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ABSTRACT In this paper, a new filtered observer-based IDA-PBC (Interconnection and Damping
Assignment-Passivity Based Control) strategy is developed for trajectory tracking of a quadrotor in the
presence of disturbances andmodel uncertainties. The proposed algorithm allows the control of the quadrotor
in all its states. It can deal with the noisy output measurements and uncertainties in the translational
and rotational dynamics, as unmodeled dynamics inherent to real systems or unknown external signals
(exogenous signals). The designed filtered observer estimates the state from noisy output measurements,
and it depends only on two design parameters. Numerical simulation tests are carried out to highlight the
overall controller approach in a realistic scenario.

INDEX TERMS Observer-based control IDA-PBC, quadrotor, filtered observer, model uncertainties.

I. INTRODUCTION
Quadrotors are widely used in everyday life, they have been
used in many applications, e.g., surveillance, photography,
transport of packages, agriculture, rescue, etc, [1], [2]. How-
ever, the performance of these vehicles can be degraded by
the presence of disturbances, such as measurement noise and
uncertainties. For the control of quadrotors, it is necessary
to have specific characteristics of smoothness in both control
signals and sensors, for this has been used innumerable tech-
niques using filters [3], [4].

The use and research of observers for state estimation, per-
turbations, and the calculation of output controllers in drones
is still very active, e.g., [5]–[8]. Given the complexity and
its enormous applications, this research is still open [9]–[12].
To the best of our knowledge, there are few works oriented
to the use of the novel filtered observers to applications in
drones or quadrotors as [13].

Thus, the design problem of controllers and observers for
quadrotors has been widely researched in the literature and is
a novel subject in the current research. Within the framework
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of this theme, a continuous high-gain observer-based PD
(Proportional Derivative) control for a quadrotor vehicle
is synthesized in [14], where the high-gain observer esti-
mates the state vector from the position coordinates and only
one angle (yaw), the interesting of this paper is that the
continuous-time estimation (the roll and pitch angles and
all velocities) is achievable by using sampled measurements
and a PD control. Other recent work [15] includes the prob-
lem of fault estimation for a quadrotor using a robust H∞
observer, where the supposed faults are external disturbances,
parameter uncertainties, and nonlinear terms. In [16] a cas-
cade active disturbance rejection control and a backstepping
sliding-mode control are applied to achieve the desired trajec-
tory tracking performance of a quadrotor in the presence of
external disturbances and model uncertainties. [17] presents
an integral sliding mode and backstepping sliding mode
controllers in a double loop control structure, which ensure
the trajectory tracking capability for the desired position of
a quadrotor. Also, [18] developed an observer to estimate
the external wrench forces applied on a UAV (Unmanned
Aerial Vehicle). The lagrangian representation of the UAV is
used, which permits to shape the interactive behavior of the
quadrotor using an IDA-PBC (Interconnection and Damping
Assignment Passivity Based Control).
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The IDA-PBC strategy has been successfully applied to
mechatronic systems, for example: [19] presents a dynamic
feedback control by the IDA-PBC algorithm, to stabilize
a class of weakly-coupled electromechanical systems as
the electrostatic MEMS devices and the magnetic levi-
tation. [20] designs two adaptive control techniques to
handle uncertainties caused by parametric and modeling
errors in the Acrobot and non-prehensile planar rolling
robotic (disk-on-disk) systems. The techniques use the PCH
(Port-controlled Hamiltonian) modelling framework and the
IDA-PBC algorithm. [21] introduces an alternative construc-
tion that yields a continuous IDA-PBC law.

Other important works are: [22], [23]. [22] presents a linear
matrix inequality-based second-order sliding set control for
the uncertain systems with time-varying uncertainties, non-
linearities and external disturbances. [23] develops a passivity
cascade technique-based control for a nonlinear inverted pen-
dulum systemwith uncertainties and exogenous disturbances.

Other approaches have addressed the observer-based
control design. For example, in [24] the design prob-
lem of the observer-based adaptive sliding mode control
is studied and applied to a fixed-wing UAV. In [25] an
observer-based backstepping control for a quadrotor in the
presence of disturbances and parametric uncertainties is
proposed. The disturbance observer is used to compensate
the unknown disturbance, however, it only compensates
small measurement noises. [26] develops an observed-based
control strategy for position-yaw tracking of quadrotors.
A disturbance observer-based nonlinear controller for the tra-
jectory tracking of a quadrotor in the presence of noisy output
measurements is introduced in [27], where the translational
positions have a good performance, however, the rotational
positions have highly significant variations.

It is noteworthy that several relatively recent works have
been focused on the improvement of the high-gain observer
performances, especially in the presence of measurement
noises, by proposing versions with a time-varying design
parameter or by slightly changing the structure of the gain
in the observer [13], [28], [29]. This new work falls within
the framework of this last approach.

A very common practical situation in the real-time imple-
mentation of any observer-based control is that output
measurements can be strongly disturbed by noisy measure-
ments, resulting in high estimation errors, or worse, unstable
estimation behavior. In this situation, the main problem is to
prove the exponential error convergence to a neighborhood
of the origin for any initial conditions of a proposed observer
that provides a free noise estimation of the state vector for a
quadrotor. In this sense, the main focus of this work consists
in the synthesis of a novel filtered observer-based IDA-PBC
control for trajectory tracking of a quadrotor, which by the
observer will be capable of dealingwith the noisy output mea-
surements and uncertainties in the translational and rotational
dynamics, as unmodeled dynamics inherent to real systems or
unknown external signals (exogenous signals).

There is currently little work on control algorithms applied
to quadrotors that can handle and thus perform well in the
presence of relatively large noise signals in the output mea-
surements and uncertainties, in fact, most of the few current
designs perform well only for small values of noise signals
that are present in the output measurements, e.g. [14], [25].
Furthermore, current approaches do not consider all the sys-
tem dynamics to propose estimates, e.g. [24]. Moreover, most
of the works consider only the presence of noise in the
rotation dynamics, e.g. [27].

Unlike many works published in the literature, the pro-
posed observer system only needs two tuning parameters,
one to adjust the state estimate and the other to filter the
measurement noise. Traditional observer systems use several
tuning parameters and most of them perform a lineariza-
tion, e.g. [9], [10]. Also, some works consider more than 4
(out of 12) elements of the state vector as measured output,
e.g. [26].

Thus, motivated by the aforementioned works, in this
paper, we offer an alternative approach for trajectory tracking
of a quadrotor in the presence of measurement noise and
uncertainty in the states by using an observer-based IDA-PBC
strategy. In order to design a filtered observer that estimates
the state from noisy output measurements, one represents
the quadrotor dynamic model as a non-uniformly observable
nonlinear system with coupled blocks, based on the pro-
posed observer from [14], for nonlinear systems with block-
state-affine cascade structure, where a sufficient persistent
excitation condition is provided. In the case when the noise
signal is of high intensity or is strongly variable, the existing
observer-based control design results fail to provide a good
behavior. However, this paper introduces an algorithm that
works for relatively large noise signals, which are present in
the output measurements, and it also deals with uncertainties.

