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ABSTRACT The development of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones,
has introduced revolutionary changes in many areas over the past few years. However, aside from opening
new possibilities, the usage of drones in an irresponsible and dangerous manner leads to many hazardous
incidents. This paper presents a drone detection sensor with a continuous 2.400 GHz-2.483 GHz operational
frequency range for detection methods based on passive radio frequency imaging techniques. The imple-
mentation based on Software Defined Radio (SDR) and Field Programmable Logic Array (FPGA) hardware
that overcomes the 40 MHz real-time bandwidth limit of other popular SDRs is presented utilizing low-cost
off-the-shelf components. Furthermore, a hardware realization of the signal processing chain for specific
detection algorithms is proposed to minimize the throughput between SDR and the companion computer
and offload software computations. The device validation is made in a laboratory and real-life scenario and
presented in relation to the sensor used in other works. In addition to the increased real-time bandwidth,
the measurements show a 9 dB reduction in detection sensitivity compared to the reference receiver, in line
with the analog RF front-end specifications. The final analysis demonstrates the proposed device’s relevance
as a sensor for obtaining machine learning datasets and as a part of a final anti-drone system.

INDEX TERMS Drones, field programmable gate array, software defined radio, surveillance, unmanned
aerial vehicles.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) were initially referred
to as military reserved technology restricted for tactical
use. However, within a few years, the growing popularity
of smartphones, widespread navigation systems availability,
technological advancements in communication and imaging
established a significant growth of commercial drone market
size, which is expected to generate a value of EUR 10 billion
per year by 2035 [1]. Although giving new possibilities in
various sectors such as precision agriculture [2], energy [3],
cinematography [4], construction inspection [5], and even
package delivery [6], the rising demand for aerial services
affects not only the safety but also the privacy of people.
Apart from highly hazardous events like drone incursions into
nuclear power plants [7], aerodrome operations holdups [8],
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or public service disruptions [9], everyday minor accidents
associated with drones also occur. For example, the reputa-
tion of drones has been compromised by irresponsible pilots
flying them to harass or stalk other people [10]. According to
the FAA UAS Sightings Report, incidents involving drones
average about 100 a month [11].

The above examples indicate the need to develop drone
detection systems not only for highly professional use but also
for widespread general applications. The Author’s primary
motivation was to consider the adaptability of cost-effective
devices, based on Commercial-off-the-Shelf (COTS) compo-
nents, for automatic drone detection. This study concentrates
on monitoring the over-the-air communication between the
operator and the drone. The aim of the article is to investigate
the aspect of the sensor used for this task and propose the
solution based on Software Defined Radio (SDR), rather than
to evaluate the effectiveness of various detection methods.
While other surveys pay attention to algorithms for drone
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type identification, this work focuses on the hardware imple-
mentation of the signal processing chain to offload software
computations.

The paper is organized as follows: the related work is
discussed in Section 2. The detection sensor is presented
in Section 3, and details of implementation are provided
in Section 4. Finally, experimental results are outlined in
Section 5, whereas conclusions and future plans are noted in
Section 6.

II. RELATED WORK
In the literature, several sensing techniques based on different
physical phenomena were proposed for drone detection. They
include sound and electromagnetic waves or video image
analysis in both visible and infrared spectrums. Each of these
methods has its limitations. Therefore systems with hetero-
geneous sensors and data fusion algorithms were widely pre-
sented to meet real-life demands [12]. Based on the drone’s
propellers sound distinction, the audio approach is affected
by noisy environments, especially in urban areas [13]. Video
detection, usually used together with machine learning algo-
rithms, requires high-resolution cameras and high-quality
optics to work well in poor light conditions, which has a
significant cost impact [14]. The radar approach, both pas-
sive [15] and active [16], is the most complex and expensive
solution, although it can reach long distances. However, ever
smaller drone sizes, low altitude operation, low flying speed,
and the urban environment highly reduce the radar detection
accuracy. Considering these limitations, the Authors in [17]
investigate the micro-Doppler signatures induced by the
micro-motion of small drones. While effectiveness against
drones performing autonomous tasks is a valuable asset, high
power active radar beam, needed for long-range detection,
usually limits its use to licensed users.

The last method is passive Radio Frequency (RF) sens-
ing of drone communication signals based on characteristic
feature distinction [18]. Whereas the performance of this
approach suffers from coexistence with WiFi, Bluetooth,
or ZigBee transmissions, it has the incontestable advantage
of being license-free and ambient environmental conditions
independent. This feature allows the use of an almost unlim-
ited number of sensors to build a distributed system. One
of the passive RF detection techniques is the Media Access
Control (MAC) layer statistical fingerprint analysis. Themain
system component, in this case, is the WiFi packet sniffing
device intercepting over-the-air communication between the
drone and the remote controller [19]. Despite good effi-
ciency and vast commercial receivers availability, the method
remains outside the scope of this study because of the minor
WiFi controlled devices market share and limited range of
operation compared to non-WiFi driven drones. Therefore,
this work focuses on the other RF physical layer spectrum
sensing principle, utilizing SDR platforms. The disadvantage
of this technique over MAC is that more detailed information
for further drone type classification can be obtained by pocket
sniffing. However, the blind scan approach opens extensive

FIGURE 1. Passive radio frequency drone detection scheme. Over-the-air
signals between the drone and its controller are intercepted by an RF
front-end device, transferred to the PC, and post-processed in the
software.

possibilities for the evolution of various detection algorithms.
It is generallymore important in hazardous scenarios to detect
the intrusion itself than precisely classify the drone model in
the Author’s opinion.

Wireless transmissions of commercially available drones
occupy an unlicensed Industrial, Scientific, and Medi-
cal (ISM) frequency band. Most models communicate with
the remote controller employing the Frequency Hopping
Spread Spectrum (FHSS) technique in the 2.400 GHz to
2.483 GHz frequency range. Video signal is transmitted over
the same frequency band or in the 5.725 GHz to 5.850 GHz
range, using the Orthogonal Frequency Division Multiplex-
ing (OFDM) technique. A receiver with 83 MHz of instanta-
neous bandwidth is required to provide a continuous 2.4 GHz
ISM spectrum overview and identify prominent RF signal
features. The basic setup to intercept drone transmission
consists of an antenna, RF receiver, and a processing unit.
Recorded data are usually post-processed and further ana-
lyzed in software, using either a frequency domain or time
domain approach. The generic hardware arrangement is pre-
sented in Fig. 1.

