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ABSTRACT Manufacturing industries aim to improve product quantity and quality. These trade-off objec-
tives are typically manifested as cycle time reduction and motion accuracy improvement. Corner smoothing
approaches that reduce the cycle time of piecewise linear trajectories are proposed in the literature. This
study tackles the two objectives by Pareto-optimal corner smoothing with constraints imposed as kinematic
limits, continuity conditions and user-specified cornering tolerance. Linear and cornering motions along a
contour are respectively described by jerk-limited acceleration profiles and a modified kinematic corner
smoothing with interrupted acceleration (KCSIA) approach. A Pareto frontier is generated by the divide and
conquer algorithm, where the solution nearest to the utopia point is selected as the best trade-off solution.
The effectiveness of the proposed method is validated through experiments, where the best trade-off solution
reduces the maximum and average contouring errors by 47.53% and 25.40% while it increases cycle time
by 2.53% compared to KCSIA.

INDEX TERMS Trajectory generation, motion accuracy, corner smoothing, Pareto optimization, industrial
feed drives systems.

I. INTRODUCTION
Manufacturing industries typically use computer numerical
control (CNC) machine tools due to their accuracy, repeata-
bility and speed in performing tasks [1]. Feed drive systems
(FDSs) actuate CNC machine tools’ motion axes [2]. Ongo-
ing demands for higher production quantity and quality drive
researches in motion accuracy improvement and cycle time
reduction. Several studies have proposed feedback control
structures to reduce tracking [3] and contouring [4], [5] errors
in feed drive systems. Chen and Sun propose a nonlinear
controller for underactuated systems [6]. A feedback control
strategy is proposed in [7] for regulating ship yaw and roll
perturbations in 5-DOF offshore cranes. Such proposals are
limited by the accessibility of in-service feed drive system
feedback controllers.
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Trajectory generation methods have been proposed in the
literature to reduce errors and cycle time. Feedforward com-
pensation strategies such as iterative learning control [8], [9]
and neural networks and reinforcement learning [10] are
proposed for error reduction. A time-optimal trajectory
generation approach with consideration to obstacles and
dynamic limits is proposed by Uchiyama et al. for robotic
manipulators [11]. Sencer et al. propose time-optimal feed
scheduling along B-spline tool paths for 5-axis CNCmachine
tools [12]. Frequency-optimal acceleration profiles are pro-
posed by Sencer and Tajima for vibration suppression [13].
Kucuk proposes minimum time trajectory generation using
cubic spline and 7th order polynomial interpolations [14].
15-phase sinusoidal jerk profiles are proposed by Fang et al.
for cycle time reduction and high-frequency harmonic sup-
pression [15]. Wang et al. propose time-optimal S-curve
velocity profile generation for robotic arms [16]. In economic
lot scheduling of supply chains, a sub-optimal cycle time of
a process lot can be selected to reduce overall production
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costs [17], [18]. To this end, Jeong et al. present time-optimal
and time-fixed jerk-limited velocity profile generation algo-
rithms [19]. Besset and Béarée propose online finite impulse
response-based trajectory generation for time-optimal, fixed
time and jerk-time fixed cases [20].

Before a contour is fed to feed drive systems, CAD/CAM
systems normally discretize it into a set of linear and circular
arc segments using G01 and G02/G03 commands, respec-
tively. In order to improve machining quality and speed,
corner smoothing methods have been proposed in the litera-
ture. Corner smoothing methods can be classified as global
and local corner smoothing methods based on the span of
a fitted curve. Global corner smoothing methods fit a sin-
gle curve spanning across all segments while local corner
smoothing approaches fit a curve between a pair of adjacent
segments [21]. Global corner smoothing is normally used
for motion planning along short-segment paths [22]–[24].
However, it is more challenging to evaluate and constrain
the smoothing error for global corner smoothing compared
to local corner smoothing [25].

Local corner smoothing can be categorized as geometric
and kinematic local corner smoothing, where geometric local
corner smoothing separately considers geometric and kine-
matic constraints in two steps while kinematic local cor-
ner smoothing plans smooth velocity transitions directly by
considering both constraints in one step [26]–[28]. In lit-
erature, geometric local corner smoothing using B-spline
[29]–[31], Pythagorean Hodograph [32] and Bézier [27]
curves are proposed. Regarding kinematic local corner
smoothing, kinematic corner smoothing with interrupted
acceleration (KCSIA) has been proposed for cycle time
optimality [33]. An energy-time trade-off using KCSIA is
studied in [34]. Finite impulse response-based kinematic
local corner smoothing has been proposed for reducing time
and vibrations [35], [36]. Kinematic local corner smoothing
approaches using clothoids [37]–[39] and asymmetrical dou-
ble constant-jerk cornering profiles [21] have been proposed
for improving cycle time. Regarding CNC machining, there
are several different cases of requirements for surface qual-
ity and cycle time: a high-accuracy case, a high-speed case
with a certain accuracy level and a time-fixed case. With
the aim of reducing cycle time while satisfying accuracy
requirements for piecewise toolpaths, existing local corner
smoothing algorithms typically maximize cornering veloci-
ties, where cornering errors are driven to the upper bounds of
the accuracy constraints [27], [40]. Under sub-optimal cycle
time scenarios, driving these errors to their upper limits is no
longer necessary. Thus, various trade-off solutions for cycle
time and cornering error can be selected by a decision-maker.