The primary aim of unmanned aerial vehicles is to follow
a trajectory within the desired operating and safety limits.
However, in many cases this is not possible due to the pres-
ence of measurement noise and uncertainty. It is evident that
the quadrotor needs a robust controller to compensate for
disturbances. Faced with this problem, the novelty of this
work is to design a robust observer-based IDA-PBC control
with respect to uncertainty in states and external signals that
disturb the system, such as measurement noise, for trajectory
tracking of a quadrotor. The contribution is then, the observer
design that considers the nonlinearities of the model and
that is able to estimate with a good performance, despite the
presence of relatively large measurement noise and uncer-
tainty in the state, this causes the controller performance
to be adequate, i.e. even if the controller is not robust to
measurement noise and uncertainty in the states, the observer
will feedback to the controller signals free of measurement
noise and uncertainty. In the case of many physical systems,
the above is very important, for example, in the quadrotor the
noise in the tracker positions has a significant impact on the
accuracy of the position measurement.
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FIGURE 1. Quadrotor UAV.

The paper is organized as follows: Section II presents
the quadrotor dynamic model. In Section 3, the IDA-PBC
strategy is developed. The filtered observer design is designed
in Section IV. Before addressing the observer design for a
quadrotor, some fundamental definitions are given. The per-
formances of the proposed observer-based control are shown
in Section V. Finally, conclusion is given in Section VI.

II. QUADROTOR DYNAMIC MODEL
In this section, the quadcopter dynamic model is introduced.
Figure 1 shows the free-body diagram of a quadrotor, which
has six degrees of freedom and only four control inputs.

As reported in Figure 1, O =
{
ex , ey, ez

}
is the inertial

coordinate frame fixed to the ground and B = {e1, e2, e3}
is the body fixed coordinate frame. The vector q =[
ν %

]T
∈ R6, where ν =

[
x y z

]T denotes the trans-
lational position of the vehicle. The rotational position of
the quadcopter is represented by the Euler angles: roll, pitch
and yaw, i,e,, % =

[
φ θ ψ

]T , the distance between the
motors and the gravity center is represented by d . Finally,
f1, f2, f3 and f4 are the thrust forces provided by each
rotor.

The control input is defined as u =
[
f τ

]T
∈ R4, where f

is the total thrust magnitude, τ =
[
τψ τθ τφ

]T is the input
torques vector. Particularly for a quadcopter, the relationships
between the input torques and forces are defined as


f
τψ
τθ
τφ

 =


∑4

i=1
ki ω2

i

kd
(
ω1

2
− ω2

2
+ ω3

2
− ω4

2
)

(k2 ω2
2 − k4 ω

4
4)d

(k3 ω2
3 − k1 ω

1
1)d


where ki ω2

i defines the thrust of the propeller of motor iw.r.t.
angular velocity ωi, on each rotor. R is the rotational matrix
from the body frame to the inertial one, where the shorthand
notations for trigonometric functions sθ = sin(θ) and cθ =
cos(θ ) are used, this also applies for all angles, it yields:

R =

 cψcθ −sψcφ + cψ sφsθ sψ sφ + cψcφsθ
cθ sψ sψ sθ sφ + cψcφ −cψ sφ + sψ sθcφ
−sθ cθ sφ cθcφ



The mathematical model of the quadcopter for the transla-
tional and rotational motions is represented as follows [14]:

ν̈ =

 0
0
−g

+
 sψ sφ + cψcφsθ
−cψ sφ + sψ sθcφ

cθcφ

 f
m
,

%̈ =

 a1θ̇ ψ̇ + b1τφa2φ̇ψ̇ + b2τθ
a3θ̇ φ̇ + b3τψ


(1)

where the mass of the quadcopter is introduced by m,
the gravity acceleration is represented by g, the constants a1,
a2, a3, b1, b2 and b3 are obtained as:

a1 =
Iy − Iz
Ix

, a2 =
Iz − Ix
Iy

, a3 =
Ix − Iy
Iz

,

b1 =
1
Ix
, b2 =

1
Iy
, b3 =

1
Iz

where Ix , Iy and Iz represent the moments of inertia of the
vehicle with respect to frame B.

According to q = [ν %]T , the mathematical model (1)
can be rewritten as follows:

ẍ =
f
m

(
sψ sφ + cψcφsθ

)
φ̈ = a1θ̇ ψ̇ + b1τφ

ÿ = −
f
m

(
−cψ sφ + sψ sθcφ

)
θ̈ = a2φ̇ψ̇ + b2τθ

z̈ = −g+
f
m
cθcφ ψ̈ = a3θ̇ φ̇ + b3τψ

(2)

III. IDA-PBC STRATEGY FOR A QUADROTOR
We can represent (2) as:

Mq̈+ C(q̇)q̇+ G = B(q)u

where the inertia matrix M is constant and independent of
q, C(q̇) represents the Coriolis matrix, G is the gravitational
vector and B(q) takes the form:

B(q) =


sψ sφ + cψcφsθ 0 0 0
−cψ sφ + sψ sθcφ 0 0 0

cθcφ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The total energy is

H (q, p) =
1
2
pTM−1p+ V (q) (3)

where the total energy H (q, p) is a Hamiltonian function,
q ∈ R6 represents the generalized position and p ∈ R6

introduces the generalized momentum. Then, the dynamic
system is defined as[

q̇
ṗ

]
=

[
0 In
−In 0

] [
∇qH
∇pH

]
+

[
0

B(q)

]
u (4)

where In ∈ R6×6 is the identity matrix, ∇qH = ∂H/∂q and
∇pH = ∂H/∂p.
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The desired Hamiltonian function can be written as:

Hd (q, p) =
1
2
pTMd

−1p+ Vd (q) (5)

where Md = MT
d > 0 introduces the closed loop inertia

matrix and Vd expresses the desired potential energy. It is
necessary that the energy Vd have an isolated minimum at
q∗, i.e., q∗ = argminVd (q).
The PBC control signal is the sum of energy shaping and

injects the damping:

u = ues(q, p)+ udi(q, p) (6)

The desired port controlled Hamiltonian dynamics is taken
as [30]: [

q̇
ṗ

]
= [Jd (q, p)− Rd (q, p)]

[
∇qHd
∇pHd

]
(7)

where

Jd = −JTd =
[

0 M−1Md
−MdM−1 J2(q, p)

]
Rd = RTd =

[
0 0
0 B(q)KvB(q)T

]
≥ 0

J2 is a skew-symmetric matrix and Kv = KT
v > 0, both

containing design parameters.
The damping injection term is given by

udi(q, p) = −KvB(q)T∇pHd (8)

