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ABSTRACT The development of modeling and estimation strategies, useful for determining the magnitude
and location of unknown flows such as seepage and leaks, appears as a valuable tool to increase the efficiency
of the open-channel irrigation systems (OCIS). However, it has been identified that in OCIS, most of
the strategies reported on detection, isolation, and magnitude estimation of unknown flows (DIMEUF)
have been developed from linear models that do not include information about energy balances along
the channels, where these balances are fundamental to differentiate changes of levels due to conduction
effects, from changes of levels due to unknown flows. Therefore, in this work, a recent OCIS modeling
approach, which includes mass and energy balances for each channel and non-linear hydraulic descriptions
of the flows, is explored in the development of two strategies for DIMEUF based on the moving horizon
estimation (MHE) approach. The first strategy is deterministic, designed under the assumption that by
filtering of the measurements, the noise can be sufficiently attenuated. Therefore, the noise information is not
included in the design process. On the other hand, the second strategy is stochastic, and includes remaining
noise information in the design process. The developed strategies have been tested using data from a testbed
implemented in a specialized software, and the results show that, in a large operation region, the proposed
strategies are capable of accurately describe the channel behavior and unknown flows, and that the inclusion
of the remaining noise information increases the performance of the strategies for DIMEUF.

INDEX TERMS Unknown flows, leaks, seepage, estimation, open channel, irrigation systems, open canal.

I. INTRODUCTION
In agriculture, the easiest and most cost-efficient way to
transport water is through open-channel irrigation systems
(OCIS). In this process, water is taken from a natural source
and transported by networks of OCIS. Despite that irriga-
tion is known as the activity that most water consumes,
these systems generally present low efficiency [1], and the
major source of losses is produced by leaks [2]. Therefore,
the opportune detection, isolation, and magnitude estimation
of unknown flows (DIMEUF) such as seepage and leaks
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is an alternative to take actions that might reduce losses.
In OCIS, multiple works have been reported around the
field of fault diagnosis and DIMEUF [3]–[15]. These works
highlight the importance in the selection of an appropriate
modeling approach, which is fundamental in the develop-
ment of strategies for detection and estimation of unknown
variables. For example, as emphasized in [8], the DIMEUF
strategies designed from linear models [3], [4], [6], [11]–[16]
are only valid close to an operation region. Hence, in order
to increase this region, some works have explored the devel-
opment of DIMEUF strategies using non-linear models such
as numerical solutions of the Saint-Venant Equations (SVE)
and approximated models. The approximated models are
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TABLE 1. Comparison between reported approaches for detection, isolation, and magnitude estimation of unknown flows in OCIS.

those developed from basic physical principles, observations,
and empirical knowledge of the OCIS (e.g., integrator-delay
model, gray-box models, and linear-parameter variance).
In contrast, the SVE are used to obtain fundamental mod-
els that can offer an accurate analytical description of the
water behavior for infinitesimal sections of the channels.
In reported works that have designed DIMEUF strategies
using approximated models [5], [8]–[10], it is found that
the approximated models do not contemplate energy bal-
ances along the channels, and this could lead to inaccurate
DIMEUF. For example, in [6] strategies for magnitude esti-
mation of unknownflows are tested in a real system, reporting
drift in the results, concluding that this drift is due to the
growth of weeds, which affects the flow conduction. More-
over, the OCIS are usually affected by sedimentation that
also changes the resistance and conduction offered along the
channels.Meanwhile, in reportedworks that designDIMEUF
strategies from numerical solutions of the SVE, the com-
plexity of the algorithm is one of the key aspects, obtaining
algorithms that: i) only detects or isolates [7]; or ii) algorithms
where the estimation process must be performed off-line [9].

Alternatively, in [17] a new and intuitive approximated
modeling approach that combines mass and energy balances
has been proposed. This modeling approach includes the
nonlinear hydraulic relationships that characterize the OCIS,
showing an accurate behavior in a broad operation region.
Furthermore, it has been identified that the moving horizon
estimation (MHE) is known for its inherent capability of
handling complex nonlinear systems and let the inclusion
of additional physical information of the system by the use
of constraints [18]. Hence, in this work, the use of the
model presented in [17] is considered in the development
of a MHE strategy for OCIS. In this direction, it has been
identified that: i) in order to obtain accurate estimations of

the unknown flows magnitude, the MHE strategy must be
enhanced with the addition of detection and isolation mecha-
nisms; and ii) in the OCIS high inflow or outflow variations
produce small level variations of the system, and the unknown
flows can easily be masked into small variations of level
measurements (i.e, noise measurement). Therefore, in the
design of strategies for DIMEUF rigorous noise analysis must
be performed.