A Pareto set of a multi-objective optimization problem
(MOOP) can be generated by vectorization or scalarization
methods [41], [42]. Vectorization methods are stochastic
approaches that directly solve the MOOP to produce global-
optimal solutions. Their computation cost and stochastic
nature limit their application. Scalarization methods solve a
MOOP by parameterizing it into a series of single-objective

optimization problems (SOOPs), resulting in a set of locally
optimal solutions. Taking a weighted sum of objectives
is a commonly used approach, although it has drawbacks
in obtaining solutions in non-convex Pareto regions [43].
Approaches such as normal boundary intersection [44], nor-
malized normal constraint [45], [46] methods have been
proposed. The normal boundary intersection approach and,
to a lesser degree, the normalized normal constraint are
prone to generating non-Pareto optimal solutions. Logist
and Van Impe propose a criterion for detecting such solu-
tions [47]. The scalarization methods typically distribute the
SOOPs evenly, resulting in a waste of computational effort
on insignificant Pareto points. Kim and Weck propose a
recursive approach for generating a Pareto frontier based on
an adaptive selection of objective weights in a bi-objective
problem [48]. This approach requires four user-defined
parameters to control the Pareto frontier approximation.
Hashem et al. propose the divide and conquer algorithm for
the recursive exploration of significant trade-off regions on
the Pareto frontier, where one user-defined parameter, named
the minimum trade-off level, is required to control the Pareto
frontier resolution [42].

In order to account for the different cases of surface quality
and cycle time requirements, a Pareto-optimal local corner
smoothing method that offers a trade-off between cycle time
and motion accuracy is proposed. A decision-maker can
systematically select Pareto-optimal solutions to address the
requirements under consideration. Piecewise linear contours
are considered in this study due to their regular occurrence
in CAD/CAM systems. The normalized normal constraint
method is used to formulate the bi-objective optimization
problem since it is known beforehand whether the Pareto
frontier does not have non-convex regions. The motion accu-
racy improvement objective is indirectly represented by the
minimization of corner smoothing extent along an entire
contour. As part of the optimization problem formulation,
it is considered that a smoothed trajectory’s linear and cor-
nering segments are respectively described by jerk-limited
acceleration profiles (JLAP) [49] and a modified KCSIA.
The optimization problem is constrained by kinematic limits,
user-defined cornering tolerances and geometric restriction
for avoiding path overlaps. The divide and conquer algorithm
[42] is used for generating an approximated Pareto frontier
since it only requires one user-defined parameter, named a
minimum trade-off level, and it is compatible with the nor-
malized normal constraint method. Each Pareto-optimal solu-
tion is computed using sequential quadratic programming
[50]. In this study, the Pareto-optimal solution that is nearest
to the utopia point is selected as the best trade-off solution.
In a time-fixed case, a solution can be obtained without the
need to generate the Pareto front, where the motion accu-
racy improvement objective is minimized subject to a user-
specified cycle time and the above-mentioned constraints.

Experimental results of the generated Pareto-optimal
trajectories demonstrate the effectiveness the proposed
approach.
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FIGURE 1. An illustration of a cornering path generated by a corner
smoothing method. A corner point pc is smoothed by a red dash-dot
curve with a cornering error ε bounded by 0 < ε ≤ εub.

The contributions of this work are summarized as follows:
• A cycle time and motion accuracy trade-off by Pareto-
optimal local corner smoothing is proposed.

• The time-optimal solution has a higher motion accuracy
and shorter cycle time than KCSIA.

The paper is organized as follows: Section II illustrates
the design of Pareto-optimal trajectories, Section III presents
the optimization and experimental results. A discussion
on the findings and concluding remarks are described in
Sections IV and V, respectively.

II. PARETO-OPTIMAL TRAJECTORY DESIGN
A method of generating Pareto-optimal trajectories that pro-
vide a compromise between motion accuracy and cycle time
for piecewise linear contours is illustrated in this section.
The bi-objective optimization problem and constraint formu-
lations are depicted below.

A. PROBLEM FORMULATION
Corner smoothing approaches reduce cycle time by short-
ening the tool path length and providing non-zero corner-
ing velocities, which consequently deteriorates contouring
performance as shown in [22], [27], [40]. Hence, motion
accuracy improvement and cycle time reduction are conflict-
ing objectives in trajectory generation for piecewise linear
contours.

Corner smoothing methods generate cornering trajectories
for given machine tool kinematic limits (ie., jerk, acceleration
and velocity limits) and a user-specified cornering tolerance
0 < ε ≤ εub as shown in Fig. 1, where pc is the original
corner point and the cornering error ε is restricted by upper
bound εub. The cornering path from position vector ps to pe
is symmetrical about line pcpmid, where the distance between
the start/end of the path and the original corner pc is the
cornering Euclidean distance Lc. hs and he are the direction
vectors at the start and end of the path, respectively. The
minimization of ε and reduction of Lc are non-conflicting
objectives. Hence, a SOOP

min
µc,m

Lc,m(µc,m) (1)

subject to g(µc,m) = 0,

q(µc,m) ≤ 0,

− µc,m ≤ 0 (2)

is used to describe the smoothing minimization objective for
the mth corner, where µc,m is parameter vector that con-
sists of variables that describe a cornering trajectory. As
detailed in Section II-C2, these variables depend on the corner
smoothing method used. g is an equality constraint vector
that imposes motion continuity conditions when stitching the
corner path with preceding and succeeding linear segments.
q is an inequality constraint vector that ensures the cornering
motion obeys kinematic limits and the user specified corner-
ing tolerance.

The trajectory cycle time

Tcycle =
nl∑
m=1

Tl,m(µl,m)+
nc∑
m=1

Tc,m(µc,m) (3)

is the second objective to be minimized. It is obtained as
a sum of the linear and corner segment trajectory durations
Tl,ms and Tc,ms, respectively. µl,m is a parameter vector that
describes the mth linear segment trajectory. nl is the number
of linear segments. In this study, it is assumed that the end of
a piecewise linear contour is not smoothed, hence nl = nc+1.