To compute ues we substitute (6) and (8) in (4) and make it
equal to (7), then[

0 In
−In 0

] [
∇qH
∇pH

]
+

[
0

B(q)

]
ues

=

[
0 M−1Md

−M−1Md J2(q, p)

] [
∇qHd
∇pHd

]
(9)

One can observe from (9) that the first row is clearly
satisfied. In the second set of equations the PDEs (Partial Dif-
ferential Equations) yield to the energy shaping expression
given by

ues =
(
B(q)TB(q)

)−1
B(q)T

×

(
∇qH −MdM−1∇qHd + J2M

−1
d p

)
(10)

The PDEs (9) can be separated into the equations

B(q)⊥
{
∇q(pTM−1p)−MdM−1∇q(pTM

−1
d p)

+ 2J2M
−1
d p

}
= 0

B(q)⊥
{
∇qV −MdM−1∇qVd

}
= 0 (11)

where B(q)⊥ is the full rank left annihilator of B(q).

To obtain the energy-shaping, we consider J2 = 0 and Md
a constant matrix of the form:

Md =


a1 0 0 a7 0 0
0 a2 0 0 a8 0
0 0 a3 0 0 0
a7 0 0 a4 0 0
0 a8 0 0 a5 0
0 0 0 0 0 a6

 ,
a1a2a3a4a5a6 > 0 (12)

With B(q)⊥ =
[
cφcψ cφsψ −sφ 0 0 0

]
, the potential

energy PDE (11) takes the form:

cφsψ

(
a2
m
∂Vd
∂y
+
a8
Iy

∂Vd
∂φ

)
+ cφcψ

(
a1
m
∂Vd
∂z
+
a7
Ix

∂Vd
∂θ

)
+Mgsφ −

a3
m
sφ
∂Vd
∂z
= 0 (13)

which is solved and thus the desired potential energy is
computed by

Vd =
mgIy
a8cψ

ln cφ +8(•) (14)

where 8(q) is an arbitrary differentiable function. For this,
the necessary condition ∇qVd (q∗) = 0 and the sufficient
condition ∇2

qVd (q∗) > 0 will hold if the Hessian of 8(q)
at q∗ is positive. We choose 8(q) to be a quadratic function
which leads to

Vd =
mgIy
a8cψ

ln cφ +
kpx
2

(
θ −

a7m
a1Ix

x
)2

+
kpy
2

(
φ −

a8m
a2Iy

y
)2

+
kpz
2

(
z−

mIy
a3a8cψ

ln cφ

)2

(15)

where (xd , yd , zd ) denotes the equilibrium configuration and
the kpx , kpy, kpz terms are proportional gains and are used as
tuning parameters. In order to determine the final control law,
we first compute the energy-shaping expression ues from (10)
and second, we obtain the damping injection expression udi
from (8).

IV. DESIGN OF THE FILTERED OBSERVER
The excessive cost of the motion capture systems have
motivated researchers to propose estimation and control
approaches, which are able to handle this condition. Thus,
a simple and cost-effective way to obtain the position ν of
the quadrotor is to use a Global Positioning System (GPS),
in addition, the yaw angle ψ can be obtained from a digital
compass. Another obstacle of the robust control design for the
quadrotor is the presence of the adverse effects as disturbance,
uncertainty and noisy measurements. The output measure-
ments are usually transmitted with measurement noise, there
is therefore a peaking phenomenon of the state estimates
affecting the control performance. Then, in order to propose
an observer with filtering capabilities for the system (2),
firstly, one defines the continuous-time measured output of
the quadrotor system as: Y = [x y z ψ].
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With the aim of providing a filtered observer based
IDA-PBC control for the system (2) and (3), one should
consider a change of coordinates8 : K ⊂ R12

→ M ⊂ R12,
these set are compact and where Z = 8(q), in such a way
that the quadrotor system (2) in their coordinates can be ren-
dered a canonical form. Thus, the new vector of coordinates
is given: z =

[
z1 z2 z3 z4

]T
, where the first two variables

is zj =
[
zj1 z

j
2 z

j
3 z

j
4

]T
, j = 1, 2 and the other two is zi =

[zi1, z
i
2]
T , i = 3, 4.

Now, the new system of coordinates is defined as follows:

z11 = x z21 = y z31 = z

z12 = ẋ z22 = ẏ z32 = ż

z13 = sθ z23 = −cθ sφ z41 = ψ

z14 = θ̇sθ z24 = θ̇sθ sφ − φ̇cθcφ z42 = ψ̇

Consider the quadrotor positions y1 = x and y2 = y be the
first two measured outputs, therefore, zj for j = 1, 2 and it
yields:{

żj1 = zj2, żj2 =
f
m
zj3, żj3 = zj4, żj4 = ϕ

j
4(z, u)

where ϕ14 (z, u) = (a2φ̇ψ̇ + b2τψ )cθ − θ̇2 sθ and ϕ24 (z, u) =
(a2φ̇ψ̇ + b2τψ )sθ sφ + θ̇2 cθ sφ + 2φ̇θ̇sθcφ − (a1θ̇ ψ̇ +
b1τθ )cθcφ + φ̇2 cθ sφ .
Thus, the first two subsystems of the coordinates can be

written as: {
żj = Aj(u)zj + ϕj(z, u),
yj = Cjzj, for j = 1, 2

(16)

where Cj =
[
1 0 0 0

]
and:

Aj(u) =


0 1 0 0

0 0
f
m

0

0 0 0 1
0 0 0 0

 ϕj(z, u) =


0
0
0

ϕ14 (z, u)


The same procedure is also possible for the other two

states, therefore the quadrotor position y3 = z and the angular
position y4 = ψ , thus:{

żi = Ai(u)zi + ϕi(z, u),
yi = Cizi, for i = 3, 4

(17)

where

Ai =
[
0 1
0 0

]
, Ci =

[
1 0

]
,

ϕi(z, u) =
[

0
ϕi2(z, u)

]
where the nonlinear terms are ϕ32 (z, u) = −g + cθcφ

u1
m and

ϕ42 (z, u) = a3φ̇θ̇ + b3 u44.
Based on the obtained nonlinear subsystems (16)-(17),

the purpose of this work is to propose an observer for a
quadrotor, which is subject to unknown uncertainties and

noise signals, i.e., these signals are present in each subsys-
tem. This leads to the following class of block state affine
nonlinear uncertain systems:{

ẋ = A (u) x + ϕ (x, u)+ Bε
y = Cx + w

(18)

where x = (x1, . . . , xq)T ∈ Rn represents the state vec-
tor, with xk = (xk1 , x

k
2 , . . . , x

k
λk
)T ∈ Rnk , where xki =

(xki,1, . . . , x
k
i,pk )