The RF capture device can be based on high frequency
oscilloscope [18], spectrum analyzer [20] or SDR plat-
form [21]–[24]. Although both, oscilloscope and spectrum
analyzer, offers high accuracy and fulfills bandwidth require-
ment, they are more intended for laboratory use. Moreover,
high power consumption, high cost, and size exclude the pos-
sibility of building a distributed surveillance system based on
them. On the other hand, solutions utilizing inexpensive SDR
suffer from the limited 40 MHz bandwidth [23], allowing
to observe only half of the needed spectrum in real-time.
The Authors in [23], [24] used dual SDRs running simul-
taneously to obtain a machine learning dataset and overcome
this limit. Some methods based on statistical signatures like
skewness, kurtosis, and standard deviation, can be applied
to a small band of the signal in the frequency domain [25].
Nevertheless, the full-band approach enhances spectrogram
dataset accuracy and opens up new opportunities for detec-
tion algorithms. In addition, the methodology described
in [20], based on Short Time Fourier Transform (STFT),
cannot be applied without observing the entire 2.400 GHz
to 2.483 GHz frequency range continuously. There are some
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FIGURE 2. Block diagram of the classic SDR configuration with a color
marking of individual on-board chips and corresponding interfaces.
In this concept, raw IQ baseband signal representation is transferred into
PC and further processed in the software to obtain a spectral estimator.

high-performance SDRs on the market that offers 120 MHz
instantaneous bandwidth and PCIe or 10 GigE interface [26].
However, they cannot be considered cost-effective, which is
one of the main aspects of this work.

III. PROPOSED METHOD
A basic inexpensive SDR hardware architecture is presented
in Fig. 2. TheRF front-end integrates analog and digital signal
chain elements like mixers, filters, ADC, and DAC, convert-
ing the RF signal down to the baseband. In addition, Field
Programmable Gate Array (FPGA) is responsible for config-
uration, data buffering, and interface translation between the
front-end and USB controller.

In this concept, In-Phase and Quadrature components (IQ)
baseband signal representation is transferred into PC and
post-processed in the software by the central processing
unit (CPU) or graphical processing unit (GPU). The IQ
stream transfer rate varies depending on the received signal
bandwidth and the number of channels set in SDR to oper-
ate. For example, widely used in the articles mentioned in
the previous section USRP B210 SDR [27], using a single
channel, receive-only mode, generates around 160 MB/s IQ
stream. This transfer rate stays below USB 3.0 maximum
transfer capability but still states a considerable amount of
data to receive and process in real-time. A solution proposed
in this paper is developed by upgrading the firmware of the
COTS SDR platform containing analog front-end capable
of continuous 2.4 GHz ISM band spectrum sensing. Fur-
thermore, some signal processing algorithms are also imple-
mented in the FPGA to offload software computations and
further decrease transfer rate, allowing even embedded sys-
tem processors to analyze data in real-time. The RF front-
end [28] that can continuously acquire even over 83 MHz
instantaneous bandwidth is utilized by the LimeSDR-USB
board [29]. However, the specification defines the maximum
operating bandwidth as 61.44 MHz because of the USB
controller transfer limit. This value defines the transfer speed
as 184 MB/s, calculated for a 12-bit I and Q sample without
protocol overhead included. The SDR features and classical
usage of signal processing in GNU Radio software were
presented in [30]. LimeSDR-USB is a part of the Open
Source initiative, thus some approaches to modify the orig-
inal firmware were already made. For example, the hard-
ware FPGA accelerator was proposed in [31] to increase
the SDR possibilities in terms of bandwidth. However, this
implementation was created with a Python-to-HDL language
converter and did not give space for future improvements due

FIGURE 3. Block diagram of the proposed sensor architecture based on
classic SDR with extended FPGA contribution. A signal processing chain
for the spectral estimator was implemented in the FPGA fabric to
minimize detection latency and USB transfer rate.

to limited FPGA resources located on LimeSDR-mini used in
a project. The aim of this work is to present a spectrum sensor
with extensive signal processing features, especially for drone
detection purposes. Therefore, the current implementation
was made from scratch for the evaluation board with more
extensive FPGA resources.

The simplified architecture of the proposed sensor that pro-
vides direct data input for drone detection methods proposed
in [20], [22]–[24] is demonstrated in Fig. 3. The minimum
data rate of a dual 12-bit I and Q stream to acquire 83 MHz
bandwidth can reach around 250 MB/s, which is beyond the
initial 184 MB/s limit. Fast Fourier Transform (FFT) calcula-
tion module and initial filtering arranged inside FPGA hard-
ware can decrease the transfer rate demand to the appropriate
level. Rather than send the separate time domain I and Q
components to the PC, the proposed sensor delivers one 12-bit
formatted frequency domain sample. A bitstream throughput
is reduced by half with this approach, and the produced
data can be applied in detection methods based on machine
learning or spectrogram features proposed by [22]–[24]. The
data rate could be reduced even further, to about 10 MB/s,
by employing the adapted binarization module. This mode
can be applied in the STFT detection approach presented
in [20], where only features related to timing aspects are
considered for detection. Finally, mode selection was imple-
mented to stream the spectral estimator in a 12-bit averaged
or 1-bit binarized format to satisfy various situations. Still,
the protocol provided by the SDR manufacturer was pre-
served in both cases, thus minimal effort is needed to receive
and further process samples in the software of a companion
computer. The individual modules are discussed in more
detail in the following subsections.

