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ABSTRACT Composite manufacturing processes such as automated tape placement (ATP) and filament
winding process (FW) put forward specific requirements for the geodesic curvature along the layup paths of
the composite tows and tapes. In this paper, a non-uniform cubic b-spline element method is proposed for
solving the boundary value problem of curves with prescribed geodesic curvature. The differential equation
system of the target curve is discretized through the point collocation method, and a quasi-Newton iteration
scheme is adopted to approach the real solution from an initial approximation. The proposed method is
proved to have third order accuracy, which shows more superiorities comparing with existing numerical
methods. Simulations and experiments on a series of parametric surfaces are performed to investigate the
performance of the proposed approach and the results verify the high efficiency. The proposed method
could cope with the BVP for curves no matter their geodesic curvature vanishes or not. At the same time,
the computed curves are natural and smooth such that interpolation technique is unnecessary to ensure the
continuity of target curves. One potential application of this method is trajectory optimization for automated
tape placement process.

INDEX TERMS Cubic b-splines, geodesic curvature, boundary value problem (BVP), automated tape
placement (ATP).

I. INTRODUCTION
Curves lying on surfaces show many applications related to
design andmanufacture, such as surface trimming [1], surface
blending [2], NC tool path generation [3], [4], and so on.
According to the designing manner, curves on a surface can
be the offset of a given curve on a surface [3], the intersection
curve of two surfaces [4], the projection curve of a spatial
curve onto a surface [5]–[7], or the image of a curve in the
parametric domain of a parametric surface [1], [2].

Geodesic curvature is an intrinsic geometric feature of a
surface curve which can be defined as the curvature of the
curve projected onto the surface’s tangent plane. A curve
whose geodesic curvature is zero everywhere is called a
geodesic curve, and it is locally the shortest distance between
two points on the surface. The concept of geodesic curve
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finds its place in computer vision, image processing and
various industrial applications, such as trajectory planning
in automated tape placement (ATP) and filament winding
process (FW). For ATP, the geodesic curve allowsminimizing
the steering of the tape. For FW, it would be impossible to lay
a filament in any way other than along a geodesic curve on a
frictionless convex surface.

The geodesic computation involves in ATP includes initial
value problem (IVP) and boundary value problem (BVP).
The IVP for geodesic solves a uniquely determined curve
with zero geodesic curvature once the initial condition is
provided. As a fundamental problem in computational geom-
etry and geometric modeling, the IVP for geodesic has
been studied extensively in the past three decades. To date,
many elegant methods have been proposed. Representative
works include the numerical approaches [8], [9], the discrete
methods [10], [11], and the geometricmethods [12], [13]. The
BVP for geodesic finds the shortest path between two points
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on a surface. It is well known that the BVP is more challeng-
ing than IVP and may have non-unique solution. In general,
available approaches for BVP of geodesic curve could be
classified broadly into two types. First, solve the nonlinear
differential equations of geodesic by using a finite difference
method [14], [15] or an optimization strategy [16]. Second,
approximate accurate geodesic curve on discrete surfaces by
following some rules [17], [18]. The first type aimed at the
smooth surface and usually shows better performance than
the latter one [19].

In this paper, we extend the idea of geodesic curve to curves
with prescribed geodesic curvature. The geodesic curvature
along such curve is provided in terms of a specific appli-
cation and not necessarily zero. The curves with prescribed
geodesic curvature show three potential applications. Firstly,
although geodesic did minimize the distortion of composite
tape, it might lead to overlaps and excessive gaps between
tapes. The curves with prescribed geodesic curvature could
be utilized to steer the composite tapes such that eliminating
the layup defects and ensuring high quality of composite
components [20]. Secondly, the algorithm for curves with
prescribed geodesic curvature could be extended to solve
the non-geodesic winding trajectory in FW. In this process,
the requirement for geodesic curvature is that the ratio of
geodesic curvature to the normal curvature at each point of the
winding path should not exceed the coefficient of maximum
static friction between the fiber and the mandrel surface [21].
Thirdly, Azariadis and Aspragathos [22] pointed out that
to flatten an arbitrary non-developable surface with as little
distortion as possible, a good approach should try to preserve
the geodesic curvatures on the surface. Thus, the curve with
prescribed geodesic curvature, i.e. constant geodesic curva-
ture might be a candidate to evaluate the performance of the
surface flattening algorithm.

This paper solves the boundary value problem of curves
with prescribed geodesic curvature on smooth parametric
surfaces. The discrete approximation method shows difficul-
ties in determining how the curve with non-zero geodesic
curvature should pass on surfaces. However, the numerical
approach introduced by Maekawa, Kasap and Chen for BVP
of geodesic could be extended to curves with prescribed
geodesic curvature directly. The finite difference method pro-
posed by Maekawa and Kasap obtains discrete points along
geodesic curve, and an interpolation technique is needed
to ensure the continuity of desired curve. The optimization
strategy delivered by Chen is accurate and could solve natural
and smooth geodesic curves. In this paper, we prove that
Chen’s approach is equivalent to solving the differential
equation of geodesics based on the Galerkin method. The
Galerkin method is inconvenient when the basis function is
chosen inadequately due to that the differential equation of
curves with prescribed geodesic curvature is complicated and
highly nonlinear.

This work is based on the cubic b-spline element method.
The method has been applied to solve the heat and wave
equation [23], the Burgers’ equation [24], the 2D-Poisson

equation [25] and so on. However, in most cases, uniform
B-splines are adopted, which is not suitable for the BVP of
curves with prescribed geodesic curvature. This is mainly due
to that the desired curve is arc length parametrization, and
the arc length is variable during the computation. The rest
of this paper is organized as follows: Section 2 describes the
problem inmore detail; Section 3 presents the principle of our
algorithm; Section 4 performs error analysis of the algorithm;
Section 5 tests the proposed approach on several paramet-
ric surfaces, and some of the results are demonstrated; and
Section 6 provides the discussion and conclusion.