T
∈ Rpk with xki,j ∈ R for k = 1, . . . , q,

i = 1, . . . , λk , j = 1, . . . , pk with
q∑

k=1
nk =

q∑
k=1

pkλk = n;

pk ≥ 1 and λk ≥ 2. u(t) ∈ Rm defines the input vector.
Finally, y = (y1, . . . , yq)T ∈ Rp denotes the output vector,

with yk ∈ Rpk for k = 1, . . . , q and
q∑

k=1
pk = p. The unknown

function is ε = (ε1, . . . , εq)T ∈ Rn and the noise signal is
w = (w1, . . . ,wq)T ∈ Rp.
The matrix of the functions A and the matrix C are

expressed as follows:

A(u) = diag
[
A1(u) · · · Aq(u)

]
, C = diag

[
C1 · · · Cq

]
Ak (u) =


0 Ak1(u) · · · 0
...

. . .
. . . 0

0 Akλk−1(u)
0 0 0 0

 ,
Ck =

[
Ipk 0 · · · 0

]
The matrix B is defined as follows:

B =
[
B1 · · · Bq

]T Bk =
[
0 · · · 0 Ipk×1

]T
The nonlinear function ϕ(u, x) is given by the expression:

ϕ(u, x) =


ϕ1(u, x)
ϕ2(u, x)

...

ϕq(u, x)

 ∈ Rn,

ϕk (u, x) =


ϕk1 (u, x)
ϕk2 (u, x)

...

ϕkλk (u, x)

 ∈ Rnk

where the function ϕki (u, x) ∈ Rpk is differentiable w.r.t. x
and assumes a structural dependence on the state variables.

Additionally, in order to provide a filtered observer, the fol-
lowing classical assumptions are considered (see [13])

A1 The state vector and the control input are bounded,
i.e., x ∈ X and u ∈ U .

A2 The function ϕ (x, u) is Lipschitz w.r.t. x uniformly
w.r.t. u, with a Lipschitz constant Lϕ .

A3 The upper bound of the function Ak (u) is denoted
by AM = supt≥0 ‖Ak (u)‖.

A4 The unknown function ε and the noise sig-
nal w are essentially bounded, i.e., ∃ε̄ > 0,

VOLUME 9, 2021 114825



M. E. Guerrero-Sánchez et al.: Filtered Observer-Based IDA-PBC Control for Trajectory Tracking

Sup.Ess.t≥0 ‖ε‖ ≤ ε̄; and ∃w̄ > 0,Sup.Ess.t≥0
‖w‖ ≤ w̄.

A. SOME DEFINITIONS AND NOTATIONS
Let us introduce the following diagonal matrix for filtered
observer synthesis:

1k (2) = diag
[
Ipk Ipk /2

δk · · · Ipk /2
δk (λk−1)

]
(19)

for k = 1, . . . , q and where the tuning parameter is 2 ≥ 1
and one defines the powers δk such as:
δk = 2q−k

 q∏
i=k+1

(
λi −

3
2

) for k = 1, . . . , q− 1,

δq = 1

For any k = 1, . . . , q− 1, one has:

δk

2
=

(
λk+1 −

3
2

)
δk+1 (20)

Since λk ≥ 2, one has (λk+1 − 3/2) ≥ 1/2 and therefore
the δk ’s is a positive decreasing sequence of real numbers,
it means that δ1 ≥ δ2 ≥ · · · ≥ δq = 1.
Thus, the following sequence of scalar numbers for k =

1, . . . , q and i = 1, . . . , λk is denoted as:

σ ki = σ
k
1 + (i− 1)δk (21)

where σ k1 = −(λk − 1)δk + (λ1 − 1)δ1 + η(1− 1
2k−1

), where

the term η is chosen arbitrarily within the interval η ∈ (0, 1].
Now, similarly to the 1k ’s, one defines for k = 1, . . . , q

the diagonal matrices 3k ’s as: 3k (2) = 2−σ
k
11k (2). Thus,

considering the forms of3k (2),1k (2), the matrices Ak and
Ck , one obtains the next equalities:

3k (2)Ak (u)3k (2)−1 = 1k (2)Ak (u)1k (2)−1

= 2δkAk (u)

2−σ
k
1 Ck3

−1
k (2) = Ck1

−1
k = Ck

δkKk (Sk ) = Kk (Sk )Dk (2) (22)

The main drawback for synthesising an observer for
system (18) is that its observability depends on the input.
Therefore, this should be ensured by a condition of the per-
sistent excitation. In this sense, one needs to introduce a state
transition matrix for system (18), as follows:

ξ̇k (t) = Ak (u)ξk (t) (23)

where ξk ∈ Rn and u denotes the input. The matrix 8k
u(t, s)

is defined as follows

d8k
u(t, s)
dt

= Ak (u)8k
u(t, s), ∀t ≥ s ≥ 0, 8k

u(t, t) = In,

∀t ≥ 0

Then, the following condition should be satisfied

A5 The input u satisfies the following persistent exci-
tation condition:

t∫
t−1/2δk

8k
u(s, t)

TCT
k Ck8

k
u(s, t)ds

≥
δ0

2δkα(2)
1k (2)2 (24)

∃2∗ > 0, ∃δ0 > 0, ∀2 ≥ 2∗,
∀k = 1, . . . , q, ∀t ≥ 1/2δk ,

where α(2) ≥ 1 is such that lim
2→∞

α(2)

2

η

2q−1
= 0.

Our main result of the work is addressed to the design of
an observer providing an estimation of the state in presence
of the perturbed output, as noisy output measurements, also,
the nonlinear system considering some uncertainties. The
candidate observer for system (18) is defined as follows:

˙̂x
k
= Ak (u)x̂k + ϕk (u, x̂)−2δ

k
1−1k (2)Kk (Sk )ηk (25)

Ṡk = 2δk
(
−Sk − Ak (u)T Sk − SkAk (u)+ CT

k Ck
)

(26)

η̇k = µ
δk2δk

(
(2δkATk − Ik )ηk + C

T
ηk
(Ck x̂k−yk )

)
(27)

for k = 1, . . . , k , where x̂k = (x̂k1 , x̂
k
2 , . . . , x̂

k
λk
)T ∈ Rnk

denotes the state estimate and the tuning parameters 2 > 0
andµ > 0. ThematricesATk , Ik (identity matrix) andCηk with
dimensions nk × nk , nk × nk and 1 × nk and, respectively,
are given:

Ak =


0 1 · · · 0
...