In this order of ideas, the main contributions of this work
are twofold. First, we propose a new approach for DIMEUF
in OCIS, which, takes into account the effects of flow con-
duction and is developed by enhancing an MHE approach
with the inclusion of detection and isolation mechanisms.
Then, from the proposed estimation approach, a stochas-
tic DIMEUF strategy that contemplates the effects of noise
measurement is also proposed. A comparative analysis that
contextualizes the proposed strategies for DIMEUF is pre-
sented in Table 1. In this table, the different modeling, flow
description, and estimation strategies reported in the literature
are contrasted with the strategies proposed in this work. This
table highlights that, by using a no-linear modeling strat-
egy that contemplates conduction effects along the OCIS,
the proposed strategies, let the online detection, isolation, and
magnitude estimation of the unknown flows, and cover the
multiple gaps that in mater of DIMEUF have been identified.

The remainder of the paper is organized as follows.
Section II starts with a summary of the estimation modeling
strategy, and describes the problem of accurate unknown
flows magnitude estimations by using an MHE approach.
In Section III, first, a deterministic MHE strategy enhanced
with detection and isolation mechanisms is proposed as a
solution in getting accurate magnitude estimations of the
unknown flows; and second, the deterministic strategy is
extended with the development of a stochastic strategy
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that includes measurement noise information. In Section IV
the implementations of the deterministic and stochastic
approaches are explained and validated by using the testbed
proposed in [19], which is implemented in the stormwa-
ter management model (SWMM) software. In Section V
the simulation results are presented and discussed. Finally,
in Section VI some conclusions are drawn.

II. PROBLEM STATEMENT
A rigorous analytical description of the OCIS dynamics is
given by the Saint-Venant equations (SVE), which are two
non-linear partial differential equations that relate mass and
momentum conservation for each infinitesimal section of
the OCIS [20]. However, the direct use of the SVE for
control systems and estimation design is impractical [21].
In order to address this issue, multiple control-oriented mod-
els have been reported in the literature. In [22] an overview
of the reported control-oriented models is given, where these
models have been classified in: i) models that come from
analytical simplifications of the SVE (simplified models);
and, ii) models that come from approximations, observa-
tions, and assumptions of the dynamic behavior of the OCIS
(approximated models). In the simplified models, most of
the nonlinear OCIS relations are neglected during the simpli-
fication process, where linearization procedures are usually
performed. On the other hand, in most approximated models
the potential energy balance along the channels is avoided,
and this balance is important to relate level changes due to
conduction changes, and level changes due to seepage and
leaks. In this work, this problem is overcome by using the
modeling approach presented in [17], which describes the
nonlinear dynamical behavior of the OCIS by using mass
and energy balances. Therefore, this modeling strategy is
presented and employed in the development of an estimation
model, which is used to show the problem in getting optimal
solutions by applying a conventional MHE strategy.

FIGURE 1. Graphical description of the proposed energy and mass
balances.

A. MODELING APPROACH
As it is shown in Fig. 1, i corresponds to the stage number
(e.g., i = 1 denotes the first channel), and each chan-
nel is analyzed as two storage units with areas aupi for
the upstream unit, and adni (m

2) for the downstream unit,
where the size of the respective areas can be obtained using

FIGURE 2. Flow relation for: a) Gate in free-flow. b) Gate in
submerged-flow.

FIGURE 3. Flow relation for: a) Weir in free-flow. b) Weir in
submerged-flow.

TABLE 2. Flow relation for different categories of regulation structures.

identification techniques. In this model, the channel pi is
fed by the flow qi (m3/s) that comes from the upstream
canal pi−1 . Besides, xupi and xdni (m) are the depth at the
upstream and downstream end, respectively. From the chan-
nel pi , there could be multiple outflows to other channels
or users. However, the outflows have been simplified into
the outlet flow to the users qout i and the flow that feeds
the downstream channel qi+1. In OCIS, the inflows and out-
flows have an hydraulic relationship with the corresponding
regulation structures, which could be classified into gates
(Fig. 2) and weirs (Fig. 3) that regulate in either free-flow
or submerged-flow configurations [23]. Table 2 summarizes
the mathematical relationships for the discharge through each
kind of regulation structure, where wi (m) is the width of the
regulation structure, g (m/s2) is the gravity constant, ci (with
corresponding dimensions) is the discharge coefficient, and
ui (m) is the position of the regulation structure.

