure 8(c). The DistNSE algorithm is able to achieve
this performance because this experiment uses 7 InPs, which
is a relatively small number of InPs. For all the algorithms
the average processing time per admitted request tends to
decrease with an increase in the arrival rate. This is due
to the fact that, as the arrival rate increases, the number of
feasible links and nodes with enough resources decreases,
resulting in a decreasing number of paths to be considered for
the solution computation. From the results of 8(b), the aver-
age revenue per admitted request decreases as the arrival
rate increases. This is expected since, as the rate increases,
the available resources decrease, hence, the prospects of
admitting requests returning a high revenue (i.e. usually those

114900 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 9. Variation of the number of InPs for online scenario: Results of experiment 2 of the online scenario with the number of InPs varied
from 4 to 10 considering arrival rate of 5 requests for each 100 time units for a total of 10000 time units.

with a high number of VNFs and a high resource demand
specification) decreases, hence, affecting the average revenue
per admitted request. The average revenues per admitted
request, averaged across the different arrival rates, for the
different algorithms, are: 595.8650141$, 570.1003804$ and
577.0008115$, forMuL-Ag, DistNSE andMuL, respectively.
Therefore, the MuL behaviour is inferior to MuL-Ag for less
than 4%, and within a 1% margin with respect to DistNSE,
in terms of revenue per admitted SFC.

In Experiment 5, whose results are shown in figure 9,
the impact of the substrate network size on the algorithms’
performance is analyzed. MuL and DistNSE result in similar
performance in terms of average AR, with average values
of: 51.25% and 51.81% respectively. MuL-Ag results in a
7% improvement in terms of AR with an average value
of 58.64%. Moreover, the AR performance of all the algo-
rithms is shown to increase when increasing the number of
InPs. This is expected since increasing the number of InPs
results in an increase in both node and link resources, hence,
improving the AR performance. For the considered number
of InPs, the average execution times in seconds per admitted
request, for the three algorithms, are: 0.84, 4.54, and 0.73,

for the MuL-Ag, DistNSE and MuL algorithms, respectively,
averaged over all InP values as reflected in figure 9(c). This
result reveals that MuL results in a 13.6% and a 83.9%
improvement compared to MuL-Ag and MuL, respectively.
Moreover, the execution time for all the algorithms increases
when increasing the number of InPs. This is expected since
this leads to an increased number of paths from source to
destination for the DistNSE algorithm, and an increase in the
number of nodes at each stage of the multi-stage graph of the
MuL and MuL-Ag algorithms. From figure 9(b), the average
mapping cost per admitted request for all the algorithms tends
to increase with the number of InPs. This is attributed to
the fact that, increasing the number of InPs, increases the
prospects of admitting requests withmore VNFs and resource
requirements, which are associated with higher costs. This is
evident in figure 9(d) where the average revenue per admit-
ted request increases with increase in substrate size. In this
scenario, MuL results in a 48.0% and 15,2% improvement
in terms of average mapping cost compared to DistNSE and
MuL-Ag, respectively: 2.98$, 4.86$ and 2.52$, for MuL-Ag,
DistNSE and MuL, respectively. The results of the average
revenue per acceptedVNR are: 612.4$, 554.0$ and 552.7$ for

VOLUME 9, 2021 114901

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

FIGURE 10. Experiment 10: Analysing the message exchange performance with increase in VNF size considering 8 InPs with inter InP
connectivity set to 0.3.

MuL-Ag, DistNSE and MuL, respectively, revealing a close
performance (within less than a 10% difference) among the
three algorithms in terms of this metric. The average revenue
per admitted request among all the algorithms increases when
increasing the number of InPs. This is expected, since, with an
increased availability of node and link resources, the different
algorithms are able to map SFCs with a higher number of
VNFs, hence, producing a greater revenue.

The results from both online and offline experiments reveal
that the proposed algorithm performance is optimized in
terms of acceptance ratio, execution time and embedding
cost. Moreover, the simulation results further reveal that the
strategy of, for each InP node in the graph, processing the
received message blocks to only forward the least cost mes-
sage block, significantly reduces the execution time of the
algorithm without degrading its performance.