. . .
. . . 0

0 1
0 0 0 0

, Cnk =
[
1 0 · · · 0

]
The observer gain is

Kk (Sk ) = diag
(
S−1k CT

k

)
(28)

Following the above, the next main theorem can be
established:
Theorem 1: Consider the uncertain nonlinear system with

noisy measurement outputs (18), satisfying assumptions
A1-A5. If there exists two tuning parameters 2∗ and µ∗

for sufficiently values of 2 and µ, such that 2 > 2∗ and
µ > µ∗, system (25)-(27) provides a free noise estimation
of the state vector for system (18) with an exponential error
convergence to a neighborhood of the origin for any initial
conditions (x̂k (0)) ∈ X and η(0) = 0, thus, the observation
error x̂k−xk closes to zero, depending on ε̄ that is the ultimate
limit of uncertainties and the noise signal w̄.

Proof of Theorem 1: Now, we prove the convergence to
a neighborhood of the origin of the i-th component of the
observation error ẽk ∈ Rnk where ẽk = x̂k − xk . Let ẽk

be the k-th subcomponent of ẽ, which is the estimation error
ẽ = x̂ − x. Now we obtain:

˙̃e
k
= Ak (u)ẽk + ϕ̃k (u, x̂, x)−2δk1

−1
k (2)Kk (Sk )ηk − Bkεk

(29)

where ϕ̃k (u, x̂, x) = ϕk (u, x̂)− ϕk (u, x).
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For k = 1, . . . , q set:

ēk = 3k (2)ẽk and η̄k = Dk (2)η̃k (30)

where 3k (2) is given by (19) and Dk (2) is given:

Dk (2) = diag
[
Ip1 Ip1/2

δk · · · Ip1/2
δk (λk−1)

]
(31)

It is therefore easy to deduce that Dk (2)CT
ηk
Ck =

CkCT
ηk
3k (2).

Using the identities (22) and (30), into equation (29),
it yields:

˙̄e
k
= 2δkAk (u)ēk −2δk3k (2)Kk (S)ηk
+3k (2)ϕ̃k (u, x̂k , xk )−3k (2)Bkεk

= 2δkAk (u)ēk −2δkKk (S)Dk (2)ηk
+3k (2)ϕ̃k (u, x̂k , xk )−3k (2)Bkεk

= 2δkAk (u)ēk −2δkKk (S)η̄k
+3k (2)ϕ̃k (u, x̂k , xk )−3k (2)Bkεk (32)

Now, from the equations (18) and (27), and also using the
identifies (29), one gets:

˙̄ηk = −2
δkµδk

(
(Ik − ATk )η̄k − Dk (2)CT

ηk
Ck (ẽk − wk )

)
= −2δkµδk

(
(Ik − ATk )η̄k + C

T
ηk
Ck3k (2)(ẽk − wk )

)
= −2δkµδk

(
(Ik − ATk )η̄k−C

T
ηk
Ck ēk + CT

ηk
Ckwk

)
(33)

Adding and subtracting the term 2δkS−1k CT
k Ck ē

k , one
obtains the following error dynamics:

˙̄e
k
= 2δk

(
Ak (u)− S

−1
k CT

k Ck
)
ēk −2δkKk (Sk )η̄k

+3k (2)ϕ̃k (u, x̂k , xk )−3k (2)Bkεk
+2δkS−1k CT

k Ck ē
k (34)

From the observation gain Kk (Sk ) in (28), one has:

Kk (Sk )Uk = S−1k CT
k Ck (35)

which permits to rewrite the error dynamics:

˙̄e
k
= 2δk

(
Ak (u)− S

−1
k CT

k Ck
)
ēk −2δkKk (Sk )z̄k

+3k (2)ϕ̃k (u, x̂k , xk )−3k (2)Bkεk (36)

where z̄k = η̄k − Uk x̄k .
From the equations (33) and (36), one obtains the time

derivative of z̄k , as follows:

˙̄z
k
= ˙̄ηk − Uk ˙̄ek

= −2δkµδk
(
(Ik − ATk )η̄k − C

T
ηk
Ck ēk + CT

ηk
Ckwk

)
−2δkUkAk (u)ēk − Uk3k (2)ϕ̃k (u, x̂k , xk )

+2δkUKk (Sk )η̄k + UkBkεk

= 2δk
(
−µδk (Ik − ATk )+ UkKk (Sk )

)
η̄k

+2δk
(
µδkCT

ηk
Ck − UkAk (u)

)
ēk

−Uk3k (2)ϕ̃k (u, x̂k , xk )−2δkµδkCT
ηk
Ckwk

= 2δk
(
−µδk (Ik − ATk )+ UkKk (Sk )

)
(z̄k + Uk ēk )

+2δk
(
µδkCT

ηk
Ck − UkAk (u)

)
ēk

−Uk3k (2)ϕ̃k (u, x̂k , xk )−2δkµδkCT
ηk
Ckwk

= 2δk
(
−µδk (Ik − ATk )+ UkKk (Sk )

)
z̄k

+2δk
(
µδkCT

ηk
Ck − UkAk (u)− µδk (Ik − ATk )Uk

+UkKk (Sk )Uk) ēk − Uk3k (2)ϕ̃k (u, x̂k , xk )

−2δkµδkCT
ηk
Ckwk (37)

From (35), one verifies that (Ik − ATk )Uk = CT
ηk
Ck , there-

fore one gets the following dynamic equation:

˙̄z
k
= 2δkµδk

(
−(Ik − ATk )+

1
µδk

UkKk (Sk )
)
z̄k

+2δk (−UkAk (u)+ UkKk (Sk )Uk) ēk

−Uk3k (2)ϕ̃k (u, x̂k , xk )−2δkµδkCT
ηk
Ckwk (38)

Now, consider the following Lyapunov candidate function:

V (ē, z̄, t) = V1(x̄)+ V2(z̄)

= ēT Sē+ z̄T z̄

=

q∑
k=1

V1,k (ēk )+
q∑

k=1

V2,k (z̄k ) (39)

where V1,k (ēk ) = ēk
T
Sk ēk and V2,k (ēk ) = z̄k

T
z̄k .

Firstly, one focuses on the term V1,k (ēk ), differentiating
V1,k (ēk ) along the trajectories of the system:

V̇1,k (ēk ) = 2ēk
T
Sk (t) ˙̄e

k
+ ēk

T
Ṡk (t)ēk (40)

where Sk is given by (26).
Introducing the ODE Lyapunov equation (36) into (40),

it yields:

V̇1,k (ēk ) = −2δk ēk
T
Sk ēk −2δk ēkCT

k Ck ē
k

+ 2ēk
T
Sk3k (2)ϕ̃k (u, x̂, x)

− 2ēk
T
Sk3k (2)Bkεk −2δk ēk

T
Sk ēkKk (Sk )z̄k

≤ −2δk ēk
T
Sk ēk

+ 2
√
λM (Sk )

√
V1,k (ēk )

λk∑
i=1

1

2σ
k
i

∥∥∥ϕ̃ki (u, x̂k , xk )∥∥∥
+ 2

√
λM (Sk )

√
V1,k (ēk )

ε̄

2σ
k
1+(λk−1)δk

+ 2
√
λM (Sk )

√
V1,k (ēk )‖Kk (Sk )‖‖z̄k‖ (41)

where σ ki = σ
k
1 + (i− 1)δk .