The trade-off between corner smoothing minimization and
cycle time reduction is represented as the bi-objective opti-
mization problem

min
µ

{
Lc,tot(µ),Tcycle(µ)

}
µ =

[
µl,1,µc,1,µl,2,µc,2, . . . ,µl,nl ,µc,nc

]> (4)

subject to g(µ) = 0,

q(µ) ≤ 0,

− µ ≤ 0 (5)

with

Lc,tot(µ) =
nc∑
m=1

Lc,m(µc,m), (6)

where Lc,tot is the total cornering Euclidean length for corner
smoothing. Thus, Lc,tot represents the smoothing objective
function for all nc corners. µ is the optimization parameter
vector consisting of linear and corner segment variables. The
g elements describe geometric and Cn continuity conditions
along a resulting optimal trajectory and q restricts the tra-
jectory within kinematic limits and user-specified cornering
tolerances.

Each objective extremum is obtained by independently
minimizing the components in (4) as:

Lc,min = Lc,tot(µlc)

Tmax = Tcycle(µlc)

}
, µlc = argmin

µ
Lc,tot(µ),

Lc,max = Lc,tot(µT )

Tmin = Tcycle(µT )

}
, µT = argmin

µ
Tcycle(µ). (7)
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FIGURE 2. An illustration of the reformulated optimization problem (9)
with the feasible region reduced by the normalized normal constraint
inequality constraint (10). The utopia point is marked by the origin O.

In a normalized objective space,

L̃c,tot(µ) =
Lc,tot(µ)− Lc,min

1Lc,tot
,

T̃cycle(µ) =
Tcycle(µ)− Tmin

1Tcycle
(8)

describe the respective individual objectives in (4), where
1Lc,tot = Lc,max − Lc,min and 1Tcycle = Tmax − Tmin are the
saving potentials in corner smoothing and cycle time, respec-
tively. In accordance with the normalized normal constraint
method [45], (4) is reformulated as:

min
µ
T̃cycle(µ) (9)

subject to (5) and an additional normalized normal constraint
inequality constraint[

ψT − ψ lc
]> [ψ − ρ] ≤ 0 (10)

that limits the feasible region in the normalized objective
space (Fig. 2) with

ψ =
[
L̃c,tot(µ), T̃cycle(µ)

]>
,

ψ lc =

[
L̃c,tot(µlc), T̃cycle(µlc)

]>
,

ψT =

[
L̃c,tot(µT), T̃cycle(µT)

]>
,

ρ = (1− ζ )ψ lc + ζψT,

0 ≤ ζ ≤ 1, (11)

where a point ψ on a Pareto frontier 9 corresponds to the
point ρ on the convex hull of individual minima obtained at
a weighting factor ζ .
9 is generated using the divide and conquer recursive

structure [42], where (9) is solved by sequence quadratic
programming [50] for different ζ . In this work, the Pareto
optimal point that is nearest to the utopia point is considered
to be the best trade-off solution

ψ∗ = argmin
ψ
‖9‖2 (12)

obtained at the weighting factor ζ ∗ which corresponds to the
parameter vector µ∗ in the decision space. The optimization
process described above is demonstrated as Algorithm 1 in
the appendix, where it receives a piecewise linear tool path a
series of 2D points pcs, cornering tolerance 0 < ε ≤ εub and
kinematic limits for each axis.

Under a time-fixed case, the corresponding Pareto-optimal
solution ψ can be directly obtained without the need for
generating 9 by solving the single objective problem

min
µ
Lc,tot(µ) (13)

subject to (5) and a cycle time constraint

Tcycle(µ)− Tfixed(µ) = 0 (14)

where Tfixed is the fixed cycle time defined by a user.

B. OPTIMIZATION CONSTRAINTS
In order to ensure that a Pareto optimal solution is imple-
mentable in a real FDS, kinematic limitations for the k th

axis must be incorporated as optimization constraints. Hence,
kinematic constraints

(
...
r k (t))2 − j2lim,k ≤0

(r̈k (t))2 − a2lim,k ≤0

(ṙk (t))2 − v2lim,k ≤0

 , ∀t (15)

are defined, where rk is a trajectory position and jlim,k , alim,k ,
and vlim,k are the respective jerk, acceleration and velocity
limits. (15) is described in a quadratic form so as to guarantee
differentiability ∀µ ≥ 0. At each corner, the mth cornering
error is bounded by the constraints

εm − εub,m ≤ 0. (16)

Geometric constraints

‖pc,m − pc,m−1‖2 −
[
Lc,m−1 + sm + Lc,m

]
= 0 (17)

are defined in order to avoid overlapping the (m − 1)th

and mth cornering paths, where sm is the path length of the
linear segment between the smoothed corners. In order to
ensure Cn smoothness when motion switches from lines to
cornering paths and vice versa at time instants tms, continuity
constraints

r(n)l (tms)− r(n)c (tms) = 0,

r(n−1)l (tms)− r(n−1)c (tms) = 0,

...

ṙl(tms)− ṙc(tms) = 0,

rl(tms)− rc(tms) = 0 (18)

are established, where the motion profiles for linear and
cornering paths are respectively rl and rc.
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FIGURE 3. A kth axis jerk limited acceleration profile demonstration. Jerk,
acceleration and velocity are accordingly labeled as

...
r l,k , r̈l,k and ṙl,k .

C. TRAJECTORY REPRESENTATION
This section illustrates the motion profiles used for Pareto
optimal trajectory design. With no loss in generality, C2

motion continuity is selected in this study, where JLAP and
KCSIA respectively define linear and cornering motions.