II. DESCRIPTION OF THE PROBLEM
ATP is an important automated process used for fabrication
of large composite structures in aeronautical industry. This
process utilizes a composite tape layup end-effector mounted
on a large robotic manipulator, and adds material layer by
layer to build the composite part. As illustrated in Fig. 1,
the end-effector moves over the mould surface in direct con-
tact, laying a successive of continuous unidirectional compos-
ite tapes [26]. During the placement process, the centerlines
of composite tapes generally follow geodesics as they allow
minimizing the steering of the tape.

FIGURE 1. Schematic diagram of automated tape placement [27].

Due to the Gaussian curvature of the mould surface,
the geodesics are not parallel to each other, which might
lead to overlaps and excessive gaps between adjacent tapes.
Engineering cases indicate that this phenomenon is more
notable at the end of laid tapes on a complex mould surface.
Figure 2 presents the manufacture process of a complex
composite part through ATP. Note the excessive gaps occur
at the end of laid tapes. Engineering experience reveals that

FIGURE 2. Excessive gaps appear at the end of laid tapes.
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a good lay-up should prevent overlaps and constrain the gaps
within 2.5mm.

Overlaps and excessive gaps are highly undesirable as they
will result in a weaken part. To tackle with this dilemma,
Hogg [28] constructed the lay-up trajectories with a plurality
of geodesic segments, each of which defined an offset angle
relative to the adjacent segments. The offset angle was used
to adjust the shape of lay-up path so as to minimize the
gaps or overlaps. However, the offset angle results in an
unsmoothed curve. Although Hogg indicated that the offset
angle of each geodesic segment should be less than a pre-
determined maximum value, the concentration of distortion
at the connecting points is inevitable, which could possibly
lead to the appearance of wrinkles in the composite tape.
Alternatively, we could utilize the curve with very small
geodesic curvature to ameliorate the distortion at the con-
nect point, as seen in Fig. 3. Recalling that the appearance
of wrinkles is related to the geodesic curvature along the
lay-up paths, the curve with small geodesic curvature would
suppress the occurrence of the deposition problem.

FIGURE 3. Optimizing the layup trajectory for ATP.

A preliminary numerical model for the curve with pre-
scribed geodesic curvature was established in Reference [20].
After several modifications, this numerical model is
simplified as follows:
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where s is the arc length, and 0ijk = 0
i
jk (u, v) (i, j, k = 1, 2)

are the Christoffel symbols which are defined as follows:

01
11=

GEu − 2FFu+FEv
2(EG− F2)

, 02
11 =

2EFu − EEv + FEu
2(EG− F2)

,

01
12=

GEv−FGu
2(EG− F2)

, 02
12=

EGu − FEv
2(EG− F2)

,

01
22=

2GFv − GGu+FGv
2(EG− F2)

, 02
22=

EGv − 2FFv + FGu
2(EG− F2)

.

In Fig. 3, the problem involves connecting discrete
points on mould surface by curves with prescribed geodesic

curvature, which is equivalent to solving the boundary value
problem of the Eq. (1).

III. PRINCIPLE OF THE ALGORITHM
A. THE NON-UNIFORM CUBIC B-SPLINES
In this paper, non-uniform cubic B-spline functions are used
to solve the differential equation (1).

Let us consider a partition 0 = s0 < s1 < . . . sN−1 < sN =
L on a given interval [0,L]. B-splines are defined through a
recursive relation introduced by Boor [30] in the early 1970s.
The B-splines of degree 3 are given by:

B3i (s) =



(s− si)3

(si+3 − si)(si+2 − si)(si+1 − si)
s ∈ [si, si+1] ,

(s− si)2(si+2 − s)
(si+3 − si)(si+2 − si)(si+2 − si+1)

+
(s− si)(si+3 − s)(s− si+1)

(si+3 − si)(si+3 − si+1)(si+2 − si+1)

+
(si+4 − s)(s− si+1)2

(si+4 − si+1)(si+3 − si+1)(si+2 − si+1)
s ∈ [si+1, si+2] ,

(s− si)(si+3 − s)2

(si+3 − si)(si+3 − si+1)(si+3 − si+2)

+
(si+4 − s)(s− si+1)(si+3 − s)

(si+4 − si+1)(si+3 − si+1)(si+3 − si+2)

+
(si+4 − s)2(s− si+2)

(si+4 − si+1)(si+4 − si+2)(si+3 − si+2)
s ∈ [si+2, si+3] ,

(si+4 − s)3

(si+4 − si+1)(si+4 − si+2)(si+4 − si+3)
s ∈ [si+3, si+4] ,

0 otherwise.

(2)

The last equation is a cubic spline with knots si, si+1, si+2,
si+3, si+4. Note that the cubic B-spline is zero except on the
interval [si, si+4).

B. THE BOUNDARY VALUE PROBLEM
The boundary value problem in this section is stated as
follows: Finding a curve with prescribed geodesic curvature
between two boundary points (u0, v0) and (un, vn) on a
parametric surface.

The solution of Eq. (1) is approximated by:
u(s) =

n∑
i=0

B3i (s)ui,

v(s) =
n∑
i=0

B3i (s)vi,

(3)

where ui, (1 ≤ i ≤ n − 1) and vi, (1 ≤ i ≤ n − 1)
are the unknown real coefficients and B3i (s) are the basis
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functions of the cubic B-spline defined on a knot vector
U1 =

{
1t1, 1t2 . . . 1tN+6, 1tN+7

}
=

{
0, 0, 0, 0, s1, s2 . . .

sN−2, sN−1,L,L,L,L
}
.