In addition, considering Assumption A1-A2, i.e. the
boundedness of ∂ϕ

∂x , one has:

V̇1,k (ēk ) ≤ −2δkV1,k (ēk )

+ 2Lϕ̃k
√
λM (Sk )

√
V1,k (ēk )

×

λk∑
i=1

q∑
l=1

λl∑
j=2

χ
k,i
l,j 2

σ lj −σ
k
i

∥∥∥ēlj∥∥∥
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+ 2
√
λM (Sk )

√
V1,k (ēk )

ε̄

2σ
k
1+(λk−1)δk

+ 2
√
λM (Sk )

√
V1,k (ēk )‖Kk (Sk )‖‖z̄k‖ (42)

where Lϕ̃k comes from Assumption A2 and the χk,il,j ’s are
defined as in Lemma 1 in [31].

According to assumption A5, one clearly has

λm(Sk ) ≥
e−1δ0
α(2)

(43)

Also, σ lj is defined as in (21):

σ lj = σ
l
1 + (j+ 1)δl (44)

Finally, one obtains:

V̇1,k (ēk )

≤ −2δkV1,k (ēk )+ 2Lϕ̃kµs

×

√
V1,k (ēk )

λk∑
i=1

q∑
l=1

λl∑
j=2

χ
k,i
l,j θ

σ lj −σ
k
i −

δl
2 −

δk
2

√
2δlV 1

l (ē1,l)

+ 2
√
λM (Sk )

√
V1,k (ēk )

ε̄

2σ
k
1+(λk−1)δk

+ 2
√
λM (Sk )

√
V1,k (ēk )‖Kk (Sk )‖‖z̄k‖ (45)

where:

µs =

√
λM (Sk )
λm(Sk )

(46)

Moreover, according to Lemma 1 in [31], one has:

σ lj − σ
k
i −

δl

2
−
δk

2
≤ −

η

2q

σ k1 + (λk − 1)δk ≥ (λ1 − 1)δ1 (47)

Considering (45) and (47), one gets

V̇1,k (ēk )

≤ −2δkV1,k (ēk )

+ 2Lϕ̃kµs2
−

η

2q

√
2δkV1,k (ēk )

λk∑
i=1

q∑
l=1

λl∑
j=2

√
2δlV 1

l (ēl)

+ 2
√
λM (Sk )

√
V1,k (ēk )

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1,k (ēk )‖Kk (Sk )‖‖z̄k‖ (48)

Moreover, let

V ∗1,k (ē
k ) = 2δkV1,k (ēk ) V ∗1 (ē) =

q∑
k=1

V ∗1,k (ē
k ) (49)

Since δq = 1, one has

V ∗1 (ē) ≥ 2
δqV1(ē) = 2V1(ē) (50)

And inequality (48) becomes:

V̇1,k ≤ −V ∗1,k

+ 2Lϕ̃kµs2
−

η

2q
√
V ∗1,k (ē

k )
λk∑
i=1

q∑
l=1

λl∑
j=2

√
V ∗1,l(ēl)

+ 2
√
λM (Sk )

√
V1,k (ēk )

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1,k (ēk )‖Kk (Sk )‖‖z̄k‖

= −V ∗1,k

+ 2Lϕ̃kµsλk2
−

η

2q
√
V ∗1,k (ē

k )
q∑
l=1

λl∑
j=2

√
V ∗1,l(ēl)

+ 2
√
λM (Sk )

√
V1,k (ēk )

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1,k (ēk )‖Kk (Sk )‖‖z̄k‖ (51)

Then,

V̇1,k ≤ −V ∗1,k + 2Lϕ̃kµsλk2
−

η

2q
√
V ∗1,k (ē

k )
q∑
l=1

λl∑
j=2

√
V ∗1 (ēl)

+ 2
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1(ē)‖Kk (Sk )‖‖z̄k‖

≤ −V ∗1,k + 2nLϕ̃kµsλk2
−

η

2q
√
V ∗1,k (ē

k )
√
V ∗1 (ēl)

+ 2
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1(ē)‖Kk (Sk )‖‖z̄k‖

≤ −V ∗1,k + 2nLϕ̃kµsλk2
−

η

2q V ∗1 (ē)

+ 2
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1(ē)‖Kk (Sk )‖‖z̄k‖ (52)

Hence,

V̇1(ē) ≤ −V ∗1 (ē)+ 2n2Lϕ̃µs2
−

η

2q V ∗1 (ē)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1(ē)‖Kk (Sk )‖‖z̄k‖

≤ −

(
1− 2n2µs2

−
η

2q Lϕ̃
)
V ∗1 (ē)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1(ē)‖Kk (Sk )‖‖z̄k‖ (53)

where Lϕ̃ = max
{
Lϕ̃k ; 1 ≤ k ≤ q

}
.

Furthermore, using (50) for θ high enough such that(
1− n2µs2

−
η

2q Lϕ̃
)
> 0 (54)
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According to assumption A3 and (54), one gets:

V̇1(ē) ≤ −2

1−

√
α(2)

2
η

2q−1

√
n4eλM (S)

δ0
Lϕ̃

V1(ē)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2
√
λM (Sk )

√
V1(ē)‖Kk (Sk )‖‖z̄k‖ (55)

Now, we focus on the term V2,k (z̄k ) = z̄k
T
z̄k = ‖z̄k‖2, one

gets the following differential equation:

V̇2,k (z̄k ) = 2δkµδk z̄k
T
(
−(2Ik − (ATk + Ak ))

)
z̄k

+ 22δk z̄k
T
UkKk (Sk )z̄k

+ 22δk z̄k
T
(−UkAk (u)+ UkKk (Sk )Uk) ēk

− 2z̄k
T
Uk3k (2)ϕ̃k (u, x̂k , xk )

− 22δk z̄k
T
µδkCT

ηk
Ckwk

≤ −2δkµδkρk‖z̄k‖2 + 22δk‖UkKk (Sk )‖‖z̄k‖2

+ 22δk‖UkAk (u)+ UkKk (Sk )Uk‖‖ēk‖‖z̄k‖

− 2z̄k
T
Uk3k (2)ϕ̃k (u, x̂k , xk )

− 22δk z̄k
T
µδkCT

ηk
Ckwk (56)

where ρk denotes the smallest eigenvalue of the SPD matrix
2Ik − (ATk + Ak ).
From Assumption A2, one obtains the following

expressions:

2z̄k
T
Uk3k (2)ϕ̃k (u, x̂k , xk )

≤ 2n2−
η

2q Lϕ̃
√
V2,k (z̄k )