1) JERK LIMITED ACCELERATION PROFILE
JLAPs are C2 continuous motion profiles that connect
two points by providing acceleration, constant velocity and
deceleration phases while obeying boundary conditions and
restrictions on jerk, acceleration and velocity [33], [49].
Fig. 3 shows the JLAP motion phases. A JLAP jerk profile

...
r l,k (t) =



jmax,k , t0,l ≤ t < t1,a,
0, t1,a ≤ t < t2,a,
−jmax,k , t2,a ≤ t < t3,a,
0, t3,a ≤ t < tcon
−jmax,k , tcon ≤ t < t1,d,
0, t1,d ≤ t < t2,d,
jmax,k , t2,d ≤ t < tl

(19)

is defined, where jmax,k is the k th axis maximum jerk mag-
nitude in the motion. The time intervals t0,l ≤ t < t3,a,
t3,a ≤ t < tcon and tcon ≤ t < tl are respectively the
acceleration, constant velocity and deceleration phases. The
total motion duration

Tl = T1,a + T2,a + T3,a + Tcon + T1,d + T2,d + T3,d (20)

is obtained as a sum of time intervals

T1,a = t1,a − t0,l, T1,d = t1,d − tcon,

T2,a = t2,a − t1,a, T2,d = t2,d − t1,d,

T3,a = t3,a − t2,a, T3,d = tl − t2,d
Tcon = tcon − t3,a, (21)

that are computed according to kinematic constraints (15) and
boundary conditions (18). By successive integration of (19)),

the k th axis total displacement

1rl,k = vs,l,kTl +
1
2
as,l,kT 2

l + jmax,k

×

[
1
6

(
T1,a − T3,a

)3
+

1
2
T1,a

(
T1,a + T2,a

) (
T2,a + 2T3,a

)
−

1
6

(
T1,d − T3,d

)3
−

1
2
T1,d

(
T1,d + T2,d

) (
T2,d + 2T3,d

)
+ (Tcon + Td )

{
T1,a

(
T2,a + T3,a

)
+

1
2

(
T1,a − T3,a

) (
T1,a + T3,a + Tcon + Td

)}]
(22)

is derived with Td = T1,d+T2,d+T3,d , where the path length
s = ‖1rl‖2. vs,l,k and as,l,k are the respective k th axis velocity
and acceleration components at the start of the linear segment.
Thus, a JLAP can be optimized by describing a parameter
vector

µl =
[
T1,a,T2,a,T3,a,Tcon,T1,d,T2,d,T3,d

]
. (23)

For JLAPs, kinematic constraints (15) are implemented as:

j2max,m,k − j
2
lim,k = 0

(as,l,k+jmax,m,kT1,a,m)2−a2lim,k ≤ 0

(jmax,m,kT1,d,m)2 − a2lim,k ≤ 0

v2con,m,k − v
2
lim,k ≤ 0

, m ∈ {1, 2, . . . , nl} ,
(24)

with a maximum k th axis velocity

vcon,m,k = vs,l,m,k + as,l,m,k
(
T1,a,m + T2,a,m + T3,a,m

)
+

1
2
jmax,m,k

(
T 2
1,a,m − T

2
3,a,m

)
+ jmax,m,kT1,a,m

(
T2,a,m + T3,a,m

)
(25)

along the mth linear segment.

2) KINEMATIC CORNER SMOOTHING WITH INTERRUPTED
ACCELERATION
KCSIA is a 2D method of generating near time-optimal
C2 continuous cornering motions by analytically calculating
the cornering velocities, accelerations and durations while
enforcing zero acceleration and the same tangential velocities
Vc at motion boundaries and obeying user-specified corner-
ing tolerances and kinematic constraints [33]. Fig. 4 shows
a KCSIA demonstration, where, based on JLAPs, its jerk
profile

...
r c,k (t) =


jc,k , t0,c ≤ t < t1,c,
0, t1,c ≤ t < t2,c,
−jc,k , t2,c ≤ t < tc,

(26)
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is defined with

jc,k =
ve,c,k − vs,c,k

T1,c
(
T1,c + T2,c

) , T1,c = t1,c − t0,c

vs,c,k = Vchs,k , = tc − t2,c,

ve,c,k = Vche,k , T2,c = t2,c − t1,c.

ac,k = jc,kT1,c, (27)

jc,k is the cornering jerk. By successive integration of (26), a
cornering path

rc,k (t)

=



ps,k + vs,c,k
(
t − t0,c

)
+

1
6
jc,k

(
t − t0,c

)3
,

t0,c ≤ t < t1,c,
p1,k + vs,c,k

(
t − t1,c

)
+
1
2
jc,kT1,c

(
t − t1,c

) (
T1,c + t − t1,c

)
,

t1,c ≤ t < t2,c,
p2,k + vs,c,k

(
t − t2,c

)
+
1
2
jc,kT1,c

(
t − t2,c

) (
T1,c + 2T2,c + t − t2,c

)
−
1
6
jc,k

(
t − t2,c

)3
t2,c ≤ t < tc

(28)

is defined with

p1,k = ps,k + vs,c,kT1,c +
1
6
jc,kT 3

1,c,

p2,k = p1,k+vs,c,kT2,c+
1
2
jc,kT1,cT2,c

(
T1,c + T2,c

)
, (29)

where ps,k is the k th axis coordinate of the cornering path
starting point. The k th axis total displacement while travers-
ing the cornering path

1rc,k =
{
vs,c,k +

1
2
jc,kT1,c

(
T1,c + T2,c

)}
Tc (30)

is obtained from (28), where Tc = 2T1,c + T2,c is the total
motion duration. The cornering Euclidean length

Lc =
1rc,k(

hs,k + he,k
) = 1

2
VcTc (31)

is derived. The position vector elements at the start, middle
and end of the cornering path are

ps,k = pc,k − Lchs,k ,

pmid,k = ps,k + vs,c,k

[
T1,c +

T2,c
2

]
+

1
2
jc,kT1,c

(
T2,c
2

2
)

+ jc,k

[
1
6
T 3
1,c +

1
2
T 2
1,c

(
T2,c
2

)]
and

pe,k = pc,k + Lche,k , (32)

respectively, where the cornering error ε = ‖pc − pmid‖2 is
derived as

ε =
Vc
{
T 2
1,c + 3

(
T1,c + T2,c

)2}
24
(
T1,c + T2,c

) ‖he − hs‖2. (33)

FIGURE 4. A demonstration of kinematic corner smoothing with
interrupted acceleration, where kth axis jerk, acceleration and velocity
labeled as

...
r c,k , r̈c,k and ṙc,k , respectively.