For the cubic B-spline, N = n− 2.
Note the first knot and the last knot are of multiplicity 4 so

that the clamped b-spline curves u(s) and v(s) pass through
the end control points u0, v0, un, vn.
With reference [31], the first order derivative and second

order derivative of u(s) and v(s) are denoted as:
u′(s) =

n−1∑
i=0

B2i (s)pi,

v′(s) =
n−1∑
i=0

B2i (s)qi,

(4)

where B2i (s) are the basis functions of the quadratic B-spline
defined on a knot vector U2 =

{
2t1, 2t2 . . . 2tN+4, 2tN+5

}
={

0, 0, 0, s1, s2 . . . sN−2, sN−1,L,L,L
}
, at the same time

pi = 3 ui+1−ui
2ti+4−2ti+1

and qi = 3 vi+1−vi
2ti+4−2ti+1

.
u′′(s) =

n−2∑
i=0

B1i (s)li,

v′′(s) =
n−2∑
i=0

B1i (s)mi,

(5)

where B1i (s) are the basis functions of the linear B-spline
defined on a knot vector U3 =

{
3t1, 3t2 . . . 3tN+2, 3tN+3

}
={

0, 0, s1, s2 . . . sN−2, sN−1,L,L
}
.Meanwhile, it is obtained

that li = 2 pi+1−pi
3ti+3−3ti+1

and mi = 2 qi+1−qi
3ti+3−3ti+1

in this equation.

The basis functions of u(s), u′(s) and u′′(s) are illustrated
in Fig. 4.

FIGURE 4. The basis functions of u(s), u′(s) and u′′(s).

In order to solve the 2n − 2 unknown control points in
the Eq. (3), 2n − 2 Equations should be established. The
equations could be established through the point collocation
method, the subdomain method, the least square method or
the Galerkin method. The last three methods are difficult to
implement as the numerical integration of Eq. (1) is rather

tedious. Thus, the point collocationmethod is preferred in this
application. To obtain the 2n− 2 equations, we choose n− 1
collocation points 0, s1, s2 . . . sN−2, sN−1,L, at which we
enforce the approximate solution (3) satisfying the differen-
tial equation (1). Note the collocation points are in accordance
with the knot points, which enables the evaluation of u(s), v(s)
and their derivatives more cheaply.

In the subsequent part, the discretization of Eq. (1) is exam-
ined. The length of the interval [si, si+1] , i = 0 . . . N − 1
is denoted as ssi which is approximated by the chord length
between the knot points.

With Eq. (4) and Eq. (5), the first order derivative and
the second order derivative of u(s) and v(s) at the knot point
si could be expressed as follows:

u′(si) =
ssi

ssi−1 + ssi
pi +

ssi−1
ssi−1 + ssi

pi+1,

v′(si) =
ssi

ssi−1 + ssi
qi +

ssi−1
ssi−1 + ssi

qi+1.
0 ≤ i ≤ N

(6)
u′′(si) = 2

pi+1 − pi
ssi−1 + ssi

,

v′′(si) = 2
qi+1 − qi
ssi−1 + ssi

.

0 ≤ i ≤ N (7)

The relationship between pi, qi and the control point is
stated as follows:

pi = 3
ui+1 − ui

ssi−2 + ssi−1 + ssi
,

qi = 3
vi+1 − vi

ssi−2 + ssi−1 + ssi
.

0 ≤ i ≤ N + 1 (8)

In this paper, it is appointed that ssi ≡ 0 when i < 0 or
i > N − 1. For example, if i =0, then Eq. (8) will degenerate
as the following equation:

p0 = 3
u1 − u0
ss0

,

q0 = 3
v1 − v0
ss0

.

(9)

With Eq. (6), Eq. (7) and Eq. (8), through simplification,
the discretization of Eq. (1) at the knot point si is denoted as:

fi =
6

ssi−1 + ssi
[V2 (ui+2 − ui+1)− V1 (ui+1 − ui)]

+ 901
11H1

2
+ 1801

12H1H2 + 901
22H2

2

+
3kg

√
EG− F2

(FH1 + GH2) = 0,

gi =
6

ssi−1 + ssi
[V2 (vi+2 − vi+1)− V1 (vi+1 − vi)]

+ 902
11H1

2
+ 1802

12H1H2 + 902
22H2

2

−
3kg

√
EG− F2

(EH1 + FH2) = 0.

(10)

In Eq. (10), H1 = W2V1 (ui+1 − ui)+W1V2 (ui+2 − ui+1)
and H2 = W2V1 (vi+1 − vi) + W1V2 (vi+2 − vi+1).
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Meanwhile, V1 = 1
ssi−2+ssi−1+ssi

, V2 = 1
ssi−1+ssi+ssi+1

, W1 =

ssi−1
ssi−1+ssi

, W2 =
ssi

ssi−1+ssi
.

The boundary condition is converted as the following gov-
erning equation: {

fB1 = u0 − uA = 0,
gB1 = v0 − vA = 0,{
fB2 = uN+2 − uB = 0,
gB2 = vN+2 − vB = 0.

(11)

With Eq. (10) and Eq. (11), we have 2(N + 3) nonlinear
algebraic equations:

F = (fB1, gB1, f0, g0 . . . fi, gi . . . fN ,

gN , fB2, gB2)T = 0. (12)

Eq. (12) can be computed by the Newton’s method, if a
starting vector Y (0)

= (u(0)0 , v(0)0 . . . u(0)i , v(0)i . . . u(0)N+2,
v(0)N+2)

T is provided. TheNewton iteration scheme is delivered
by:

[J (j)]1Y (j)
= −F (j). (13)

Y (j+1)
= Y (j)

+ λ1Y (j). (14)

where we let 0 < λ ≤ 1 to achieve more stability for the
highly nonlinear problem. If λ = 1 the equation reduces
to a regular Newton’s method, while if λ < 1 the rate of
convergence will be less than quadratic. Here [J (j)] is the
2(N + 3) by 2(N + 3) Jacobian matrix of F(j) with respect
to Y (j).