A. RF FRONT-END
The LMS7002M [28] integrated circuit is a software con-
figurable RF transceiver providing a continuous operation
frequency range of 100 kHz to 3.8 GHz and up to 96 MHz
modulation bandwidth using a digital interface. It integrates
12-bit ADC, DAC, and on-chip microcontroller to further
simplify calibration and integration. The device is fabricated
using a low-cost CMOS process, thus ideally fulfills this work
assumption. Additionally, it features a single power rail sup-
ply and the capability of individual block power down. There-
fore, some energy savings could be made in the receiver-only
application. Although the device supports dual independent
receive paths, they cannot be used simultaneously to achieve
full real-time bandwidth capability. Instead, dual paths can be
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FIGURE 4. Sample spectrogram of 2.4 GHz ISM band including (a) WiFi,
and (b) Bluetooth signal. Characteristic signal features such as
bandwidth, frame duration, and hopping pattern are visible through
full-band real-time sampling.

utilized to connect a directional and omnidirectional antenna
simultaneously, and switch between them in the FPGA fabric.

B. SPECTRAL ESTIMATOR
The principal of the proposed sensor is to provide a hard-
ware implementation of a spectrum estimator to accelerate
software time-frequency domain analysis of drone commu-
nication signals. The spectrogram is obtained by the STFT
separating constant input data stream into segments of equal
length and computing Fourier Transform on every segment.
The discrete form of the STFT can be expressed as:

STFT ≡ X (m, ω) =
∞∑

n=−∞

x[n]w[n− m]e−jωn, (1)

where x[n] states for the received signal, w[n] indicates the
window function, n represents the sample number, and m is
the position of the analysis window. An exemplary spectro-
gram including Bluetooth signal in the presence of WiFi is
demonstrated in Fig. 4.
Thewindow lengthwas selected to follow the requirements

suggested in [20], [24] as 2048 samples. The characteristics
of the window shape were chosen to suit the current situation
and purpose. In this scenario, there is a need to accurately
measure the duration of the frequency hopping drone com-
munication signal. To accurately detect transient signals such
as the start or end of the frame, it was better not to use
the spectral windows because many windows attenuate vital
information at the edges of the sample frame. According to
[32], this is explained by Parseval’s Theorem about the power
level produced by the discrete transform of a coherent signal
and can be noted as follows:

Power(dB) = 20 log10
SignalSamples
TotalSamples

. (2)

Therefore, a uniform window was used to improve the
accuracy of the measurement of time events in return for
some spectrogram artifacts. Furthermore, simplicity made it
suitable for FPGA architecture.

The 2048 point FFT module, using 12-bit time domain I
and Q input samples, produces a dual 24-bit frequency
domain output stream due to internal multiplication by twid-
dles and butterfly computations. Squared magnitude applica-
tion to calculate energy extended bit-width even further, and
square root implementation to reduce it was very resource
consuming. Approximate arithmetic can reduce the hard-
ware cost in error-tolerant applications such as digital signal
processing, pattern recognition, and machine learning [33],
therefore several methods were used in this paper. Apart from
the classical energy estimate, the final stage of this module
employs the approximation of the complex number modulus
for signal magnitudeM calculation expressed as:

M =
√
a2 + b2 ≈ αmax(a, b)+ β min(a, b). (3)

The various α and β options were evaluated and presented
in terms of approximation errors in [34]. The hardware-
efficient version, which uses the coefficients α = 15/16 and
β = 15/32 to replace the multiplication with bit shift and
addition operations, provides amean error of 3.1%. Neverthe-
less, at the cost of some additional resources, the accuracy can
be improved by the dual coefficient approach [35], according
to condition:

α, β =

α =
7
8
, β =

1
2
, min(a, b) >

1
4
max(a, b),

α = 1, β = 0, otherwise.
(4)

This algorithm provides a maximum error of 3.0% and a
mean error of 0.95%, still without multiplier utilization.

As the FFT module offers digit-reverse mode by default,
to prepare data for post-processing, the output data order
was rearranged around the center frequency. Finally, to lower
the bitrate and reduce the spectrogram variance, a non-
overlapping ensemble averaging module was also imple-
mented [36]. The user can optimize the averaging parameter
during operation to obtain suitable spectral estimates for
different drone detection approaches. A value of 1 means that
the module is bypassed, whereas the value of 16 gives the
additional output bitrate reduction for USB streaming.

C. LOGARITHM COMPRESSION
In order to preserve the original data format for the embedded
post-processing unit, the 24-bit magnitude dynamic range
was compressed to 12-bit per sample value. The use of a
logarithmic scale representation is common for spectrum
sensing purposes. Therefore, several hardware approxima-
tion methods were considered to implement a 4-bit integer
and 8-bit fractional (4.8) data format. Coordinated rotation
digital computer (CORDIC) algorithm and Newton-Raphson
approach were rejected due to extensive hardware resource
utilization and iterative nature. On the other hand, the Taylor
series polynomial approximation requires many series mul-
tiplication and addition operations that have to be pipelined
to achieve the high-speed design. The Look-Up-Table (LUT)
method offers the highest computation speed comparing to
the previous ones, in exchange for storage utilization [37].
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Science memory requirement increases exponentially with
accuracy improvement, Piecewise Linear (PWL) methods
that only require linear segments to approximate the target
function were considered. In this case, hardware implementa-
tion is based on several parallel comparators, single multiply
addition operation, storage of slope, intercept, and endpoints
for each segment. In [38], with 15 segments, a mean approx-
imation error of 1.2 × 10−4 is achieved to satisfy the 12-bit
fractional fixed-point format. However, the available repre-
sentation in the current design has an 8-bit fractional length
that corresponds to 3.9× 10−3 level accuracy.
A method that combines the piecewise linear approxi-

mation and small LUT-based error correction was the most
effective technique for the current design due to the versatility
of error management regarding the available bit-width. Hard-
ware efficient approach introduced in [39], where the slope
coefficients are chosen to be realized using only a bit shift
operations, proposes the approximation of the fundamental
logarithmic function La = log2(1+ x) in intervals expressed
as:

La ≈


(20 + 2−2 + 2−5)x + 0.005, [0, 0.25),
(20 + 2−5)x + 0.0684, [0.250.5),
(2−1 + 2−1 + 2−3)x + 0.1505 [0.5, 0.75),
(2−1 + 2−2)x + 0.248, [0.75, 1).