1) FLOW TRANSITION
The modeling strategy assumes a flow transition
qtri (t) (m3/s) between the two storage units. This flow is
obtained from an energy balance along the channel, which
is given by

zupi + xupi +
vupi

2

2g
= zdni + xdni +

vdni
2

2g
+ hLi , (1)
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where the difference between zupi and zdni is the potential
energy related to the channel inclination, vupi and vdni are

the upstream and downstream mean flow velocities,
vupi

2

2g and
vdni

2

2g are the kinetic energies at the upper and lower part
of the channel. Besides, hLi is known as the head loss due
to friction, which can be described by the Darcy-Weisbach
equation [24]. In this model, equal mean flow velocity along
the channel is assumed. Moreover, in this model, the head
loss due to friction is assumed to be a function of: i) the
upstream level; ii) the flow transition between the two stor-
age unities (qtri (t)); and iii) a transition constant ktr i , which
could be obtained from experimental tests, and is related to
both channel dimensions (diameter, length, and width), and
conduction conditions (friction factor). Then, assuming that

hLi ≈
q2tri

ktri
2x2upi

, and performing the energy balance proposed

in (1), the flow transition is given by

qtri (t) = ktri (t)xupi (t)
√
xupi (t)− xdni (t)+ zupi − zdni . (2)

2) UNKNOWN FLOWS
In this paper, the problems associated with DIMEUF, such
as seepage and leaks, are considered. In OCIS, leaks can be
given by accidental losses of water through orifices. A com-
mon example of a leak is illustrated by [5], describing a gate
letting water through, even when it is fully closed. Another
example can be given when water percolates through channel
fissures. In these cases, such losses can be modeled as func-
tions of the level, where these unknown flows are localized,
i.e., κmi (t)g(xmi (t)), where xmi is the level at the m

th
i position

and κmi is a parameter related to the size of the orifice or
fissures aperture [25]. In this paper, the hydraulic description
of an unknown flow at the upstream part of the channel i is
expressed as

supi (t) = κupi (t)
√
xupi (t), κupi (t) ≥ 0, (3)

where κupi (t) is a parameter that could suddenly change and is
associated with the upstream orifice aperture. The hydraulic
description of a leak at the downstream part of the channel is

expressed as

sdni (t) = κdni (t)
√
xdni (t), κdni (t) ≥ 0, (4)

where κdni (t) is the parameter associatedwith the downstream
orifice aperture.

3) SIMULATION MODEL
Once the flows that affect the OCIS have been defined,
a model of the system can be obtained by performing
a mass balance for each storage unit, obtaining a model
described as

aupi ẋupi (t) = qi (t)− qtri (t)− supi (t) (5a)

adni ẋdni (t) = qtri (t)− qouti (t)− qi+1(t)− sdni (t) (5b)

yupi (t) = xupi (t) (5c)

ydni (t) = xdni (t), (5d)

where yupi (t) ≥ 0 and ydni (t) ≥ 0 are the mea-
sured upstream and downstream levels, respectively. Flows
qi (t) ≥ 0, qi+1(t) ≥ 0, and qouti (t) ≥ 0 can be obtained
by measuring the levels associated with the respective reg-
ulation structure (see Table 2). At this point, a nonlinear
control-oriented modeling approach designed from mass and
approximated potential energy balances for each channel has
been presented. The modeling approach (5) can be catego-
rized as a grey-box model, where its structure is obtained
from knowledge about the system’s behavior, and parame-
ters associated to the flows qi (t), qi+1(t), and qouti (t) can be
obtained from physical features of the real system. On the
other hand, the parameters that cannot be obtained from
physical dimensions, such as the upstream and downstream
areas (aupi , and adni ), the transition constant (ktri ), and the
parameters associated to the upstream and downstream leaks
or seepage (κupi , and κdni ) can be obtained through either data
fitting or estimation. In this work, the upstream and down-
stream areas are considered time-invariant, and are obtained
by formulating a data fitting problem, where, if the absence of
unknown flows and reduced noise measurements is assumed,
the unknown flow transition can be neglected by the addition
of the two mass balances that describe the system (5), which,

φxi =



xupi (k + 1)− xupi (k)
τs

xdni (k + 1)− xdni (k)
τs

xupi (k + 2)− xupi (k + 1)
τs

xdni (k + 2)− xdni (k + 1)
τs

...
...

xupi (k + n)− xupi (k + n− 1)
τs

xdni (k + n)− xdni (k + n− 1)
τs


,

yqi =


qi (k)− qouti (k)− qi+1 (k)

qi (k + 1)− qouti (k + 1)− qi+1 (k + 1)
...