From Eq. (10) and Eq. (11), the Jacobian matrix should
have the following seven-diagonal structure:

1
1
• • • • • •

• • • • • •

12i+3,2i+1 • • • • 12i+3,2i+6
12i+4,2i+1 • • • • 12i+4,2i+6

• • • • • •

• • • • • •

1
1


, (15)

where 1 indicates non-zero value in the Jacobian matrix.
In the Jacobian matrix, the 2i + 3, 0 ≤ i ≤ N row

is related to fi at the knot point si, which is the function of
ui, vi, ui+1, vi+1, ui+2, vi+2. Meanwhile, the 2i + 4, 0 ≤
i ≤ N row is related to gi at this knot point, which is also
the function of ui, vi, ui+1, vi+1, ui+2, vi+2. Recalling the
definition of Jacobian matrix, the 2i + 3 row includes six
non-zero values:12i+3,2i+1,12i+3,2i+2 . . . 12i+3,2i+6. Here,
we have the following:

12i+3,2i+1 =
∂fi
∂ui
=

6V1
ssi−1 + ssi

−W2V1

×

(
1801

11H1 + 1801
12H2 +

3kgF
√
EG− F2

)

12i+3,2i+2 =
∂fi
∂vi
= −W2V1

×

(
1801

12H1 + 1801
22H2 +

3kgG
√
EG− F2

)
12i+3,2i+3 =

∂fi
∂ui+1

= −
6 (V2 + V1)
ssi−1 + ssi

+ (W2V1 −W1V2)

×

(
1801

11H1 + 1801
12H2 +

3kgF
√
EG− F2

)
12i+3,2i+4 =

∂fi
∂vi+1

= (W2V1 −W1V2)

×

(
1801

12H1 + 1801
22H2 +

3kgG
√
EG− F2

)
12i+3,2i+5 =

∂fi
∂ui+2

=
6V2

ssi−1 + ssi
+W1V2

×

(
1801

11H1 + 1801
12H2 +

3kgF
√
EG− F2

)
12i+3,2i+6 =

∂fi
∂vi+2

= W1V2

×

(
1801

12H1 + 1801
22H2 +

3kgG
√
EG− F2

)
At the same time, the 2i+4 row also includes six non-zero

values: 12i+4,2i+1, 12i+4,2i+2 . . . 12i+4,2i+6. Here,

12i+4,2i+1 =
∂gi
∂ui
= −W2V1

×

(
1802

11H1+1802
12H2 −

3kgE
√
EG− F2

)
12i+4,2i+2 =

∂gi
∂vi
=

6V1
ssi−1 + ssi

−W2V1

×

(
1802

12H1+1802
22H2 −

3kgF
√
EG− F2

)
12i+4,2i+3 =

∂gi
∂ui+1

= (W2V1 −W1V2)

×

(
1802

11H1+1802
12H2 −

3kgE
√
EG− F2

)
12i+4,2i+4 =

∂gi
∂vi+1

= −
6 (V2 + V1)
ssi−1 + ssi

+ (W2V1 −W1V2)

×

(
1802

12H1+1802
22H2 −

3kgF
√
EG− F2

)
12i+4,2i+5 =

∂gi
∂ui+2

= W1V2

×

(
1802

11H1+1802
12H2 −

3kgE
√
EG− F2

)
12i+4,2i+6 =

∂gi
∂vi+2

=
6V2

ssi−1 + ssi
+W1V2

×

(
1802

12H1+1802
22H2 −

3kgF
√
EG− F2

)
C. THE INITIAL APPROXIMATION
As illustrated in Fig. 5, the two end points in the parametric
space are connected by a straight line or a circular arc and
a uniform mesh is defined by a set of discrete points. These
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points are the initial knot points (u(si)(0), v(si)(0)) and they
are utilized to compute the initial control points (u(0)i , v

(0)
i ).

In this paper, the right superscript (0) indicates the initial step.

FIGURE 5. Straight line approximation and circular arc approximation.

Straight line approximation is the simplest and most often
provides a good initial approximation. Wherein, the initial
knot points is obtained as:

u(si)(0) = u0 + i
un − u0
N

,

v(si)(0) = v0 + i
vn − v0
N

.

0 ≤ i ≤ N (16)

The circular arc approximation is more reliable than the
straight line approximation when there exists more than one
solutions [14]. For this kind of initial approximation, an aux-
iliary circular with radius R is drawn between the two end
points. Through computation, the center coordinates of the
arc is expressed as (uR, vR). At the same time, the arc angles
corresponding to (u0, v0) and (un, vn) are denoted as a and β,
respectively. Thereby, the initial knot points is delivered as:

u(si)(0) = uR + R cos
(
a+ i

β − a
N

)
,

v(si)(0) = vR + R sin
(
a+ i

β − a
N

)
.

0 ≤ i ≤ N

(17)

With Eq. (2) and Eq. (3), the relationship between the knot
point (u(si), v(si)) at si and the control point (ui, vi) is stated
as:{

Aiui + Biui+1 + Ciui+2 = u(si),

Aivi + Bivi+1 + Civi+2 = v(si).
i = 1 . . .N − 1

(18)

Here Ai, Bi, Ci are acquired through the following
formulas:

Ai =
1

ssi−1 + ssi

(
ssi2

ssi−2 + ssi−1 + ssi

)
,

Bi =
1

ssi−1 + ssi[
(ssi−2 + ssi−1) ssi
ssi−2 + ssi−1 + ssi

+
(ssi + ssi+1) ssi−1
ssi−1 + ssi + ssi+1

]
,

Ci =
1

ssi−1 + ssi

(
ssi−12

ssi−1 + ssi + ssi+1

)
.

i = 1 . . .N − 1 (19)

In Eq. (18), there are 2N+2 unknown values while 2N−2
formulas. In order to evaluate (u(0)i , v

(0)
i ), another four formu-

las is obtained by providing the tangent vector of the initial
B-spline curve at the boundary points:{

(p(0)0 , q
(0)
0 ) = (PA, QA),

(p(0)N+1, q
(0)
N+1) = (PB, QB).

(20)

With Eq. (8), Eq. (18) and Eq. (20), u(0)i can be solved
conveniently through the following matrix operation:
u(0)1
. . .

u(0)i
. . .

u(0)N+1

 =

1
. . .