(5)

This method provides the mean approximation error of
2.5 × 10−3 before and 9.8 × 10−5 after LUT correction.
Still, even without correction, the accuracy of the combined
method is below the current system ±1LSB value. Due
to flexibility in case of future accuracy improvements, this
approach was selected to represent the spectrum estimator
according to the logarithm properties determined as follows:

10 log10(M
2) =

20 log2(M )
log2(10)

≈ 6.02 log2(M ), (6)

whereM denotes the sample magnitude, squared to obtain the
spectral power, thus giving a proportionality factor of 6.02 to
be considered in the software of the post-processing unit.

D. NOISE FILTERING
Numerous algorithms have been developed to solve the prob-
lem of noise removal [40]. As the pre-processing stage for
the thresholding unit, spectrogram smoothing is performed
to minimize the false alarm detection rate. Detected signal
edge preservation is significant for this purpose in the aspect
of losing valuable information about occupied bandwidth and
exact signal duration. Various kernel sizes and filter architec-
tures were simulated based on real-life data captured from
the previous stage. Comparison of spectrogram thresholding
results, using the Otsu’s method [41], after applying different
filters is shown in Fig. 5.

An exemplary test spectrogram is presented as a grayscale
image, where the x-axis represents the frequency bin,
the y-axis denotes time, and the intensity reflects signal
magnitude. After thresholding, a simple cv.findContours()

FIGURE 5. Various filtering algorithms applied to the spectrogram
segment and the corresponding results of the thresholding process.
Minimum bounding rectangle generated in software with the OpenCV
library.

method from the OpenCV library [42] was employed in the
software of a post-processing unit to test the filtering quality.
In this case, finding contours can be explained as defining the
rectangle bounding the white object on the black background.
The results of these experiments are presented in Table 1.

Total Variation filter is an effective solution for edge
preservation and smoothing out noise in uniform regions,
even at low signal-to-noise ratios [43]. However, the iterative
nature of this filter makes it impractical for the FPGApipeline
architecture. Bilateral filtering, proposed by Tomasi [44] as
a non-iterative scheme for edge-preserving smoothing, was
also considered. An FPGA implementation based on this
fundamental idea was proposed in [45]. However, a simple
Gaussian filter performed well in simulations in terms of
signal duration detection, and offered higher resource utiliza-
tion efficiency due to the multiplier-less design possibility.
Furthermore, no false detection as with the median filter was
observed. Finally, to remove high-frequency noise, minimize
edge blur, and keep the hardware implementation simple,
a Gaussian filter with a kernel size of 3× 3 and Sigma equal
to 1.0 was chosen.

E. BINARIZATION
Binarization is generally the process of converting a
multi-tone input signal or image into a bi-tonal output. In the

114578 VOLUME 9, 2021



P. Flak: Drone Detection Sensor With Continuous 2.4 GHz ISM Band Coverage

TABLE 1. The OpenCV cv.findContours() detection results for thresholded
spectrogram images from Fig.5.

scope of this work, this is a process of comparing the energy
of the received sample, as the squared magnitude of FFT bins,
with a threshold to determine the signal presence. In this case,
the output data is represented by one bit per frequency bin,
thus the overall bitstream is reduced by a factor of 12.

Assuming that H0 states for energy related to the noise-
only region, andH1 for signal plus noise zone of the spectrum,
the sensing decision θ is given by:

θ =

{
H1, for E ≥ λ,
H0, for E < λ,

(7)

where, if the energy of the frequency bin E is higher than the
threshold λ, the observed sample is considered as signal and
noise, otherwise classified as noise only.

The general signal thresholding variations analyzed in the
literature are fixed and adaptive. Although implementation
simplicity, the performance of the fixed approach suffers from
fluctuating background noise, especially in the congested
ISM band. A fixed threshold is established once in advance
and does not recalculate under dynamic spectrum variations.
As the proposed sensor should provide signal detection in
various environments, the adaptive technique was chosen for
implementation. This methodology can be further divided
into local, that computes different threshold value for each
sample in the spectrum, and global, applied for a single spec-
tral window. A comparative analysis of local and global adap-
tive threshold estimation is discussed in detail in [46]. It is not
the purpose of this paper to evaluate the thresholding meth-
ods’ properties. Thus, one of the most recent and interesting
works, introducing the Non-Parametric Amplitude Quantiza-
tion Method (NPAQM) [47], was adapted in this paper and
altered for FPGA implementation. The approach proposed in
the cited work is based on the theoretical basis of the popular
Otsu’s thresholding method, and further improved with the
heuristic algorithm to enhance the performance under noise-
only regimes. Threshold calculation simulations, summed up
in Fig. 6, align with those presented in [47].

F. NPAQM METHOD
In this section, the principle of theNon-Parametric Amplitude
Quantization Method introduced in [47] is presented. The
energy sample set obtained by FFT of length F , sorted in an
ascending order to fulfill y(1) < y(2) < . . . < y(F), is used as
algorithm input and written as:

Yf = {y1, y2, . . . , yF }. (8)

In order to minimize the calculation effort, the quantization
of the magnitude range is proposed to determine the best

FIGURE 6. Comparison of a different threshold calculation methods.
Novel NPAQM algorithm was chosen for implementation due to the best
simulation results and hardware adaptability.

choice for the threshold candidate. The quantization levelM ,
using ceiling function d·e, is calculated as:

M = d1+ log2 F + log2(1+
|g|
σg

)e, (9)

where |g| refers to the modulus function of distribution skew-
ness obtained as:

g =
1
F

∑F
i=1 (Yi − Yf )

3

( 1F
∑F

i=1 (Yi − Yf )2)
3
2

, (10)

and Yf denotes the mean of the input sample set Yf , where:

σg =

√
6(F − 2)

(F + 1)(F + 3)
. (11)

The calculation step q, is expressed as:

q = d
y(F) − y(1)