qi (k + n− 1)− qouti (k + n− 1)− qi+1 (k + n− 1)

 ,
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by using an Euler method, can be discretized yielding to
aupi
τs

(xupi (k + 1)− xupi (k))+
adni
τs

(xdni (k + 1)− xdni (k))

= qi (k)− qouti (k)− qi+1(k). (6)

Therefore, the upstream and downstream model areas are
obtained by solving the optimization problem given by

min
θai

‖φxiθai − yqi‖
2

s.t.

aupi + adni = ai , (7)

where for an experiment with n data, φxi and yqi , as shown
at the bottom of the previous page, and θai = [aupi adni ]

>.
Here, the constraint aupi+adni = ai is included to ensure that
the overall area of the approximated model is equal to the
physical system area. As it can be seen, this modeling strat-
egy presents some important qualities that in the estimation
approach are exploited: i) with the modeling strategy an exact
overall mass balance for each channel can be guaranteed;
ii) the dynamic behavior of the model can be tuned by
adjusting the upstream and downstream areas with real data;
iii) the upstream and downstream channel levels can be used
in the nonlinear hydraulic description of inflows and outflows
of interacting channels; and iv) the nonlinear descriptions of
the inflows and outflows can be integrated into the estimation
model, increasing the operation region where this model is
valid. Note that the upstream and downstream areas have been
considered as time-invariant identified parameters. On the
other hand, ktri , κupi , and κdni are parameters that can change
due to sedimentation, and incorrect gate closing, or a sudden
channel fissure. Therefore, an estimation model is developed
in order to consider the online estimation of such parameters.

4) ESTIMATION MODEL
At this point, the OCIS can be modeled using two non-linear
differential equations that describe mass and energy balances
for each channel. Now, with the objective to develop a strat-
egy for DIMEUF, by using an Euler discretization method,
the modeling approach (5) is used in the development of a
discrete-time estimation model as follows:

x̂upi (k + 1) = x̂upi (k) +
τs

aupi
(qi (k)− q̂tri (k)− ŝupi (k)),

x̂dni (k + 1) = x̂dni (k) +
τs

adni
(q̂tri (k)− qouti (k)

− qi+1(k)− ŝdni (k)), (8)

where τs (s) is the sampling time; x̂upi (k) ≥ 0, x̂dni (k) ≥ 0,
q̂tri (k) ≥ 0, ŝupi (k) ≥ 0, and ŝdni (k) ≥ 0, are considered
unknown variables to be estimated. These variables corre-
spond to the upstream level, the downstream level, the flow
transition, and the upstream and downstream leaks, respec-
tively. In contrast, the flows qi (k) ≥ 0, qouti (k) ≥ 0, and
qi+1(k) ≥ 0 are considered known variables that can be
obtained from measurements of the real system. A com-
pact description of the discrete-time estimation model (8) is

given by

x̂i (k + 1) = Gi x̂i (k)+ Hiψ̂i (k)+ Hfiξi (k),

ŷi (k) = x̂i (k), (9)

where the variables correspond to: the vector of unknown
states x̂i (k) = [x̂upi (k) x̂dni (k)]

>; the vector of unknown
flows to be estimated ψ̂i (k) = [q̂tri (k) ŝupi (k) ŝdni (k)]

>; the
vector of known flows ξi (k) = [qi (k) qouti (k) qi+1(k)]

>;
and the vector of unknown outputs to be estimated ŷi (k) =
[ŷupi (k) ŷdni (k)]

>. The state matrix, the unknown flows
matrix, and the known flows matrix are given by

Gi =

[
1 0
0 1

]
, Hi =

−
τs

aupi
−
τs

aupi
0

τs

adni
0 −

τs

adni

 , and
Hfi =


τs

aupi
0 0

0 −
τs

adni
−
τs

adni

 ,
respectively.

Note that, according to the hydraulic descriptions of the
unknown flows given in (2), (3), and (4), the vector of
unknown flows ψ̂i (k) can be described as a linear combina-
tion of known or measured variables and unknown parame-
ters as

ψ̂i (k) = �i (k) θ̂i (k), (10)

where �i (k) ∈ R3×3 is a matrix of hydraulic relations that
can be obtained from measurements of the real system by

�i (k) =

γi (k) 0 0
0

√
yupi (k) 0

0 0
√
ydni (k)

 ,
γi (k) = yupi (k)

√
yupi (k)− ydni (k)+ zupi − zdni ,

and θ̂i (k) ∈ R3 is a vector of time-varying unknown param-
eters to be estimated, described as

θ̂i (k) = [k̂tri (k) k̂upi (k) k̂dni (k)]
>.