A(0)i B(0)i C (0)
i

. . .

1


−1

×



u0 +
1
3
PA.ss

(0)
0

. . .

u(si)(0)

. . .

uN+2 −
1
3
QA.ss

(0)
N−1


. (21)

At the same time, the formula for v(0)i can be obtained by
replacing symbol u with symbol v, PA with PB, and QA with
QB in Eq. (21). Note that Eq. (21) will be utilized only once
in the computation.

D. UPDATING THE KNOT POINTS
During the iteration, the interval length ssi is variable as
the b-spline curve is evolving. As the interval length is
approached by the chord length between the knot points, these
points should also be updated in the iteration.

The knot points (u(si)(j+1), v(si)(j+1)) in iteration j + 1
could be evaluated with Eq. (18) directly when the control
points (u(j+1)i , v(j+1)i ) in this iteration is acquired through
Eq. (14). However, it is found that the following correction
procedure would be more effective.

With Eq. (18), the relationship between the knot point and
the control point can be transformed into a linear equation:{
Li = u(si)− Aiui − Biui+1 − Ciui+2 = 0,
Mi = v(si)− Aivi − Bivi+1 − Civi+2 = 0.

i = 1 . . .N − 1 (22)

With Eq.(22), once the updating vector 1Y (j) of the
control point is evaluated through Eq.(13), the knot point
(u(si), v(si)) is acquired by The Newton iteration scheme:

1u(si)(j) = Ai(j)1ui(j) + Bi(j)1ui+1(j)

+Ci(j)1ui+2(j) − Li(j),
1v(si)(j) = Ai(j)1vi(j) + Bi(j)1vi+1(j)

+Ci(j)1vi+2(j) −Mi
(j).

(23)

{
u(si)(j+1) = u(si)(j) + λ1u(si)(j),
v(si)(j+1) = v(si)(j) + λ1v(si)(j),

(24)

where, i= 1 . . . N − 1, and j indicates the iteration times.
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FIGURE 6. Flow chart of our algorithm.

The flow chart of our algorithm is illustrated in Fig. 6.
We detail our approach into Algorithm 1 as follows:

As seen in Fig. 6 and Algorithm 1, the input values are two
boundary points on the target parametric surface. After sev-
eral iterations and a predetermined accuracy level is reached,
the control points and interval length are output to build the
solution of Eq. (1).

IV. ERROR ANALYSIS
In this section, the computation accuracy of the proposed
method is analyzed. First of all, let ũ(s), ṽ(s) denote the exact
solution of Eq. (1).

With Eq. (6)-Eq. (8), we can obtain the following:

u′(si)=
3

ssi−1 + ssi

×

[
ssi−1 (ui+2 − ui+1)
ssi−1 + ssi + ssi+1

+
ssi (ui+1 − ui)

ssi−2 + ssi−1 + ssi

]
.

(25)

u′′(si)=
6

ssi−1 + ssi

×

(
ui+2 − ui+1

ssi−1 + ssi + ssi+1
−

ui+1 − ui
ssi−2 + ssi−1 + ssi

)
.

(26)

The Eq. (18) can be rewritten as follows:

u(si) =
1

ssi−1 + ssi

[
2ui+1 +

ssi−12 (ui+2 − ui+1)
ssi−1 + ssi + ssi+1

−
ssi2 (ui+1 − ui)

ssi−2 + ssi−1 + ssi

]
. (27)

Algorithm 1 Solving the Boundary Value Problem of Curves
With Prescribed Geodesic Curvature Based on a Cubic
B-Spline Element Method
Input:A parametric surface S(u, v), two boundary points
(uA, vA) and (uB, vB), number of knot points, j = 0, an error
tolerance ε.
Output:A B-spline curve with prescribed geodesic curva-
ture to connect the user-specified boundary points.
1: Obtain the initial knot points (u(si)(0), v(si)(0)) by using
the straight line approximation (16) or circular arc approxi-
mation (17);
2: Compute the chord lengths between the initial knot points
(u(si)(0), v(si)(0)), and use them as the initial interval lengths
ss(0)i ;
3: Compute the initial control points (u(0)i , v(0)i ) by using
Eq. (21);
4:While 1 do
5: Evaluate the Jacobian matrix [J (j)] and F(j) by using
Eq. (15) and Eq. (12), respectively;
6: Solve 1Y (j) by using Eq. (13);
7: If

∥∥1Y (j)
∥∥ ≤ ε Break;

8: Else Do
9: Let j = j+ 1;
10: Update the control points (u(j)i , v

(j)
i ) in the iteration j by

using Eq. (14);
11: Update the knot points (u(si)(j), v(si)(j)) in the iteration j
by using Eq. (23) and Eq. (24);
12: Compute the chord lengths between the knot points
(u(si)(j), v(si)(j)), and use them as the interval lengths ss(j)i
in the iteration j;
13: End While
14:Return the control points and the interval length to build
the solution.

Then, the following relationships can be obtained:

−
3

ssi−12
u(si−1)+

(
3

ssi−12
−

3
ssi2

)
u(si)+

3
ssi2

u(si+1)

=
1

ssi−1
u′(si−1)+

(
2

ssi−1
+

2
ssi

)
u′(si)+

1
ssi
u′(si+1).

(28)
6

ssi−1
u(si−1)−

6(ssi−1 + ssi)
ssi−1ssi

u(si)+
6
ssi
u(si+1)

= ssi−1u′′(si−1)+2(ssi−1 + ssi)u′′(si)+ ssiu′′(si+1).