√
V1,k (e)
√
λm(Sk )

(57)

22δk‖UkAk (u)+ UkKk (Sk )Uk‖‖ēk‖‖z̄k‖

≤ 22δk
√
n(AM + KM )

√
V2,k (z̄k )

√
V1,k (ē)
√
λm(Sk )

(58)

where AM = supu∈UA(u) and KM = supt≥0‖Kk (Sk )‖.
Then, substituting the above expression into (56), it yields:

V̇2,k (z̄k ) ≤ −2δkµδkρkV2,k (z̄k )+ 22δk
√
nKMV2,k (z̄k )

+ 22δk
√
n(AM + KM )

√
V2,k (z̄k )

√
V1,k (e)
√
λm(Sk )

+ 2n2−
η

2q Lϕ̃
√
V2,k (z̄k )

√
V1,k (ē)
√
λm(Sk )

+ 22δkµδk
√
V2,k (z̄k )w̄

≤ −2δkµδkρk

(
1− 2

KM
√
n

µδkρk

)
V2,k (z̄k )

+ 2
√
n
(√

n2−
η

2q Lϕ̃ +2
δk (AM + KM )

)
×

√
V2,k (z̄k )

√
V1,k (ē)
√
λm(Sk )

+ 22δkµδk
√
V2,k (z̄k )w̄

(59)

The value of µ can be chosen as
(
1− 2KM

√
n

µδk ρk

)
≥

1
2 , thus,

µ ≥ 2
√
nKM
ρk

and 2δk ≤ 1. Therefore, the above inequality

can be rewritten as:

V̇2,k (z̄k ) ≤ −
2δkµδkρk

2
V2,k (z̄k )+ 22µ

√
V2,k (z̄k )w̄

+ 2
√
ne
δ0

(√
n2−

η

2q Lϕ̃ +2
δk (AM + KM )

)
×

√
α(2)

√
V2,k (z̄k )

√
V1,k (ē)

≤ −
2δkµδkρk

2
V2,k (z̄k )+ 22δkµδk

√
V2,k (z̄k )w̄

+ 2
√
ne
δ0

(
√
n2
−

(
η

2q+δk

)
Lϕ̃ + (AM + KM )

)
×2δk

√
α(2)

√
V2,k (z̄k )

√
V1,k (ē)

≤ −
2δkµδkρk

2
V2,k (z̄k )+ 22δkµδk

√
V2,k (z̄k )w̄

+ 2
√
ne
δ0

(√
nLϕ̃ + (AM + KM )

)
×2δk

√
α(2)

√
V2,k (z̄k )

√
V1,k (ē) (60)

Similarly as in the previous term V ∗1,k , one considers that

V ∗2,k (z̄
k ) = 2δkV 2

k (z̄
k ), therefore, V ∗2 (z̄) =

q∑
k=1

V ∗2,k (z̄
k ), and

knowing that δq = 1, one deduces that

V ∗2 (z̄) ≥ 2
δqV2(z̄) = 2V2(z̄) (61)

Hence,

V̇2(z̄) ≤ −
2µρ

2
V2(z̄)+ 22µ

√
V2(z̄)w̄

+ 2
√
ne
δ0

(√
nLϕ̃ + (AM + KM )

)
×2

√
α(2)

√
V2(z̄)

√
V1(ē)

≤ −
2µρ

2
V2(z̄)+ 22µ

√
V2(z̄)w̄

+ c02
√
α(2)

√
V2(z̄)

√
V1(ē) (62)

where c0 = 2
√

ne
δ0

(√
nLϕ̃ + (AM + KM )

)
.

Now, using inequality (55), it leads to:

V̇1(ē) ≤ −2

1−

√
α(2)

2
η

2q−1

√
n4eλM (S)

δ0
Lϕ̃

V1(ē)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

+ 2KM
√
λM (Sk )

√
V1(ē)

√
V2(z̄)

≤ −2ω(2)V1(ē)+ c1
√
V1(ē)

√
V2(z̄)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1
(63)

where c1 = 2 KM
√
λM (Sk ) and

ω(2) =

1−

√
α(2)

2
η

2q−1

√
n4eλM (S)

δ0
Lϕ̃

 . (64)
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Accordingly, it is possible to set:

V̄ (ē, z̄, t) = V̄1(ē)+ V̄2(z̄) (65)

where V̄1 = 2ω(2)V1(ē) and V̄2 =
2µρ
2 V2(z̄). Therefore,

one states V1(ē) ≤ V̄ (ē, z̄, t) and V2(z̄) ≤ V̄ (ē, z̄, t).
Thus,

V̇1(ē) ≤ −V̄1(ē)+ c12

√
V̄1(ē)
2ω(2)

√√√√ V̄2(z̄)
2µρ
2

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1

= −V̄1(ē)+
c1
√
µ

√
2

ω(2)ρ

√
V̄1(ē)

√
V̄2(z̄)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1
(66)

Since V1(ē) ≤ V̄ (ē, z̄, t), it yields:

V̇1(ē) = −V̄1(ē)+
c1
√
µ

√
2

ω(2)ρ
V̄ (ē, z̄, t)

+ 2q
√
λM (S)

√
V1(ē)

ε̄

2(λ1−1)δ1
(67)

Similarly, one obtains

V̇2(z̄) ≤ −V̄2(z̄)+ 22µ
√
V2(z̄)w̄

+ c02
√
α(2)

√
V̄1(ē)
2ω(2)

√√√√ V̄2(z̄)
2µρ
2

≤ −V̄2(z̄)+ 22µ
√
V2(z̄)w̄

+ c0

√
α(2)
µ

√
2

ω(2)ρ
V̄ (ē, z̄, t) (68)

Set V (ē, z̄, t) = V1(x̄) + V2(z̄) as the candidate Lyapunov
equation. From equations (67) and (68), and considering
√
V1 ≤ V and

√
V2 ≤ V , one gets:

V̇ (ē, z̄, t) = −V̄ +

√
2

ω(2)ρ

√
1
µ

(
c1 + c0

√
α(2)

)
V̄

+ 2
(
q
√
λM (S)

ε̄

2(λ1−1)δ1
+2µw̄

)√
V̄ (69)

For 2 and µ sufficiently high, one has:

lim
2→∞

α(2)

2
η

2q−1
= lim
µ→∞

1
µ
= 0. (70)

That allows us to consider that 0 < ξ < 1, thus:

1−

√
2

ω(2)ρ

√
1
µ

(
c1 + c0

√
α(2)

)
> ξ (71)

Likewise, one has 2ω(2) ≤ 2µρ
2 which implies that

2ω(2)V ≤ V̄ ≤
2µρ

2
V (72)

FIGURE 2. Evaluation of the trajectories with noisy output measurements
(Test 1).