M
e, (12)

where y(F) and y(1) corresponds to max(Yf ) and min(Yf )
respectively, because the input data was sorted previously.
At this point, the set of potential threshold candidates can be
created as:

Y (m) = {y(1), y(1) + q, . . . , y(1) + (M − 1)q}, (13)

and written in simplified form as:

γi = γ1, γ2, . . . , γM . (14)

At this stage, according to the algorithm, the data is divided
into two subsets: noise only subset ω(γi) and the signal plus
noise subset S(γi). Samples with values smaller than the
threshold are assumed as noise-only and others as signal-
plus-noise elements. The sets of ω(γi) and S(γi) are deter-
mined as follows:

ω(γi) =
{
Y(f ) < γi

}
=
{
y(1), y(2), . . . , y(k)

}
, (15)

S(γi) =
{
Y(f ) ≥ γi

}
=
{
y(k+1), y(k+2), . . . , y(F)

}
, (16)

for all elements in (14), where k is the number of elements
smaller than γi. To compute the between class variance of
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both subsets for each threshold element included in (14)
calculation is performed as:

σ 2(γi) = Ps(γi)Pω(γi)[S(γi)− ω(γi)]2, (17)

where Ps(γi) is the probability of signal elements and S(γi)
is the mean of the subset (16), Pω(γi) is the probability of
noise elements and ω(γi) is the mean of the subset (15). The
probabilities can be defined as:

Ps(γi) =
k
F
, Pω(γi) = 1−

k
F
, (18)

where k is the number of elements in each subset. Next,
the first-order difference function is applied to (17) in range
m = 1, 2, . . . ,M − 1 expressed as:

λm(γi) = |σ 2
m+1(γi)− σ

2
m(γi)|. (19)

The value that minimizes (19) indicates the optimal thresh-
old, what can be written as:

λ(γ eff ) = min λ(γi), for γi = γ1, γ2 . . . , γM . (20)

As a complement to this method, a novel heuristic algo-
rithm, employing the degree of closeness between the esti-
mated threshold λ(γ eff ) the mean of the entire sample set
Yf , was also proposed in [47] to improve the performance in
noise-only regimes. The heuristic indicates that the spectrum
set consists of noise-only elements when the threshold ceiling
is less or equal to the mean ceiling, and the difference of mean
and threshold is smaller than 10% of the entire sample range.

IV. HARDWARE IMPLEMENTATION
As a starting point to perform the FPGA structure modifi-
cation, open-source code from LimeSDR-USB manufacturer
was utilized [48]. All the subsystem parts related to the
transmit path were wiped out from the original project to
provide asmuch space for current system features as possible.
Additionally, as only LimeLight interface to RF front-end in
double data ratemode provides 96MHz bandwidth operation,
other options handlers were also removed. However, a USB
controller having a FIFO input interface was left unchanged
for seamless integration with post-processing software. The
block diagram of the proposed signal processing was shown
before in Fig. 3. The hardware implementation of the essential
modules is described below.

A. SPECTRAL ESTIMATOR
The spectrogrammodule implementation is based on the FFT
IP core (altera_fft_ii, version 20.1) with pipeline processing
using a fixed-point format. The signal chain is presented
in Fig. 7. The throughput of this FFT IP core fulfills the sam-
pling speed rate of the RF front-end, thus real-time spectrum
with no blind time is obtained, utilizing a single transform
module. The 12-bit IQ time domain input stream is converted
to zero mean representation after windowing to decrease the
impact of the DC component. At the end of the window,
the possibility of changing the RF input channel by USB
interface to take advantage of the dual antenna system option

FIGURE 7. Block diagram of the signal processing chain in the
spectrogram module. All modules were designed in a pipeline
architecture.

FIGURE 8. Register transfer level diagram of complex number magnitude
estimator.

is provided. Followed by magnitude approximation, a 24-bit
resolution stream is generated for the logarithm compression
path and a 32-bit energy sample stream for the binarization
path.

The ‘‘Alpha max plus Beta min’’ algorithm implementa-
tion as a three-stage pipeline that processes FFT complex
output without maximum operating frequency reduction is
presented in Fig. 8. After the absolute value of the complex
operands is computed, the sign bit of the subtraction result is
used to control the multiplexer, which applies the maximum
and minimum to appropriate registers. In the second step,
the min > max/4 condition is checked, again by examining
the sign bit of the subtraction result, and coefficient selection
is performed. The processed maximum and minimum values
are added up at the output to obtain the final magnitude
approximation. Until this point, the order of the samples
emerging from the FFT IP core was irrelevant. Therefore,
the FFT IP configuration was selected in digit reverse output
mode to save resources and latency. Moreover, the FFT Core
does not offer the most common sample order representation,
with the center frequency bin in the middle of the output win-
dow, hence it is implemented using internal FPGA memory.

B. LOGARITHM COMPRESSION
A block diagram of a 12-bit binary logarithmic converter with
4-bit integer and 8-bit fractional data format, evaluated in
three pipeline stages, is shown in Fig. 9. The implementation
of 16-bit Leading-One Detector (LOD), based on the group
of four parallel 4-bit LOD circuits, followed by a single 4-bit
LOD that determines the group containing leading-one, was
introduced in [49]. The second stage LOD, controlling four
enable lines to four groups of 4-bit multiplexers, provides a
16-bit binary word with only one bit set to point the leading
one. Next, a 16-bit to 4-bit binary encoder is utilized to
obtain the logarithm integer part. A barrel shifter, driven by
the inverted LOD output, rotates the input to prepare the
data for linear piecewise approximation. The determination
of segment affiliation is defined by the two most significant
bits that are used to address the set of multiplexers. According
to (5), the slope coefficients and intercept values are added
together in the last pipeline stage to represent the logarithm
fractional part. The error LUT, which compensates for the
residual error, was omitted in this design due to low bit-width
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FIGURE 9. Register transfer level diagram of logarithm estimator.

FIGURE 10. Sliding window used for Gaussian filtering.

availability for the fractional part. However, to achieve higher
accuracy, it can be easily implemented in the future without
the need for extensive architectural alterations.