3) COMPUTATION OVERHEAD
In general, distributed algorithms have an inherent drawback
of high signalling overhead in terms of messages exchanged
between participating nodes, especially with increasing net-
work and request sizes. In order to evaluate the message
exchange overhead involved in the proposedMuL algorithm,
we denote byCv

n as the number of candidate InPs for the VNF
corresponding to stage v of the multistage graph, and denote
by Cv+1

n as the number of candidate nodes for the stage v+1.
Since each node in a given stage of the multi-stage graph
forwards a single message to each node of the following stage
of the graph, the number of messages forwarded from stage
v to stage v+ 1 of the graph is evaluated as follows:

Msgv+1v = Cv
n × C

v+1
n (21)

In this way, the total number of messages exchanged
throughout the graph is evaluated as follows:

Msgtot =
v=V−1∑
v=1

Cv
n × C

v+1
n (22)

where |V | is the total number of stages in the multi-stage
graph, including those corresponding to the ingress and
egress nodes. If we denote by βv as the probability that a given
InP k ∈ K is a candidate node for the VNF corresponding to
stage v, then, Cv

n can be approximated as βv×K , where K is
the total number of InPs. Therefore, fromEqn. 22, the number
of messages involved in the distributed computation of the
provisioning solution is increased as the number of VNFs
of the request increases, since this results in an increase in
the number of stages of the multi-stage graph, as shown
in Fig. 10(c). Additionally, as the number of substrate nodes
in the network increases, the number of possible candidates
for each VNF increases, further increasing the number of
messages. Therefore, by limiting the number of nodes at
any stage of the graph, the total number of messages can
be reduced, which is the motivation behind the candidate
extraction step, which targets to consider only feasible candi-
dates to participate in the solution computation. An elaborate
evaluation of the effect of the substrate network size and
SFC request size on the signalling overhead of distributed
algorithms is given in [22].

In experiment 10, whose results are shown in Fig. 10,
we evaluate the performance of the proposed MuL algorithm
against DistNSE in terms of the number of nodes/InPs that
participate in the computation of the provisioning solution
for each request and the number of messages received by each
node for to make a computation. From Fig. 10(a), on average,
the number of InPs participating in the solution computation
are 7.3 and 8 (all InPs) for MuL and DistNSE, correspond-
ing to an 8.2% improvement of MuL over DistNSE. More-
over, from Fig. 10(b), each participating InP receives 5 and
106 messages for processing for MuL and DistNSE respec-
tively. This performance is attributed to the fact that DistNSE
relies on computing paths between ingress and egress nodes
using an abstracted topology of peering nodes. In this way,
it is possible for a given InP to be part of the different
paths, hence participating in the computations of those paths.
Moreover, even nodes that are not feasible candidates for the
solution receive the sub-SFC for intra-domain provisioning

114902 VOLUME 9, 2021

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

evaluation during the solution computation, as long as they
are part of a potential solution path.

VI. CONCLUSION
This paper has proposed a multi-stage graph based algo-
rithm for provisioning SFCs across multiple domains while
considering a limited disclosure of information from the
involved InPs. The multi-stage graph is constructed from a
pre-computed set of InPs obtained by a candidate search
technique which enhances the run-time complexity of the
algorithm thanks to reducing the set of InPs involved in the
solution computation. Moreover, the simulation results have
also revealed that the proposed algorithm can result in up
to a 7.9 % improvement in terms of acceptance ratio, while
spending a shorter execution time, in comparison with a state-
of-the-art benchmark algorithm. Considering different offline
and online experiments, our multi-stage algorithm is found to
be scalable when increasing both the substrate network size
and the request demand.