(29)

With the Taylor Expansion at the collocation point, the
following equations are expressed:

u(si−1) = ũ(si−1) = ũ(si)− ssi−1̃u′(si)+
1
2
ssi−12̃u′′(si)

−
1
6
ssi−13̃u′′′(si)+

1
24
ssi−14̃u′′′′(si)+ O(h5),

u(si) = ũ(si),

u(si+1) = ũ(si+1) = ũ(si)+ ssĩu′(si)+
1
2
ssi2̃u′′(si)

+
1
6
ssi3̃u′′′(si)+

1
24
ssi4̃u′′′′(si)+ O(h5),

(30)
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where O( ) is the big O notation.

u′(si−1) = u′(si)− ssi−1u′′(si)+
1
2
ssi−12u′′′(si)

−
1
6
ssi−13u′′′′(si)+ O(h5),

u′(si+1) = u′(si)+ ssiu′′(si)+
1
2
ssi2u′′′(si)

+
1
6
ssi3u′′′′(si)+ O(h5).

(31)



u′′(si−1) = u′′(si)− ssi−1u′′′(si)

+
1
2
ssi−12u′′′′(si)+ O(h5),

u′′(si+1) = u′′(si)+ ssiu′′′(si)

+
1
2
ssi2u′′′′(si)+ O(h5).

(32)

Substitute Eq. (30) and Eq. (31) into Eq. (28), through
simplification, the following relationship is deduced:[

1+
ssi−1ssi

6
D2
+
ssi−1ssi(ssi − ssi−1)

18
D3

+
ssi−1ssi(ss3i−1 + ss

3
i )

72(ssi−1 + ssi)
D4 . . .

]
u′(si)

=

[
D+

ssi−1ssi
6

D3
+
ssi−1ssi(ssi − ssi−1)

24
D4

+
ssi−1ssi(ssi−13 + ssi3)

120(ssi−1 + ssi)
D5 . . .

]
ũ(si), (33)

where D ≡ d
ds .

With Eq. (29), Eq. (30) and Eq. (32), through simplifica-
tion, the following formula is obtained:[
1+

(ssi2−ssi−12)
3(ssi−1+ssi)

D+
(ssi3 + ssi−13)
6(ssi−1 + ssi)

D2
+ · · · .

]
u′′(si)

=

[
D2
+
(ssi2−ssi−12)
3(ssi−1+ssi)

D3
+

(ssi3 + ssi−13)
12(ssi−1 + ssi)

D4
+· · ·

]
ũ(si).

(34)

With Eq. (33) and Eq. (34), through simplification, the
following relations can be derived:

u′(si) = ũ′(si)−
ssi−1ssi(ssi − ssi−1)

72
ũ4(si)

−
ssi−1ssi(ssi−13 + ssi3)

180(ssi−1 + ssi)
ũ5(si)+ O(h4),

u′′(si) = ũ′′(si)−
(ssi3 + ssi−13)
12(ssi−1 + ssi)

ũ4(si)+ O(h3).

(35)

Now, we define the computation error of u as u_e(s) =
u(s)− ũ(s), and with the Taylor Expansion, it is acquired:

u_e(si + θssi) = u(si)− ũ(si)+ θssi
[
u′(si)− ũ′(si)

]
+

1
2
θ2ssi2

[
u′′(si)− ũ′′(si)

]
+ · · · , (36)

where 0 ≤ θ ≤ 1.

Substitute Eq. (35) into Eq. (36), the computation error of
u is expressed as:

u_e(si + θssi)

=

[
−θ

ssi−1ssi2(ssi − ssi−1)
72

− θ2
ssi2(ssi3 + ssi−13)
24(ssi−1 + ssi)

]
× ũ4(si)+ O(h5). (37)

Similarly, the computation error of v is solved as:

v_e(si + θssi)

=

[
−θ

ssi−1ssi2(ssi − ssi−1)
72

− θ2
ssi2(ssi3 + ssi−13)
24(ssi−1 + ssi)

]
× ṽ4(si)+ O(h5), (38)

where v_e(s) = v(s)−ṽ(s) denotes the computation error of v.
With Eq. (37) and Eq. (38), it is deduced that our proposed

approach is generally O(h4) accurate.

V. VALIDATION
It is difficult for the discrete approximation method of
geodesic curves to determine how the curves with non-zero
geodesic curvature should pass on surfaces. However,
the numerical approach introduced by Maekawa, Kasap and
Chen for BVP of geodesic could be extended to curves
with non-vanishing geodesic curvature directly. Both of
Maekawa’s and Kasap’s methods are based on the finite dif-
ference method, and an interpolation technique is needed to
ensure the continuity of desired curve. Chen’s algorithm uti-
lizes an optimization strategy to find geodesics. In Appendix,
we prove the optimization strategy is equivalent to solving
the differential equation of geodesics based on the Galerkin
method.

In the subsequent part, the proposed method is com-
pared with Maekawa’s method, Kasap’s method and Chen’s
geodesic-like curve as these approaches are elegant and aim
for the smooth parametric surface. Curves with prescribed
geodesic curvature between two boundary points on several
parametric surfaces are constructed with the methods. For
the purpose of equity, all of the methods share the same
number of iterations and the time costs are recorded. In order
to measure the accuracy of different algorithms, the length
difference between the computed curve and ideal curve is
evaluated as:

Length error =

∣∣∣Lengthcomputed − Lengthideal
∣∣∣

Lengthideal
× 100%,

(39)

where Lengthcomputed and Lengthideal indicate the length of
the computed curve and the target curve, respectively. Here,
the length of the computed curve is approximated by the sum
of the chord length between the knot points. The ideal curves
with prescribed geodesic curvature on B-spline surfaces are
not readily available, so we use the curves computed through
our method using more knot points and iteration times as the
ideal curves.
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Next, various surfaces are adopted to validate the proposed
method. For simplicity, the straight line approximation is
adopted. All of the codes are implemented in MATLAB
2016b with NURBS Toolbox 1.0 and run on a personal
computer [Intel Core (TM) i5 Duo Processor, 2.8GHz, 16GB
memory] to test the accuracy and the efficiency.

As illustrated in Fig. 7, the first example computes curves
with prescribed geodesic curvature on a sphere surface. The
target curves include a geodesic curve and a curve with con-
stant geodesic curvature (kg = 1/4000). The length of the two
curves are 3141.5927 and 3261.9341, respectively. The length
variations of the computed curves with respect to the iteration
times for the four methods are recorded in Table 1. The differ-
ences on the accuracy and time costs of the four approaches
are demonstrated in Table. 2.