For themth corner, KCSIA solves the optimization problem

max
µc

Vc,m

µc,m =
[
Vc,m,T1,c,m,T2,c,m

]
(34)

subject to (15)–(17) and −uc,m ≤ 0. This is followed by
the generation of the mth cornering path, where the start/end
points are obtained from (31) - (32) and the path is plotted
using (28). Afterwards, motions along the line segments that
connect the cornering paths are stitched using time optimal
JLAPs.

In order to solve (9) or (13), (33) is incorporated in the
cornering constraints (16). The kinematic constraints (15) are
realized in the form of

j2c,m,k − j
2
lim,k ≤ 0

a2c,m,k − a
2
lim,k ≤ 0

v2s,c,m,k − v
2
lim,k ≤ 0

v2e,c,m,k − v
2
lim,k ≤ 0

 , m ∈ {1, 2, . . . , nc} . (35)

The geometric constraints (17) are implemented in a
decoupled form

pc,m,k − pc,m−1,k −
[
Lc,m−1 + Lc,m

]
hs,m,k

−1rl,m,k = 0,

m ∈ {1, 2, . . . , nl} . (36)

C2 continuity constraints are established by setting

ae,l,m = r̈c,m(t0,c) = 0

as,l,m+1 = r̈c,m(tc) = 0

ve,l,m − vs,c,m = 0

vs,l,m+1 − ve,c,m = 0

pe,l,m − ps,m = 0

ps,l,m+1 − pe,m = 0


, m ∈ {1, 2, . . . , nc} (37)

where ae,l,m and ve,l,m are the acceleration and velocity vec-
tors at the end of the mth linear motion. ps,l,m and pe,l,m are
the start and end position vectors of themth linear motion. All
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TABLE 1. Identified plant parameters.

solutions of (9) or (13) are hereafter referred to as KCSIA*
solutions. From each solution, a Pareto-optimal trajectory is
generated by plotting linear segment and cornering trajecto-
ries in succession according to (19) and (28), where the linear
segment and cornering path variables are retrieved from µ.

3) SPACE COMPLEXITY ANALYSIS
Space complexity is described as the memory resource
required to execute a computation [51]. For an optimization
problem with nvar variables and ncon constraints, a typical
sequence quadratic programming solver requires a O(n2var +
nvarncon) long double precision working array [52]. KCSIA*
consists of

nvar = nldim(µl)+ ncdim(µc), (38)

variables, where dim(.) denotes vector dimension. According
to (23) and (34), nvar = 10nl − 3. With reference to (16),
(24) and (35)–(37), ncon = 32nl − 21. Hence, the KCSIA*
memory demand is a double precisionworking array of length
O
(
420n2l − 366nl + 72

)
≈ O(n2l ). In contrast, KCSIA has

a O(1) memory demand since it separately optimizes each
corner and linear segment.

III. RESULTS
The validity of the proposed method is tested in this section.
The validation process constitutes the generation of Pareto-
optimal trajectories for a given piecewise linear contour.
Subsequently, contouring error performance experiments are
conducted for selected optimal trajectories. Experimental
results are compared with KCSIA.

A. OPTIMIZATION CONDITIONS AND EXPERIMENTAL
SETUP
The industrial biaxial table in Fig. 5 with kinematic limits:
j lim = [50000, 50000]mm/s3, alim = [1000, 1000]mm/s2

and vlim = [80, 80]mm/s is used for verifying the pro-
posed method. The cornering tolerance at each corner is
specified as 0 < ε ≤ 200µm. A sequence quadratic
programming implementation in MATLAB R© environment is
used to solve (9) on a laptop computer having the specifica-
tions: core i7 intel processor, 2.50GHz CPU, 8GBRAMand
Windows 10 operating system. The minimum trade-off level
δmin = 0.02 is used in the divide and conquer algorithm.

The experimental setup in Fig. 5 is used to validate the
optimization results. Motion along each axis is actuated
by computer controlled AC rotary servomotors, where lin-
ear motion is acquired via ball screws. 76.29 nm resolution
rotary encoders sample table position at a 5 kHz rate. Table

FIGURE 5. The industrial biaxial table used for experimental verification.

velocity is computed as a sampled position numerical dif-
ference, where 20Hz and 60Hz low-pass filters suppress
noise effects for the x1 and x2 axes, respectively. Reference
trajectories are fed into a desktop computer, having Intel
(R) Core i7-3770K CPU, 3.50GHz, 8GB RAM and Ubuntu
15.04 64 bit operating system in a Xenomai 3.0 real-time
framework, which receives encoder data and sends control
signals to the AC rotary servomotors.

In this study, the system dynamics of the industrial biaxial
table are considered as a second-order model [53]

Mẍ(t)+ Dẋ(t)+ Fsgn {ẋ(t)} = u(t) (39)

with

M = diag {mk} , D = diag {dk} ,F = diag {fk} ,

KF = diag
{
kF,k

}
, k ∈ {1, 2} ,

whereM ,D and F are diagonal matrices of axial inertia term,
viscous friction and Coulomb friction, respectively. u ∈ R2

and x ∈ R2 are the control input and axial position vectors,
respectively. sgn {ẋ} is a function that returns a vector with
the respective signs of the ẋ elements. In a similar manner to
[54], the tracking error dynamics

e(t) = r(t)− x(t),

ë(t) = r̈(t)+M−1
{
u(t)− Dẋ(t)− Fsgn {ẋ(t)}

}
(40)

are described, where a PD tracking controller with Coulomb
and viscous friction compensation

u(t) = M̂
{
r̈(t)+ KPe(t)+ KDė(t)

}
+ D̂ẋ(t)

+ F̂sgn {ẋ(t)} (41)

is implemented. M̂ = diag
{
m̂k
}
, D̂ = diag

{
d̂k
}
and F̂ =

diag
{
f̂k
}
correspond to the identified nominal values ofM ,D

and F, respectively. KP = diag
{
kP,k

}
and KD = diag

{
kD,k

}
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TABLE 2. Results summary of Pareto-optimal solutions for the star-shaped tool path.