In this work, we have considered the requests to be char-
acterized by immutable requirements in terms of link and
node resources throughout their life-time. However, in prac-
tice, such requirements may have temporal variations, requir-
ing the embedding algorithm to intelligently adapt to such
dynamism. Moreover, an elastic behaviour when considering
a limited information disclosure is non-trivial, requiring the
elasticity algorithm to intelligently rely on the partially dis-
closed information and its past experience to infer short-term
future resource availability or any request requirements alter-
ation. These last considerations will be leading our immediate
future work.

REFERENCES

[1] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, ‘‘5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges,’’ Comput. Netw., vol. 167, Feb. 2020, Art. no. 106984.

[2] G. Kibalya, J. Serrat, J.-L. Gorricho, H. Yao, and P. Zhang, ‘‘A novel
dynamic programming inspired algorithm for embedding of virtual
networks in future networks,’’ Comput. Netw., vol. 179, Oct. 2020,
Art. no. 107349, doi: 10.1016/j.comnet.2020.107349.

[3] P. Zhang, H. Yao, and Y. Liu, ‘‘Virtual network embedding based on
computing, network, and storage resource constraints,’’ IEEE Internet
Things J., vol. 5, no. 5, pp. 3298–3304, Oct. 2018.

[4] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio, ‘‘Single
and multi-domain adaptive allocation algorithms for VNF forwarding
graph embedding,’’ IEEE Trans. Netw. Service Manage., vol. 16, no. 1,
pp. 98–112, Mar. 2019.

[5] A. Abujoda and P. Papadimitriou, ‘‘DistNSE: Distributed network service
embedding across multiple providers,’’ in Proc. 8th Int. Conf. Commun.
Syst. Netw. (COMSNETS), Jan. 2016, pp. 1–8.

[6] G. Kibalya, J. Serrat, J. L. Gorricho, R. Pasquini, H. Yao, and P. Zhang,
‘‘A reinforcement learning based approach for 5G network slicing across
multiple domains,’’ in Proc. 15th Int. Conf. Netw. Service Manage.
(CNSM), Oct. 2019, pp. 1–5.

[7] P. K. Thiruvasagam, V. J. Kotagi, and C. S. R. Murthy, ‘‘The more the mer-
rier: Enhancing reliability of 5G communication services with guaranteed
delay,’’ IEEE Netw. Lett., vol. 1, no. 2, pp. 52–55, Jun. 2019.

[8] P. Zhang, C. Wang, Z. Qin, and H. Cao, ‘‘A multidomain virtual network
embedding algorithm based on multiobjective optimization for internet
of drones architecture in industry 4.0,’’ Softw., Pract. Exp., pp. 1–19,
Mar. 2020.

[9] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, ‘‘A resource
allocation framework for network slicing,’’ in Proc. IEEE INFOCOM,
Apr. 2018, pp. 2177–2185.

[10] G. Kibalya, J. Serrat, J.-L. Gorricho, J. Serugunda, and P. Zhang, ‘‘Amulti-
stage graph based algorithm for survivable service function chain orches-
tration with backup resource sharing,’’ Comput. Commun., vol. 174,
pp. 42–60, Jun. 2021, doi: 10.1016/j.comcom.2021.04.008.

[11] X. Shang, Z. Li, and Y. Yang, ‘‘Placement of highly available virtual
network functions through local rerouting,’’ in Proc. IEEE 15th Int. Conf.
Mobile Ad Hoc Sensor Syst. (MASS), Oct. 2018, pp. 80–88.

[12] X. Shang, Z. Li, and Y. Yang, ‘‘Rerouting strategies for highly available
virtual network functions,’’ IEEE Trans. Cloud Comput., early access,
Jun. 27, 2019, doi: 10.1109/TCC.2019.2925110.

[13] K. Karra and K. M. Sivalingam, ‘‘Providing resiliency for service function
chaining in NFV systems using a SDN-based approach,’’ in Proc. 24th Nat.
Conf. Commun. (NCC), Feb. 2018, pp. 1–6.

[14] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, ‘‘A link fail-
ure recovery algorithm for virtual network function chaining,’’ in Proc.
IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 213–221.