C. NOISE FILTERING
Gaussian filtering of the spectrogram with parameters based
on the previous simulations and 3 × 3 sliding window was
implemented as shown in Fig. 10. In this architecture, using
the input data as an energy sample from the FFT module
and two 2048-long linear buffers, a filter mask (kernel) is
prepared for further calculations. Kernel k can be written as:

k =
1
16

1 2 1
2 4 2
1 2 1

 . (21)

The Gaussian convolution matrix is given by:

G(x, y) = S(x, y)⊗ k(x, y), (22)

where ⊗ denotes convolution, k(x, y) is a Gaussian kernel,
S(x, y) is the input energy signal and G(x, y) is the convolved
output. As a result the output stream of the weighted sum is
generated according to:

G5 = (S1+ 2 · S2+ S3+ 2 · S4+ 4 · S5

+2 · S6+ S7+ 2 · S8+ S9)/16. (23)

Selected filter parameters reduce the implementation effort
to simple usage of shift operations instead of utilizing hard-
ware multipliers. Some pipeline registers are introduced
in the module to achieve high performance, as shown
in Fig. 11.

FIGURE 11. Register transfer level diagram of convolution realization.

D. BINARIZATION
The selected technique of binarization is described in
section III-E. As the method is meant for software use, some
adjustments are considered to adapt the original algorithm for
the hardware computation. One of the main advantages of the
NPAQM technique is the calculation simplicity in terms of
machine instructions, compared to Otsu’s method. However,
the need for floating-point calculations and input data collec-
tion sorting complicates the hardware approach. Adjustments
proposed in this article do not influence the mathematical
base of the original NPAQM method, but proposes a way
to perform the process in hardware. Figure 12 provides an
overview of the calculation process. The module latency is
a product of the histogram creation from FFT of length F
in the first stage, between class variance calculation for M
quantization levels.

1) FIRST STAGE–DATA PRE-PROCESSING
The quantization of the input sample magnitude range to nar-
row down the search area for the threshold value is proposed
in the NPAQM method. The idea is to test each quantized
value instead of all possible samples to determine the opti-
mal threshold candidate. This approach gives a tremendous
advantage for software computation. However, to create a
set of optimal quantized values a logarithmic and square
root calculations are employed according to (9). In the pro-
posed approach, the quantization level was chosen arbitrarily.
The signal latency and calculation time must be constant
in the pipelined processing, regardless of the sample val-
ues. The quantization value M was chosen as a constant to
find the balance between resource utilization, latency, and
accuracy, based on various simulations. Besides, as the opti-
mal threshold for signal detection is located just above the
noise level, only the first H = 2048 values over the signal
minimum in the current spectrum frame were considered a
potential threshold. This approach opens the space for a sec-
ond modification, which is eliminating the need to sort input
samples. Although sorting is a basic procedure in software,
histogram implementation was chosen for FPGA as a more
efficient technique. Moreover, in the between class variance
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FIGURE 12. Block diagram of pipelined NPAQM hardware
implementation. The single phase of the two-stage thresholding process
is presented in detail inside a dashed line.

calculation proposed in the NPAQM method, where only
the mean and the number of elements from corresponding
subsets are significant, the same result is obtained. Thus,
a histogram module containing H bins that relate to the
selected threshold values was implemented. In this module,
the information about the number of elements is stored. The
set of bins, as threshold candidates, are created at the input
of the first stage by using the information from the previous
section about minimum and maximum sample values in the
processed spectrum frame. The first bin always matches the
minimum value, and if the difference between the minimum
and maximum is no greater than the H , every value in the
set is considered a potential threshold. Otherwise, the search
area is limited, but there is no information loss. This is assured
by an additional register implemented to store the cumulative
sum of all elements in the spectrum frame needed for calcu-
lations in the second stage. The architecture of the histogram
containingH bins corresponding to adequate threshold values
is shown in Fig. 13. To obtain the histogram, the content of
the memory location, addressed by a recent quantized sample
value, is incremented. A single clock cycle read-modify-write
operation is required in the case of a pipeline scenario, which
can be achieved using dual clock edge operation. Due to
the simplicity of implementation, a dual memory bank was
used instead. The sum of partial results is calculated on the
output to get the final histogram. In the native dual-port RAM
configuration, one port is intended for histogram calculation,
and the second for data transferring to the next stage and
clearingmemory afterward. This approach does not introduce
additional multiplexers and minimizes the critical signal path
from the RAM output through the adder to the input. As the
histogram data is used in the second stage calculations, alter-
nating histogram modules are employed to prevent overwrit-
ing the data.

2) SECOND STAGE–BETWEEN CLASS VARIANCE
A sequential calculation of between class variance is per-
formed according to (17) in the second stage of operation
to obtain the optimum value of the threshold. All arith-
metic calculations are done using the fixed-point format to
save resources and better control the maximum frequency
of system implementation. To compute the mean of the two
subsets, ω(γi) and S(γi), the i/H value in the range of 0 ≤
i ≤ H was pre-calculated and stored in ROM in 24-bit
unsigned fixed-point format. The result of the multiplication

FIGURE 13. Register transfer level diagram of dual memory block
histogram module.

of pre-calculated probabilities Pω(γi) and Ps(γi) was stored
accordingly. The sum of elements in ω(γi) is taken as a result
of the multiplication of the histogram bin address and the
value stored under this address. The result is accumulated thru
the iterations. The sum of elements in S(γi) is obtained by
subtracting the sum of elements in ω(γi) from the sum of all
elements in the frame, calculated in the first stage.

Data prepared as described enables to calculate between
class variance after a series of pipelined multiplications.
Each final result of (17) is stored in the register, and the
first-order difference is applied between iterations to find
the optimal threshold according to (19). The last step is to
examine the noise-only condition as described in the heuristic
approach. All the data required for this purpose had already
been calculated in the previous stage and had to be recalled
from suitable registers to acquire the final threshold. At this
moment, the delayed signal samples going out from the FIFO
buffer are compared to the threshold, and the binarization
process is finished. Every thresholded value is placed in the
12-bit shift register to preserve the 12-bit default output data
format. The new output is indicated after every twelfth input
sample, thus giving a compression ratio needed for the overall
bitrate reduction concept.