TABLE 3. Influence the minimum trade-off level on the optimization process.

TABLE 4. Experimental results summary of contouring performance for the star-shaped tool path.

are the proportional and derivative gain diagonal matrices.
The controller (41) is used as the control law for conducting
experiments with identified plant parameters (see Table 1),
kP,k = 7225 s−2 and kD,k = 170 s−1 for ∀k .
In order to verify the effectiveness of the proposed method,

an experiment is conducted on the industrial biaxial table.
KCSIA and ζ = {0, 0.25, ζ ∗, 0.75, 1} KCSIA* motion
profiles are fed into the experimental setup as reference
trajectories, where 10 trials are conducted to check for the
repeatability of results for each trajectory. In this work, the
contouring error estimation method in [40] is used, where
contouring errors are computed with respect to the origi-
nal piecewise linear tool paths. In this study, star-shaped
(Section III-B) and complex (Section III-C) tool paths are
considered for optimal trajectory generation and experimen-
tal verification.

B. CASE I: STAR-SHAPED TOOL PATH
The star-shaped tool path in Fig. 6 is considered for generat-
ing Pareto optimal trajectories. This path consists of acute and
obtuse corners to check the validity of the proposed method
in generating trajectories that trade off cycle time with corner
smoothing.

1) OPTIMIZATION RESULTS
TheKCSIA* Pareto frontier is shown in Fig. 7, where KCSIA
is a dominated solution. The time-optimal KCSIA* solution

FIGURE 6. The star-shaped path tool path used for Pareto optimal
trajectory generation. The motion direction is shown by the arrow. Details
1 and 2 show the cornering motions at different weighting factors ζ for
the acute and obtuse corners, respectively.

is a 0.017 s (i.e., 0.484%) faster cycle time and 1.780mm
(i.e., 24.715%) less corner smoothing than KCSIA. KCSIA
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FIGURE 7. Optimization results of the star-shaped tool path represented
as a Pareto frontier.

has an inferior solution since it maximizes cornering veloc-
ities, consequently maximizing the cornering Euclidean
lengths as shown in (31) and (34). This results in KCSIA hav-
ing a reduced cycle time at the cost of a high total cornering
Euclidean length (i.e., high cornering errors), while KCSIA*
considers both objectives and provides a better performance.

The best trade-off KCSIA* solution is located at ζ ∗ =
0.53125. It offers 2.709mm less corner smoothing than the
KCSIA* time-optimal result while being 0.137 s faster than
the minimum corner smoothing result. This corresponds to
achieving 53.086% and 53.006% of the available cycle time
and corner smoothing saving potentials. The optimization
results are summarized in Table 2.

Fig. 8 shows the KCSIA* jerk, acceleration and velocity
profiles for x1 and x2 axes at different ζ values. All profiles
are within the pre-defined kinematic constraints (15). As
ζ → 1, Tcycle → Tmin, where at the time-optimal KCSIA*
has a shorter Tcycle than KCSIA. The KCSIA and KCSIA*
tangential velocities are depicted in Fig. 9(a). At both acute
and obtuse corners, KCSIA has higher cornering velocities
than KCSIA* for ζ 6= 1. This is a consequence of (34),
where the upper bound cornering constraints are activated to
maximize velocity as shown in Fig. 9(b). For KCSIA*, the
cornering velocities and εm depend on ζ , where both param-
eters increase as ζ → 1 and vice-versa. The correspondence
between εm (Fig. 9(b)) and the generated cornering paths is
shown in details 1 and 2 of Fig. 6.
The computation time for generating the Pareto frontier

(Fig. 7) at δmin = 0.02 is 188.865 s, where it takes 0.861 s
to compute the anchor points (7) and 188.865 s to perform
the divide and conquer recursions. The average computation
time per Pareto-optimal solution is 6.092 s. The choice of
δmin affects computation time and the approximation of the
best trade-off solution since it is a measure of Pareto frontier
resolution. Table 3 shows influence of δmin on the best trade-
off solution and computation time.

2) EXPERIMENTAL RESULTS
KCSIA* has lower error peaks at acute cornering instances
than KCSIA and KCSIA* error tends to decrease as ζ → 0

FIGURE 8. An illustration of Pareto optimal jerk, acceleration and velocity
profiles of the star-shaped tool path corresponding to different weighting
factors ζ , where kinematic constraints (15) are obeyed ∀ζ .

at obtuse corners (see Fig. 10). The KCSIA* contour-
ing errors are within the pre-defined cornering tolerance
(i.e., 0 < ε ≤ 200µm). The maximum and average contour-
ing errors of each trajectory for all the trials are illustrated
in Fig. 11, where it is shown that KCSIA* has a better
performance than KCSIA. Contouring error tends to increase
as cycle time is reduced (i.e., ζ → 1). This is attributed to
increased cornering velocities (see Fig. 9(a)).

The maximum contouring errors for ζ = 0 are non-
zero minima ∀ζ even though the cornering errors εm of the
reference trajectory are approximately zero (Fig. 9(b)). This
is the result of vibrations caused by non-linear frictional char-
acteristics such stick-slip and Stribeck effects in pre-sliding
regimes and near zero velocity instances, respectively [55].

A 1σ standard deviation is used to validate the contour
error results, where Fig. 12 shows the consistency of KCSIA*
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FIGURE 9. Tangential velocities and cornering errors of Pareto optimal
trajectories for the star-shaped tool path at different weighting factors ζ ,
where ε is within the cornering constraints (16).