[15] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues, and
M. Guizani, ‘‘Edge computing in the industrial Internet of Things envi-
ronment: Software-defined-networks-based edge-cloud interplay,’’ IEEE
Commun. Mag., vol. 56, no. 2, pp. 44–51, Feb. 2018.

[16] G. S. Aujla, N. Kumar, A. Y. Zomaya, and R. Ranjan, ‘‘Optimal decision
making for big data processing at edge-cloud environment: An SDN
perspective,’’ IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 778–789,
Feb. 2018.

[17] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, ‘‘Multi-provider
service chain embedding with nestor,’’ IEEE Trans. Netw. Service Man-
age., vol. 14, no. 1, pp. 91–105, Mar. 2017.

[18] D. Dietrich, A. Rizk, and P. Papadimitriou, ‘‘Multi-provider virtual net-
work embedding with limited information disclosure,’’ IEEE Trans. Netw.
Service Manag., vol. 12, no. 2, pp. 188–201, Jun. 2015.

[19] F. Samuel, M. Chowdhury, and R. Boutaba, ‘‘Polyvine: Policy-based vir-
tual network embedding across multiple domains,’’ J. Internet Services
Appl., vol. 4, no. 1, pp. 1–23, 2013.

[20] A. Song, S. Member, W.-N. Chen, S. Member, T. Gu, H. Yuan, S. Kwong,
and J. Zhang, ‘‘Distributed virtual network embedding system with his-
torical archives and set-based particle swarm optimization,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 51, no. 1, pp. 927–942, Jan. 2021.

[21] H. Cao, Y. Zhu, L. Yang, and G. Zheng, ‘‘A efficient mapping algorithm
with novel node-ranking approach for embedding virtual networks,’’ IEEE
Access, vol. 5, pp. 22054–22066, 2017.

[22] Q. Zhang, X. Wang, I. Kim, P. Palacharla, and T. Ikeuchi, ‘‘Vertex-centric
computation of service function chains in multi-domain networks,’’ in
Proc. IEEE NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 211–218.

[23] E. G. N. V1.1.1. (2013). NFV-Use Cases. IEEE Network. [Online]. Avail-
able: https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4626228

[24] Network Functions Virtualisation (NFV) Release 3, vol. 1, G. Rep., Eur.
Telecommun. Standards Inst., Sophia Antipolis, France, 2018, pp. 1–59.

[25] T. Mahmoodi, H. Van Helvoort, and S. Mansfield, ‘‘Management and
orchestration,’’ IEEE Commun. Standards Mag., vol. 1, no. 4, p. 60,
Dec. 2017, doi: 10.1109/MCOMSTD.2017.8258603.

[26] V. Eramo, F. G. Lavacca, T. Catena, M. Polverini, and A. Cianfrani,
‘‘Effectiveness of segment routing technology in reducing the bandwidth
and cloud resources provisioning times in network function virtualization
architectures,’’ Future Internet, vol. 11, no. 3, pp. 1–20, 2019.

[27] D. Dietrich, A. Rizk, and P. Papadimitriou, ‘‘Multi-domain virtual network
embedding with limited information disclosure,’’ in Proc. IFIP Netw.
Conf., vol. 12, no. 2, May 2013, pp. 188–201.

[28] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang, and A. V. Vasilakos, ‘‘Low-
latency and resource-efficient service function chaining orchestration in
network function virtualization,’’ IEEE Internet Things J., vol. 7, no. 7,
pp. 5760–5772, Jul. 2020.

[29] P. Zhang, H. Yao, C. Qiu, and Y. Liu, ‘‘Virtual network embedding using
node multiple metrics based on simplified ELECTRE method,’’ IEEE
Access, vol. 6, pp. 37314–37327, Jun. 2018.

[30] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, ‘‘Security-aware virtual
network embedding algorithm based on reinforcement learning,’’ IEEE
Trans. Netw. Sci. Eng., vol. 4697, no. 2, pp. 1–11, Jun. 2020.