V. RESULTS AND DISCUSSION
The implementation presented in the paper was done using
VHSIC Hardware Description Language (VHDL), synthe-
sized in Quartus Prime 20.1, and simulated in integrated
ModelSim software provided by Intel. The synthesis results
of the proposed design for INTEL CYCLONE IV E:
EP4CE40F23C8 FPGA located on the LimeSDR-USB board
version 1.4s indicates: 112 MHz maximum system frequency
and 62% of overall resource utilization. All PC software
for system modeling used in this work was developed in
the Python 3.6 programming language. The motivation to
apply Python instead of MATLAB was that it is a cross-
platform approach, and PC-developed software can be fitted
to Raspberry Pi after minimal effort. Moreover, the original
USB drivers delivered by the LimeSDR-USB manufacturer
provide Python support.

The real-life drone signal dataset, created in the ini-
tial development stage for experiments and parameters
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FIGURE 14. Laboratory setup for sensitivity measurements. The Agilent
Digital Signal Generator was used as an arbitrary GFSK waveform source
for (a) USRP B210, and (b) LimeSDR-USB. The low-loss coaxial cable
connection was verified with the Rohde&Schwarz FSV Signal Analyzer.

optimization, was acquired using the original low-cost
LimeSDR-USB as RF front-end without firmware modifica-
tions, and companion computer for data storage. The idea was
to record a clear time domain drone signal without external
interference, but still taking into account the channel propaga-
tion characteristics. This data was used for the early optimiza-
tion of the signal processing chain. However, the main goal
of this step was to manually tune a set of analog front-end
receiver parameters, without GNU Radio support.

After software simulations to find satisfying parame-
ters, including FFT window length, filter type, thresholding
algorithm, and investigating approximation quality trade-
off, another dataset was obtained using the proposed final
implementation. Mavic 2 Zoom (DJI, Shenzhen, China) and
Duplex 2.4EX (JETI model, Czech Republic) were utilized
as a signal source in the data acquisition process. The prod-
uct documentation confirmed that the signal of interest is
located in the 2.400 GHz–2.483 GHz ISM frequency band.
Therefore, the center frequency of the proposed receiver was
set to 2.4415 GHz, with the bandwidth adjusted to 83 MHz
in all experiments. Contrary to the initial dataset, frequency
domain data was collected at this point. The details of the test
set configuration are described in the following subsections
depending on the experiment. In both cases, the environmen-
tal conditions did not change, and there was a clear line of
sight between the transmitter and receiver. To further ensure
the compliance of the data with real working conditions,
the measurements were made in the vicinity of the local
aerodrome in Gliwice.

Apart from real-life data, to evaluate the proposed sen-
sor performance, some laboratory measurements were also
executed to serve as a reference point for further consider-
ations. The evaluation of the proposed approach based on
LimeSDR-USB is discussed in the following subsections
with reference to the USRP B210.

A. LABORATORY MEASUREMENTS
The study presented in [18], [50] offers an analysis of the
signal-to-noise (SNR) ratio impact on the neural networks

FIGURE 15. Output signal over the noise ratio in terms of given reference
input signal power. The 10 dB SNR level taken as a reference point was
achievable for -94.5 dBm input power when using LimeSDR, and
-103.5 dBm input power using USRP B210.

classification performance employed for drone detection.
In stationary scenarios with constant environmental back-
ground noise, the SNR ratio of an input signal decreases
in function of the distance between the transmitter and the
receiver. The RF sensor operation range can be estimated
using the free-space propagation model when the required
SNR and system gain are known parameters. The laboratory
setup, shown in Fig. 14, was arranged to compare the SNR of
the proposed and reference sensor in terms of received signal
power. In this experiment, the low-loss coaxial cable connec-
tion between the E4432B Agilent Digital Signal Generator
and SDR receiver was used instead of the antenna to mini-
mize external interference. Both receivers were connected by
USB cable to the PC and controlled by the original software
provided by the manufacturers. All instruments were turned
on for 2 hours beforehand to reach thermal equilibrium as
suggested in [51]. To verify the prepared measurement setup,
the Rohde&Schwarz FSV Signal Analyzer was connected
instead of SDRs to determine the real power at the signal
entry point. The reference signal was chosen to represent the
generic drone signal between 2.400 GHz – 2.483 GHz fre-
quency rangewith Gaussian Frequency-Shift Keying (GFSK)
modulation, and the receivers were configured accordingly.
Both devices operated with maximum available RF gain
and bandwidth. In the first step of this experiment, with
the reference signal generator turned off, 1000 trails of the
test statistic, collecting 2048 samples containing noise only,
were captured. Next, with the signal generator turned on,
another 1000 trials were performed for signal power between
-120 dBm and -90 dBm with 1 dBm step. The SNR in
each trial was evaluated, and maximum likelihood estimation
was used to obtain the final SNR from all detection trials.
Figure 15 shows a considerable difference between the calcu-
lated relative signal level over the noise floor for both devices
at the same input signal power. The 10 dB level is considered
a reference point for comparison according to the analysis of
detection effectiveness presented in [18], [50]. The source of
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the 9 dB difference is explainable by the maximum available
gain of the RF input stage, which is higher for the USRP.
From the results, it can be concluded that a limited detec-
tion range is achievable using LimeSDR-USB. The USRP
is supplied with on-board directly soldered SMA connectors
and an original shielding enclosure. Whereas for the Lime
SDR board, supplied as a bare PCB by default, a simple
shielding enclosure and UFL to SMA adapter was arranged
for the purpose of this work. Fortunately, the enclosure does
not introduce additional impedance mismatch and significant
cable connection losses.