FIGURE 10. The 7th trial contouring error performance for the
star-shaped tool path. The error tends to be within the set cornering
tolerance 0 < ε ≤ 200µm.

in performing better than KCSIA and the ζ ∗ KCSIA* tra-
jectory having the best trade-off between cycle time and
contouring error. Table 4 summarizes the experimental results
of contouring performance.

C. CASE II: COMPLEX TOOL PATH
A relatively complicated tool path in the shape of a butterfly
(Fig. 13) is used to study the effectiveness and limitations of

FIGURE 11. Contouring performance experimental results for the
star-shaped tool path.

FIGURE 12. Experimental contouring performance for the star-shaped
tool path.

the proposed approach. The path consists of 50 corner points
that are interconnected with linear segments having lengths
ranging between 0.3 and 6.1mm.
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FIGURE 13. The butterfly-shaped path tool path used to represent complex paths in trajectory generation. The
motion direction is shown by the dashed arrow.

1) OPTIMIZATION RESULTS
Pareto-optimal solutions of KCSIA* are represented in
Fig. 14. The KCSIA solution is infeasible since it consists of
overlapping cornering paths as shown in detail 2 of Fig. 13.
This is because KCSIA produces cornering motions in isola-
tion from preceding and succeeding corner points. On other
hand, as depicted in detail 1 of Fig. 13, KCSIA* avoids cor-
nering path overlap by considering the geometric constraints
(17). The best trade-off solution is located at ζ ∗ = 0.5, where
it reduces corner smoothing by 39.856% while it increases
cycle time by 15.022% relative to the time-optimal KCSIA*
solution. A summary of the optimization results is shown in
Table 5. At δmin = 0.02, the computation time required to
generate the Pareto frontier (Fig. 14) is 80,011.571 s, where
the anchor points are computed in 633.501 s and the divide
and conquer recursions are done in 79,378.070 s. The average
computation time per Pareto-optimal solution is 2963.392 s.

The generated jerk, acceleration and velocity profiles for
different ζ values are within the specified kinematic con-
straints as shown in Fig. 15. The axial velocity constraints
are not activated due to the proximity of corner points. Fig. 16

FIGURE 14. Optimization results for the complex tool path represented
as a Pareto frontier.

shows the extent of corner smoothing at different ζ values. As
ζ → 1, cornering errors tend to approach the upper bound of
the tolerance in order to reduce cycle time.
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TABLE 5. Results summary of the Pareto optimal solutions for the complex tool path.

FIGURE 15. An illustration of Pareto-optimal jerk, acceleration and
velocity profiles of the complex tool path corresponding to different
weighting factors ζ , where kinematic constraints (15) are obeyed ∀ζ .

2) EXPERIMENTAL RESULTS
Contouring error profiles for different ζ values are depicted
in Fig. 17, where the maximum errors tend to be within the
pre-defined cornering tolerance (i.e., 0 < ε ≤ 200µm).
Fig. 18 shows the maximum and average contouring errors of
each trial. Similar to Section III-B2, themaximum contouring
errors tend to decrease as ζ → 0, where non-zero minima

FIGURE 16. Cornering errors of Pareto-optimal trajectories of the
complex tool path at different weighting factors ζ , where ε is within the
cornering constraints (16).

FIGURE 17. The 3rd trial contouring error performance for the complex
tool path. The error tends to be within the set cornering tolerance
0 < ε ≤ 200µm.

are obtained at ζ = 0. The impact of vibrations at corner
points with εm ≈ 0, by which the motion must stop once and
cause a larger tracking error, is shown in Fig. 18(b), where
the average contouring errors increase as ζ decreases beyond
ζ ∗. Pareto-optimal trajectories which are generated at ζ < ζ ∗

have a higher number of corner points with εm ≈ 0 than those
generated at ζ ≥ ζ ∗(Fig. 16).

The repeatability in the maximum and average contouring
error results is shown by the 1σ standard deviations in Fig. 19.
The best trade-off KCSIA* trajectory shows the best compro-
mise between cycle time and maximum/average contouring
error. A summary of the experimental results is depicted in
Table 6.

IV. DISCUSSION
This study aims to solve the bi-objective problem of gen-
erating trajectories that minimize cycle time and maximize

VOLUME 9, 2021 114115



E. W. Nshama, N. Uchiyama: Pareto Optimization of Cycle Time and Motion Accuracy in Trajectory Planning

TABLE 6. Experimental results summary of contouring performance for the complex tool path.

FIGURE 18. Contouring performance experimental results for the
complex tool path.

motion accuracy for piecewise linear contours. The results
indicate that the two objectives are contradictory, as illus-
trated in Figs. 12 and 19, where the best trade-off solutions
are selected as the ones that are nearest to the unattainable
utopia solutions. This study also depicts a correlation between
corner smoothing and contouring error (Figs. 7 and 12 in
Section III-B and Figs. 14 and 19 in Section III-C), where
this result is in agreement with the findings of [34], [40].

Contrary to KLCS approaches proposed in [21], [33],
[35], [36], [38], [39], [56], that achieve near time optimality,
where motions at each smooth corner and linear segment
are computed separately, the proposed approach generates
Pareto optimal motions for the entire smoothed path. This
contrast allows the proposed method to have better results in
accuracy and cycle time while KCSIA produces a dominated
solution as shown in Figs. 7 and 12. The proposedmethod can

FIGURE 19. Experimental contouring performance for the complex tool
path.

also avoid cornering path overlaps while maintaining Pareto-
optimality (detail 1 in Fig. 13).

The results (Figs.12 and 19) signify that the proposed
approach can be used to provide a trade-off between cycle
time and motion accuracy within user-defined cornering tol-
erances. Although Pareto-optimal reference trajectories that
favor accuracy can be generated, the minimum achievable
contouring error finally depends on the feed drive system
controller.