[31] P. Zhang, H. Yao, and Y. Liu, ‘‘Virtual network embedding based on
the degree and clustering coefficient information,’’ IEEE Access, vol. 4,
pp. 8572–8580, 2016.

VOLUME 9, 2021 114903

http://dx.doi.org/10.1016/j.comnet.2020.107349
http://dx.doi.org/10.1016/j.comcom.2021.04.008
http://dx.doi.org/10.1109/TCC.2019.2925110
http://dx.doi.org/10.1109/MCOMSTD.2017.8258603

G. Kibalya et al.: Multi-Stage Graph Aided Algorithm for Distributed SFC

[32] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, ‘‘Virtual network
provisioning across multiple substrate networks,’’ Comput. Netw., vol. 55,
no. 4, pp. 1011–1023, 2011.

[33] M. Shen, K. Xu, K. Yang, and H.-H. Chen, ‘‘Towards efficient virtual
network embedding across multiple network domains,’’ in Proc. IEEE
22nd Int. Symp. Qual. Service (IWQoS), May 2014, pp. 61–70.

[34] S. Li, M. Y. Saidi, and K. Chen, ‘‘Multi-domainvirtualnetwork embedding
with coordinated linkmapping,’’Adv. Sci., Technol. Eng. Syst., vol. 2, no. 3,
pp. 545–552, 2017.

[35] J. Martin-Perez and C. J. Bernardos, ‘‘Multi-domain VNF mapping algo-
rithms,’’ in Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast.
(BMSB), Jun. 2018, pp. 1–6.

[36] Q. Xu, D. Gao, H. Zhou, W. Quan, and W. Shi, ‘‘An energy-aware method
for multi-domain service function chaining,’’ J. Internet Technol., vol. 19,
no. 6, pp. 1727–1739, 2018.

[37] K. D. Joshi and K. Kataoka, ‘‘PSMART: A lightweight, privacy-
aware service function chain orchestration in multi-domain
NFV/SDN,’’ Comput. Netw., vol. 178, Sep. 2020, Art. no. 107295,
doi: 10.1016/j.comnet.2020.107295.

[38] G. Sun, Y. Li, D. Liao, and V. Chang, ‘‘Service function chain orchestration
across multiple domains: A full mesh aggregation approach,’’ IEEE Trans.
Netw. Service Manage., vol. 15, no. 3, pp. 1175–1191, Sep. 2018.

[39] G. Sun, Y. Li, G. Zhu, D. Liao, and V. Chang, ‘‘Energy-efficient service
function chain provisioning in multi-domain networks,’’ in Proc. 3rd Int.
Conf. Internet Things, Big Data Secur., 2018, pp. 144–163.

[40] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du, and M. Guizani, ‘‘Energy-
efficient and traffic-aware service function chaining orchestration in multi-
domain networks,’’ Future Gener. Comput. Syst., vol. 91, pp. 347–360,
Feb. 2019, doi: 10.1016/j.future.2018.09.037.

[41] L. Gupta, R. Jain, D. Bhamare, and A. Erbad, ‘‘The P-ART frame-
work for placement of virtual network services in a multi-cloud envi-
ronment,’’ Comput. Commun., vol. 139, pp. 103–122, May 2019, doi:
10.1016/j.comcom.2019.03.003.

[42] D. Bhamare, M. Samaka, and A. Erbad, ‘‘Exploring microservices for
enhancing internet QoS,’’ Trans. Emerg. Telecommun. Technol., vol. 11,
pp. 1–18, Apr. 2018.

[43] P. Cappanera, F. Paganelli, and F. Paradiso, ‘‘VNF placement for ser-
vice chaining in a distributed cloud environment with multiple stake-
holders,’’ Comput. Commun., vol. 133, pp. 24–40, Jan. 2019, doi:
10.1016/j.comcom.2018.10.008.

[44] I. Houidi, W. Louati, and D. Zeghlache, ‘‘A distributed virtual network
mapping algorithm,’’ in Proc. IEEE Int. Conf. Commun., May 2008,
pp. 5634–5640.