B. STFT DETECTION VERIFICATION
System performance evaluation in terms of hopping time
measurement was performed using the Duplex 2.4EX con-
troller as a signal source. The experimental setup was based
on off-the-shelf components, including a 3 dBi omnidirec-
tional antenna, a band-pass filter to remove out-of-band inter-
ference, and Raspberry Pi 4.0. In this case, the dwell time of
the signal is a known parameter similar to considered in [20].
Therefore the comparisonwith the actual value ismade, along
with the Normalized Mean Square Error (NMSE), expressed
as:

NMSE =
1
N

N∑
i=1

(
t̂i − t
t

)2, (24)

where t̂i is measured dwell time, and t is the actual value of it.
As proposed by the Authors of the detection method in [20],
N is assumed to be 22. Since the sensor detection range relies
strongly on the system gain, which was not included in the
cited work, the results presented in Fig. 16 can not be directly
compared in terms of detection range. However, the overall
correlation between the distance and the dwell time NMSE
is consistent with previous studies. Some differences may be
caused by the more advanced thresholding algorithm applied
in this work. The error increasing above 150m is mainly
caused by the absence of a signal at the expected moment
in time and not a false measurement of its duration.

C. SPECTROGRAM FEATURES COMPARISON
Spectrogram features extracted from the public dataset,
obtained simultaneously by dual USRP devices observing
half of the 2.4 GHz ISM spectrum each, were employed for
drone detection in [23], [24] together with machine learn-
ing techniques. The dataset contains IQ time domain sam-
ples of three drone classes operating in different modes.
A recent analysis in [24] revealed the pre-processing steps
to eliminate the noise and shrink the data size before calcu-
lations. To extract the essential information from the dataset,
the Authors calculated the frequency domain transform with
zero mean signals and averaged it by 15, corresponding
to the proposed sensor architecture. It is hard to directly
compare this public dataset with the data obtained from the
proposed sensor due to the impossibility of reproducing the
measurement conditions. In exchange, the data collected in a

FIGURE 16. NMSE of dwell time measurements in terms of object
distance from the proposed sensor. In current measurement scenario,
the signal was undetectable over the background noise level over 250m
distance.

FIGURE 17. Spectral estimate of a single drone data communication
frame, averaged by 16 using accurate and approximated techniques, and
the approximation total error. About 1 dB of the total error between the
exact and approximate spectrum from LimeSDR-USB meets current
expectations.

real-life scenario with the reference and the proposed sensor
connected in parallel are presented using Mavic 2 Zoom as
a signal source. The experimental set with a single antenna
and RF splitter was chosen to ensure the same input signal
for both receivers. Both devices were connected simultane-
ously to the same PC. For the data captured with USRP,
the FFT and averaging were applied in the software, whereas
the spectrum estimate provided by the proposed sensor was
obtained directly. About 1 dB of the total error between
the exact and approximate spectrum from LimeSDR-USB,
shown in Fig. 17, meets the current expectations. This is the
contribution of both applied approximation techniques, lim-
ited bit-width, and fixed-point averaging by truncated right
shifts.

The spectrogram presented in Fig. 18 shows a significant
correlation between the data obtained by both devices. The
comparison in terms of detection effectiveness using obtained
data stays out of the scope of this study because it requires the
implementation of other Authors’ algorithms. In summary,
these results suggest that it is better to employ the sensor
to build a new machine learning dataset rather than apply it
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FIGURE 18. Spectrogram of a drone communication signal captured via
LimeSDR-USB with 83 MHz bandwidth (left), and USRP B210 with 40 MHz
bandwidth (right). Characteristic signal features and full hopping pattern
are visible through continuous ISM 2.4GHz RF bandwidth analysis.

to networks already trained on the public dataset. Moreover,
with twice the sampling rate offered by LimeSDR-USB,
additional features related to the temporal aspects of the drone
communication signal and hopping patterns could be consid-
ered during the development of new detection algorithms.

VI. CONCLUSION AND FUTURE WORK
In this paper, a cost-effective RF sensor with data
pre-processing for commercial drone detection and its hard-
ware implementation was presented. The single receiver
was used to deliver a spectrum estimator of the entire
2.4 ISM GHz frequency band by the USB interface instead
of raw IQ data. Therefore, the entire processing power of
the companion computer software can be utilized for neu-
ral network-based or similar calculations without the need
to pre-evaluate any time-frequency domain transformation.
Besides, after selecting the binarized output mode for the
STFT detection approach, the computing power requirement
can be reduced even further. The verification results showed
no significant impact on the observed signal shape obtained
by the adapted approximation techniques over accurate cal-
culations and reference device indications. This leads to
the conclusion that the proposed sensor can be used for
creating the new drone RF classification dataset. In terms
of dwell time measurement, good performance was noted
even in low SNR conditions, thanks to the advanced adaptive
thresholding. The most relevant limitation of the proposed
sensor compared to the USRP B210 is the lower gain of the
RF chain inside the LimeSDR-USB, which results in a 9 dB
sensitivity reduction.

Future work will focus on a distributed network of drone
detection sensors based on the proposed low-cost hardware
set for scenarios where the performance of a single central RF
sensing element is limited. Development of more advanced
filtering, other than a uniformwindow shape and spectrogram
with overlap between frames to increase resolution, will also
be investigated. In addition, consideration should be given
to expanding the FPGA contribution towards broader data
pre-processing and further offloading software algorithms to
minimize the detection latency.

Field measurements of the proposed sensor revealed the
incontestable impact of the background noise level and local

interference on the quality of drone detection. In the future,
care should be taken to develop a specific test method-
ology allowing the comparison of different counter-drone
approaches based on RF detection, regardless of varying
external conditions. For the purposes of laboratory tests
and software simulations, in addition to the drone signature
database, a common database of background noise recorded
in different places can be helpful. To ensure reproducible test
conditions real-life Wifi, Bluetooth, and drone signals can be
mixed and superimposed on the background noise to create
common test waveforms. In addition, some MATLAB and
Simulink RF toolboxes can be useful to simulate channel
propagation characteristics or multi-drone scenarios. This
approach will enable better control of the provided signal-to-
noise ratio, which is essential for determining the quality of
the RF drone detection and classification system. Moreover,
using an arbitrary waveform with Vector Signal Generator or
other SDR as the transmitter will enable experiments inside
the EMC test chamber, where flying a drone is not always
possible.
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