FIGURE 7. Curves with prescribed geodesic curvature on a sphere surface.

TABLE 1. Length variations with respect to the iterations in example 1.

TABLE 2. Results of comparison on accuracy and time costs in example 1.

FIGURE 8. Results of comparison on efficiency in example 1.

As shown in Fig. 7 and Table. 1, the initial curve
approaches the desire curve gradually with the iteration.
For geodesic, with the increase of the number of iterations,
the length of the curve decreases and the error of the curve
length decreases. This is due to that the geodesic curve
generally minimizes the distance between two points on
surfaces. However, for the curve with prescribed geodesic
curvature, the error of curve length will gradually decrease
after a certain number of iterations, and the computed curve
is relatively close to the target curve at this time. With Table.
2, the accuracy of our method is comparable with Chen’s
method, and the accuracy of Maekawa’s method is close to
Kasap’s method. At the same time, the accuracy of the first
two methods is significantly better than that of the latter
two methods. In Table 2, the computation accuracy of the
curve with prescribed geodesic curvature is worse than that
of geodesic curve. This is mainly due to that the differential
equation of the former curve is more complicated than the
latter. As can be seen form Table. 2, Kasap’s method is the
fastest, while Maekawa’s approach is the slowest. Mean-
while, our algorithm is faster than Chen’s method.

In order to show the efficiency of different algorithms,
Fig. 8 records their computation time required to achieve a
given level of accuracy. With this figure, it is noticed that our
approach is always able to achieve better accuracy in a same
computation time, which indicates that our method is more
efficient.

As shown in Fig. 9, the second example evaluates curves
with prescribed geodesic curvature on a cubic B-spline
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surface. The target curves also include a geodesic curve
and a curve with constant geodesic curvature (kg = 1/500).
The length of the two curves are 199.3348 and 200.9313,
respectively.

FIGURE 9. Curves with prescribed geodesic curvature on a cubic B-spline
surface.

The length variations of the computed curves with respect
to the iteration times for the four methods are recorded
in Table 3. The differences on the accuracy and time costs of
the four approaches are demonstrated in Table. 4. The Results
of comparison on efficiency are illustrated in Fig. 10.

TABLE 3. Length variations with respect to the iterations in example 2.

TABLE 4. Results of comparison on accuracy and time costs in example 2.

As can be seen from Table. 3, Table. 4 and Figure. 10,
the experimental results reflect similar trends on accuracy and
efficiency as those in the first example. However, it is also
noticed that the divergence between our method and Chen’s
method is more obvious, and our method shows superiority
on accuracy.

FIGURE 10. Results of comparison on efficiency in example 2.

FIGURE 11. Computation of geodesic curves on B-spline surfaces.

In the third example, the influence of underlying para-
metric surfaces on the computation process is investigated.
As illustrated in Fig. 11, curves with zero geodesic cur-
vature are computed on a 2 × 2 B-spline surface and a
6 × 7 B-spline surface. The curvature of the latter surface
is larger than that of the former surface. As the length error is
related to the length of the ideal curve, the two target curves
share an approximately equal length for equity, which are
145.7069 and 140.4017, respectively.

With Fig. 12 and Table. 5, the differences between the
four algorithms are similar to that in the first two examples.
Meanwhile, it is noticed that more iterations and time con-
sumption are needed to achieve a given level of accuracy
on the surface with large curvature for all of the methods.
In Fig. 13, the influence of the number of knot points on the
performance of our proposed method is investigated.
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TABLE 5. Results of comparison on accuracy and time costs in example 3.

FIGURE 12. Results of comparison on efficiency in example 3.

With Fig. 13, it is known that the computation accuracy
generally increases with the increase of knot points. At the
same time, it is noticed that it requires more iteration times
to achieve a stable lever of length error for the computation
with more knot points. In Fig. 13(a), no obvious improvement
of computation accuracy is noticed when the number of knot
points is increased from 150 to 200, which is not the case
in Fig. 13(b). Thus, for a surface with large curvature, more
iteration times and knot points are preferred to achieve a given
level of computation accuracy.

The last example evaluates curves with zero geodesic cur-
vature by using our proposed approach on the cubic B-spline
surface investigated in Example 2. The number of knot points
is 101. In Fig. 14(a), the circular arc approximation is adopted
and the correction factor λ is set as 0.2. In Fig. 14(b),
the straight line approximation is utilized and the correction

FIGURE 13. Influence of the number of knot points on the computation
accuracy.

FIGURE 14. Computation of geodesic curves on the cubic B-spline
surface.

factor λ is set as 1.0. The corresponding experimental results
are illustrated in Fig. 15(a) and Fig. 15(b), respectively.

With Figure. 15(a), it can be seen that the straight line
approximation provides better initial approximation than the
circular arc approximation as it acquires better computation
accuracy in a same iteration times. The main advantage of
circular arc approximation is that it is more reliable when
there exists more than one target path. In Figure. 15(b), it is
found that with the increase of the value of λ, the conver-
gence speed generally increases. However, the fluctuation
of the computation accuracy is more significant. When the
value of λ is 1.0, the Eq. (13) reduces to a regular Newton’s
method, which is difficult to find a reliable solution as seen
in Fig. 14(b).

To sum up, our proposed method is generally more accu-
rate than the algorithms proposed by Maekawa, Kasap and
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FIGURE 15. Experimental results on the cubic B-spline surface.