[45] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,
‘‘Orchestrating virtualized network functions,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[46] N. Tastevin, M. Obadia, and M. Bouet, ‘‘A graph approach to placement of
service functions chains,’’ in Proc. IFIP/IEEE Symp. Integr. Netw. Service
Manage. (IM), May 2017, pp. 134–141.

[47] K. Hejja and X. Hesselbach, ‘‘Online power aware coordinated virtual
network embedding with 5G delay constraint,’’ J. Netw. Comput. Appl.,
vol. 124, pp. 121–136, Oct. 2018, doi: 10.1016/j.jnca.2018.10.005.

[48] The Internet Topology Zoo. [Online]. Available: https://www.topology-
zoo.org/dataset.html

[49] G. Yuan, Z. Xu, B. Yang, W. Liang, W. K. Chai, D. Tuncer, A. Galis,
G. Pavlou, and G. Wu, ‘‘Fault tolerant placement of stateful VNFs and
dynamic fault recovery in cloud networks,’’ Comput. Netw., vol. 166,
Jan. 2020, Art. no. 106953, doi: 10.1016/j.comnet.2019.106953.

[50] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
F. Huici, and I. Nsdi, ‘‘ClickOS and the art of network function virtualiza-
tion,’’ in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2014, pp. 459–473.

GODFREY KIBALYA received the B.Sc. degree in
telecommunications engineering from Makerere
University, Uganda, in 2010, and the M.Sc. degree
in telecommunications engineering from the Uni-
versity of Trento, Italy. He is currently pursuing
the Ph.D. degree with the Department of Net-
work Engineering, Technical University of Catalo-
nia (UPC), Spain. His research interests include
network function virtualization and application of
artificial intelligence in network management.

JOAN SERRAT-FERNANDEZ (Life Member,
IEEE) received the degree in telecommunication
engineer and the Ph.D. degree in telecommunica-
tion engineering from the Universitat Politècnica
de Catalunya (UPC), in 1977 and 1983, respec-
tively. He is currently a Full Professor with UPC,
where he has been involved in several collaborative
projects with different European research groups,
both through bilateral agreements or through
participation in European funded projects. His

research interests include autonomic networking, and service and network
management.

JUAN-LUIS GORRICHO received the degree
in telecommunication engineering and the Ph.D.
degree from the Technical University of Catalonia
(UPC), in 1993 and 1998, respectively. In 1994,
he joined the Department of Network Engineering,
UPC, where he has been an Associate Professor,
since 2001. His research interests include man-
agement of resources for virtualized networks and
functions, cloud computing, and software defined
networks.

DOREEN GIFT BUJJINGO received the B.Sc.
degree in telecommunications engineering from
Makerere University, in 2016, where she is cur-
rently pursuing the master’s degree in telecom-
munications engineering. Her research interests
include software defined networks (SDNs), virtu-
alized network functions, resource management,
and allocation using machine learning.

JONATHAN SERUGUNDA (Member, IEEE)
received the B.Sc. degree in electrical engineer-
ing from Makerere University, in 2005, the M.Sc.
degree in communication engineering from The
University of Manchester, U.K., in 2008, and the
Ph.D. degree in electrical and electronic engineer-
ing from the University of Bristol, U.K., in 2015.
He is currently a Lecturer with the Department of
Electrical and Computer Engineering, Makerere
University. He is also a member of netLabs!UG,

which is a Wireless Research Center based at Makerere University. His
research interests include radio wave propagation and antenna design, design
and analysis of wireless networks, physical layer security, and unmanned
aerial vehicles (UAVs) assisted communication systems.

114904 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.comnet.2020.107295
http://dx.doi.org/10.1016/j.future.2018.09.037
http://dx.doi.org/10.1016/j.comcom.2019.03.003
http://dx.doi.org/10.1016/j.comcom.2018.10.008
http://dx.doi.org/10.1016/j.jnca.2018.10.005
http://dx.doi.org/10.1016/j.comnet.2019.106953