Hence, from (69), (71) and (72), one has:

V̇ (ē, z̄, t) = −ξ2ω(2)V

+ 2
(
q
√
λM (S)

ε̄

2(λ1−1)δ1
+2µw̄

)√
V̄ (73)

Therefore,

d
dt

√
V (ē, z̄, t) = −ξ2ω(2)

√
V

+ 2
(
q
√
λM (S)

ε̄

2(λ1−1)δ1
+2µw̄

)
(74)

According to (64), (70) and (71), allowing us to show
that for large sufficiently values of 2 and µ, V (ē, z̄, t) expo-
nentially converges to a neighbourhood around zero, as it is
shown in (74), the rate of convergence depends on the upper
bounds of the uncertainties and the noise signals ε̄ and w̄. This
concludes the proof of Theorem 1.
Remark 1: The complexity of the proposed algorithm

depends on the size of the uncertainty, which can be reduced
to a certain value through the parameter 2. Nevertheless,
there is a trade-off between the sensitivity of themeasurement
noise and the convergence error. The sensitivity can be com-
pensated by the observer immersed in the controller bymeans
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FIGURE 3. Evaluation of the trajectories with noisy output measurements
(Test 2).

of the adjustment parameter µ, however, the uncertainty is
limited to a certain value.

V. SIMULATIONS
To validate the performance of the novel observer-based
IDA-PBC, some simulation tests have been performed. The
observer given by (25)-(27) is applied to the quadrotor
dynamical model (18). An IDA-PBC controller with gravity
compensation is used to stabilize the vehicle’s position and
attitude dynamics.

In simulation tests, the model parameters have been taken
close to real aerial platforms, such parameters are given by:
m = 0.56Kg Ix = Iy = 14.2e−3Kgm2, d = 0.21m,
g = 9.81m/s2 Iz = 2Ix . From the block structure (18),
it has p = 4, since the available outputs are [x y z ψ], one
has four subsystems (16) and (17), thus λ1 = λ2 = 4
and λ3 = λ4 = 2, therefore, according (20) one obtains
δ1 = 5, δ2 = δ3 = δ4 = 1. The tuning parameters
are taken as 2 = 1.2 and µ = 7. The output vector is
y(t) = [x, y, z, ψ]T + w(t) and represents the noisy output
measurements.

A. PERFORMANCE IN PRESENCE OF
MEASUREMENT NOISE
In order to highlight the performance of the proposed con-
trol law in the presence of the different noise signals, two

FIGURE 4. Evaluation of the proposed observer based on IDA-PBC control
with noisy output measurements (Test 1).

experimental results are provided. In the first test, the noise
signal w(t) is a Gaussian noise with a variance equal to
0.0005, this results in the noisy output measurements plotted
in Figure 2. In the second test, a noise signal w(t) is given
by 0.155 sin(20t), the perturbed trajectories are plotted in
Figure 3. In both simulations, the uncertainty is ε(t) = ε1 =
ε2 = ε3 = ε4 = 0.1 cos(20t), this uncertainties can be
attached to unmodeled dynamics, such as wind frictions and
structural vibrations, as [25].

The performance of the novel observer-based IDA-PBC
control in the presence of the Gaussian noise is presented
in Figure 4, in addition, the behavior of the design in
the presence of the sinusoidal noise signal is illustrated
in Figure 5. Note that in both experiments the proposed
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FIGURE 5. Evaluation of the proposed observer based on IDA-PBC control
with noisy output measurements (Test 2).

FIGURE 6. Comparison of the position with different noise signals.

observer-based control provides a good trajectory track-
ing in presence of uncertainties and disturbances as the
measurement noise (Gaussian noise and Sinusoidal noise).

FIGURE 7. Trajectories of the observer based on IDA-PBC control with
high amplitude noise.

Considering all these non-negligible effects, the novel
approach will make easier the practical control implemen-
tation. It is also important to highlight that the performance
of the proposed design has a slight performance degradation
in the presence of the Gaussian noise, as shown in Figure 6,
this degradation relates in particular to high-frequency mea-
surement noise, in order to reduce this effect, some works
add a low-pass filter of high order [29]. However, this may
be impractical to compute for high-order systems as the
quadrotor. Furthermore, these designs address only the SISO
uniformly observable systems, this is not the case for quadro-
tor dynamics (MIMO non-uniformly observable system).

B. COMPARISON TO A STANDARD DESIGN
In order to compare the behavior of the standard and proposed
control design in the presence of the high amplitude noise
signals, a comparison test is performed. For this test, the noise
signal w(t) is a sum of a Gaussian noise with a variance equal
to 0.001 and a signal given by 0.25 sin(20t), this results in
the noisy output measurements plotted in Figure 7 (proposed
design) and Figure 8 (standard design). Moreover, this test
considers the same uncertainty of the previous tests. Figure 9
shows that the proposed controller can reach the reference
in a very short time in the presence of the high-amplitude
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FIGURE 8. Trajectories of the observer based on PD control with high
amplitude noise.

FIGURE 9. Evaluation of the proposed observer based on IDA-PBC control
with high amplitude noise.

noise signal, even in the mixed noise (Gaussian noise and
Sinusoidal noise). Moreover, as it can be seen in Figure 10,

FIGURE 10. Evaluation of the proposed observer based on PD control
with high amplitude noise.

FIGURE 11. Comparison of the novel observer based on IDA-PBC control
versus the standard observer based on PD control.

the proposed algorithm outperforms the standard approach
of [14], which assumes that the output measurements are
noise-free. On the other hand, Figure 11 makes evident that
the quadrotor cannot reach a near-zero steady-state error with
the traditional observer-based PD control. Furthermore, it is
clear that there is high chattering phenomenon in the standard
control law, in Figure 10.

VI. CONCLUSION
In order to avoid the heavy design effort and ensure the
robust control strategy in the presence of adverse effects
as disturbance, uncertainty, and noisy measurements, it has
been presented a new observer-based IDA-PBC control for
a quadrotor. The original idea of the proposed strategy of
the observer-based control is that it is able to guarantee
a near-zero steady-state error, in the presence of relatively
large uncertainties and disturbances, as measurement noise
and unmodeled dynamics of the quadrotor (wind frictions
and structural vibrations). The features of the proposed
strategy were further validated with simulation tests for a
quadrotor, which show a remarkable improvement of the
sensitivity of the estimator subject to measurement noise
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and thereby achieving a reduction of the steady-state error.
The behavior of the proposed observer-based IDA-PBC
control for small uncertainties and disturbances tends
to be similar to the behavior of the typical approach,
i.e., high-gain observer-based PD control without uncertain-
ties and disturbances. Future work includes extending the
scheme for the case of sampled output measurements and
delayed output measurements, as well as the combination of
both. Moreover, it will consider an IDA-PBC design with
total energy-shaping.
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