In contrast to [21], [33], [35], [36], [38], [39], [56], which
have a O(1) space complexity, the proposed method has a
O(n2l ) space complexity, where nl is the number of linear
segments. This is because, in [21], [33], [35], [36], [38], [39],
[56], motions are optimized along each corner and linear
segment separately, while the proposed method optimizes
motion for the entire trajectory. The computation time of the
optimization process is also dependent on the number of lin-
ear segments, where it rapidly grows as the number of linear
segments increases. Although significant computation time
is required for the complex toolpath in Section III-C, there
still exist many mechanical parts consisting of simple and
moderated number of linear segments. Hence, the proposed
method is effective for such parts.

V. CONCLUSION
This paper proposes a method of Pareto-optimal corner
smoothing to trade off between cycle time and motion
accuracy for industrial feed drive systems with piecewise
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linear contours. The total cornering Euclidean length is
used as a motion accuracy representative in the bi-objective
optimization problem formulated by the normalized normal
constraint approach, where kinematic limits, continuity con-
ditions and user-specified cornering tolerances are described
as constraints. JLAPs describe linear motions, while a modi-
fied KCSIA defines smooth corner profiles. A Pareto frontier
is generated by the divide and conquer algorithm, where the
solution that is nearest to the utopia point is selected as the
best trade-off solution. The proposed method’s effectiveness
is verified via experiments. Relative to KCSIA, the best trade-
off solution reduces the maximum and average contouring
errors by 47.53% and 25.40% while it increases cycle time
by 2.53%.

The proposed method is limited to symmetrical line-to-
line corner transitions. Pareto-optimal corner smoothing with
asymmetrical line-to-line, line-to-arc and arc-to-arc transi-
tions is left as future works. The proposed method considers
tool tip position in trajectory generation. In order to extend
the method to 5- or 6-axis CNC machine tool applications,
smooth transitions of tool orientation are required at corners.
This consideration shall be done in future works. The pro-
posed method requires significant computational resources
for complex toolpaths with many corner points. Computa-
tional cost reduction is left as future works. The energy
consumed by the generated Pareto-optimal was not scruti-
nized in this study. For future considerations, energy sav-
ing can be assimilated by extending the studied bi-objective
problem to produce a Pareto surface of optimal solutions.
Since the proposed method does not include actual con-
touring error measurements in the optimization process, the
highest achievable cornering accuracy is limited by the feed
drive system controller. Feed forward compensation strate-
gies [8]–[10] can be incorporated in the optimization process
to overcome controller limitations and improve the proposed
method’s performance. This research avenue will be consid-
ered as future works.

APPENDIX
Algorithm 1 shows a pseudo code of the optimization process
described in Section II. A candidate solutionψm is added into
a Pareto set 9 only if it passes removal [47] and significance
criteria. For a MOOP with mo objectives, the removal crite-
rion detects non-Pareto regions by checking whether any of
the first mo − 1 elements of a permuted Lagrange multiplier
vector

ν̂i =
1

mo − 1
E−1Pmo−iE

[
ν1, . . . , νmo−1,

mo−1∑
i=1

νi

]>
i ∈ {mo,mo − 1, . . . , 1} (42)

are not positive, where E = 1mo − Imo and νi is the ith

normalized normal constraint inequality constraint Lagrange
multiplier. P, 1mo and Imo are mo×mo permutation, all-ones
and identity matrices, respectively.

Algorithm 1 Trajectory Optimization Algorithm
1: function trajectoryOptimizer(pcs, εub, jlim,k , alim,k ,
vlim,k , δmin)

2: compute anchor points /∗ See (7)∗/
3: 9 ←

{
ψ lc,ψT

}
/∗ Pareto frontier Initialization∗/

4: ψ l← ψ lc /∗ Initial lower parent point∗/
5: ψu← ψT /∗ Initial upper parent point∗/
6: {ζl, ζu} ← {0, 1} /∗ Parent point weighting factor

initialization∗/
7: Z ← {ζl, ζu} /∗ Weighting factor set initializa-

tion∗/
/∗ divide and conquer loop∗/

8: while true do
9: ζm ← 0.5 (ζl + ζu) /∗ Compute weighting

factor median∗/
10: ψm← solve (9) at ζ = ζm
11: br← removalCriterion(ψm) /∗ See (42)∗/
12: bs ← signficanceCriterion(ψm,ψ l,ψu, δmin)

/∗ See (43)∗/
13: if bs then /∗ ψm is significant∗/
14: if !br then /∗ ψm should not be removed∗/
15: 9 ← {9,ψm}

16: Z← {Z, ζm}
17: 9 ← sort(9) /∗ Sort in ascending

order of ζ∗/
18: Z← sort(Z)
19: end if
20: ψu← ψm /∗Update upper parent point∗/
21: ζu← ζm
22: else /∗ ψm is insignificant∗/
23: ψ l← ψu /∗ Update lower parent point∗/
24: ζl← ζu
25: if ζl < 1 then
26: ψu← the point proceding ψl in 9
27: ζu← the first ζ > ζu in Z
28: else
29: break /∗Terminate the divide and con-

quer loop∗/
30: end if
31: end if
32: end while
33: 9 ← paretoFilter(9) /∗ From [45]∗/
34: ψ∗← compute (12)
35: µ∗← map ψ∗ in the decision space
36: return

(
9,ψ∗,µ∗

)
37: end function

ψm, with neighboring pointsψ l =
[
ψl,1, ψl,2

]> andψu =[
ψu,1, ψu,2

]>, is considered to be a significant Pareto-optimal
point if

min
(
|ψl,1 − ψm,1|, |ψl,2 − ψm,2|,

|ψu,1 − ψm,1|, |ψu,2 − ψm,2|

)
≥ δmin, (43)
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where δmin is a user-specified minimum trade-off level. The
choice of δmin affects the resolution of the generated Pareto
frontier [42]. Since the removal and significance criteria can-
not distinguish between local and global Pareto regions, a
Pareto filter [45] is implemented to retain only global Pareto
points once the divide and conquer loop is terminated.
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