Chen. This is mainly due to that our approach has third
order accuracy, while Maekawa and Kasap’s finite difference
methods are with second order accuracy. Meanwhile, Chen’s
optimization strategy is based on a quadratic B-spline basis
functions. As for the time costs, Maekawa’s method is slow
as the iteration process involves the coordinates and the direc-
tions of the target curve. In this case, the Jacobian matrix
is about twice the size of that in the other three methods.
Kasap’s method is the fastest thanks to that it is indepen-
dent of updating the knot points. The experimental results
also demonstrate followings: Firstly, our approach is always
able to achieve better accuracy in a same computation time,
which indicates that our method is more efficient. Secondly,
the computation accuracy of the curvewith non-zero geodesic
curvature is worse than that of geodesic curve. Thirdly, for a
surface with large curvature, more iteration times and knot
points are preferred to achieve a given level of computation
accuracy. Lastly, the straight line approximation generally
provides better initial approximation than the circular arc
approximation. At the same time, large correction factors
λ are more likely to result in a notable fluctuation of the
computation accuracy.

VI. DISCUSSION AND CONCLUSION
In this paper, a non-uniform cubic b-spline element method
is proposed for solving the boundary value problem (BVP)
of curves with prescribed geodesic curvature. Simulation
and experimental results show that the proposed method is
generally more efficient than existing numerical methods.

The advantages of the proposed method are concluded as
follows:

1) The method could cope with the BVP for curves no
matter their geodesic curvature vanishes or not.

2) The method has third order accuracy, which shows
more superiorities than existing numerical methods.

3) The computed curves are natural and smooth, and
no interpolation technique is needed to ensure the
continuity of target curves.

4) The collocation points are always in accordance with
the knot points, which facilitates the deduction process
a lot.

This paper focuses on providing an efficient numer-
ical framework for constructing curves with prescribed
geodesic curvature between two points on parametric sur-
faces. In future research, the proposed method would be
applied to path optimization in ATP. The desired trajectories
designed with the proposed method could be adopted to
steer the composite tapes such that eliminating the gaps and
improving the quality of the resulting laminate.

APPENDIX
Chen’s algorithm utilizes an optimization strategy to find
geodesic curves on parametric surfaces. Let r = r(u, v)
denote the underlying parametric surface. With refer-
ence [16], the geodesic curve is approximated as a Bezier
curve or a b-spline curve C:

u(s) =
n∑
i=0

Bi(s)ui,

v(s) =
n∑
i=0

Bi(s)vi.

(A1)

The energy of curve C is expressed as:

E (u1, u2, . . . .un−1, v1, v2 . . . .vn−1)

=
1
2

∫ b

a

(
ru
du
ds
+ rv

dv
ds
, ru

du
ds
+ rv

dv
ds

)
ds. (A2)

The geodesic curve is the solution of the system of
geodesic-like equations (A3), which minimizes the energy of
curve C.

Eui =
∫ b

a

[(
ruu

du
ds
+ ruv

dv
ds

)
Bi + ru (Bi)′ ,

ru
du
ds
+ rv

dv
ds

]
ds = 0,

Evi =
∫ b

a

[(
ruv

du
ds
+ rvv

dv
ds

)
Bi + rv (Bi)′ ,

ru
du
ds
+ rv

dv
ds

]
ds = 0.

(A3)

In Eq. (A3), Eui is rewritten as:

Eui =
∫ b

a

[(
ruu

du
ds
+ ruv

dv
ds

)
Bi, ru

du
ds
+ rv

dv
ds

]
ds

+

∫ b

a

[
ru (Bi)′ , ru

du
ds
+ rv

dv
ds

]
ds. (A4)
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In Eq. (A4), we have:∫ b

a

[(
ruu

du
ds
+ ruv

dv
ds

)
Bi, ru

du
ds
+ rv

dv
ds

]
ds

=

∫ b

a
Bi

[
ruuru

(
du
ds

)2

+ ruvrv

(
dv
ds

)2

+ ruurv
du
ds

dv
ds
+ ruvru

du
ds

dv
ds

]
ds. (A5)∫ b

a

[
ru (Bi) ′, ru

du
ds
+ rv

dv
ds

]
ds

=

(
ru, ru

du
ds
+ rv

dv
ds

)
(Bi) |ba

−

∫ b

a
(Bi) d

(
ru, ru

du
ds
+ rv

dv
ds

)
= −

∫ b

a
(Bi) d

(
ru, ru

du
ds
+ rv

dv
ds

)
= −

∫ b

a
(Bi)

[
E
d2u

ds2
+ F

d2v

ds2
+ Eu

(
du
ds

)2

+Fv

(
dv
ds

)2

+ (Ev + Fu)
du
ds

dv
ds

]
ds (A6)

Substitute Eq. (A5) and Eq. (A6) into Eq. (A4), Eui is
expressed as:

Eui=−
∫ b

a
(Bi)

×


E
d2u

ds2
+F

d2v

ds2
+(Ev+Fu−ruurv−ruvru)

du
ds

dv
ds

+ (Eu − ruuru)
(
du
ds

)2

+ (Fv − ruvrv)
(
dv
ds

)2

ds.
(A7)

Similarly, Evi is expressed as:

Evi=−
∫ b

a
(Bi)

×


F
d2u

ds2
+G

d2v

ds2
+(Fv+Gu−ruvrv−rvvru)

du
ds

dv
ds

+ (Fu − ruvru)
(
du
ds

)2

+ (Gv − rvvrv)
(
dv
ds

)2

ds.
(A8)

With Eq. (A7) and Eq. (A8), solving the system of
geodesic-like equations (A3) is equivalent to solve the
following:

−GEui + FEvi
EG− F2 =

∫ b

a
(Bi)

[
d2u
ds2
+ 01

11

(
du
ds

)2

+ 201
12
du
ds

dv
ds
+ 01

22

(
dv
ds

)2
]
ds = 0,

FEui − EEvi
EG− F2 =

∫ b

a
(Bi)

[
d2v
ds2
+ 02

11

(
du
ds

)2

+ 202
12
du
ds

dv
ds
+ 02

22

(
dv
ds

)2
]
ds = 0.

(A9)

With Eq. (A1) and Eq. (A9), we know that Chen’s opti-
mization strategy for finding geodesic curves is equivalent to
solving the differential equation of geodesics based on the
Galerkin method.
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