These unknown parameters are associated to real and non-
negative physical variables such as areas and conduction
coefficients (i.e., k̂tri (k), k̂upi (k), k̂dni (k) ≥ 0). This is impor-
tant information that must be included into the estimation
strategies.

B. MHE PROBLEM
In order to estimate the vector of unknown parameters θ̂i (k),
the MHE strategy is considered. This is an optimization-
based estimation strategy that consists in minimizing a cost
function defined over a receding time window of inputs and
outputs data with fixed length [26]. This technique is known
for its inherent capability of handling complex nonlinear
systems with constraints [18], showing that it could be a
suitable strategy to deal with the estimation problem in OCIS.
However, following, it is shown that the direct use of the
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FIGURE 4. Graphical description of data over an estimation window.

MHE strategy leads to inaccurate estimations of the unknown
parameters. As it is shown in Figure 4, in the MHE strategy
an estimation window with length Nh that starts in Nhp =
k−Nh+ 1 and ends in k is established. Note that the notation
ŷi (k | Nhp) indicates that the data ŷi (k) depends on the
conditions at the time Nhp. Over this window, the estimation
of the model (8) is given by

ŷ
i
= 8i x̂i (Nhp | Nhp)+ Bi�i (k)θ̂ i (k)+ Bfiξ i (k), (11)

where

ŷ
i
= [ŷi (Nhp + 1 | Nhp)> ŷi (Nhp + 2 | Nhp)>

· · · ŷi (k + 1 | Nhp)>]>,

8i = [(Gi )
> (G2

i
)> · · · (GNh

i
)>]>,

Bi =


Hi 0 · · ·

GiHi Hi · · ·

...
...

...

GNh−1
i

Hi GNh−2
i

Hi · · ·

 ,
�i (k) = diag(�i (Nhp | Nhp) �i (Nhp + 1 | Nhp)

· · · �i (k | Nhp)),

θ̂ i (k) = [θ̂i (Nhp | Nhp)
> (θ̂i (Nhp + 1 | Nhp))>

· · · (θ̂i (k | Nhp))
>]>

Bfi =


Hfi 0 · · ·

GiHfi Hfi · · ·

...
...

...

GNh−1
i

Hfi GNh−2
i

Hfi · · ·

 ,
ξ
i
(k) = [ξi (Nhp | Nhp)

> (ξi (Nhp + 1 | Nhp))>

· · · (ξi (k | Nhp))
>]>,

with ŷ
i
∈ R2Nh , 8i ∈ R2Nh×2, Bi ∈ R2Nh×3Nh , �i (k) ∈

R3Nh×3Nh , θ̂ i(k) ∈ R3Nh , Bfi ∈ R2Nh×3Nh , ξ i (k) ∈ R3Nh , and
0 a null matrix with appropriate dimensions.
In order to find the estimated parameters θ̂ i (k) that mini-

mizes the deviation between estimated and measured levels,
first, the development of a conventional MHE strategy is
formulated. A block diagram of the MHE strategy is shown
in Fig. 5, where additionally to the estimation model and the
optimization stage, it is taken into account that the known
flow measurements ξ (k) and the known hydraulic relations

FIGURE 5. Estimation mechanism.

�i (k) are obtained from levels measurements and positions
of the regulation structures (Table 2). Also, it is assumed that
the level measurements are performed using ultrasound sen-
sors, and these measurements should be sampled and filtered.
Therefore, a low-pass filter stage and a sampling stage are
included. As a result, as long as the noise is sufficiently atten-
uated (in the estimation mechanism), the proposed objective
function to be minimized can be given by

V i = ‖yi − ŷi‖
2
R1i
+ ‖θ̂ i (k − 1)− θ̂ i (k)‖

2
R2i
, (12)

where y
i
is a vector of the measured levels given by

y
i
= [yi (Nhp + 1 | Nhp)> yi (Nhp + 2 | Nhp)>

· · · yi (k + 1 | Nhp)]>,

with y
i
∈ R2Nh . In (12), the term ‖θ̂ i (k − 1)− θ̂ i (k)‖

2
R2i

is included as a forgetting factor that takes into account the
influence of past estimations [27], where θ̂ i (k − 1) is the
sequence of unknown parameters estimated in a previous
iteration. Moreover, R1i ∈ R2Nh×2Nh and R2i ∈ R3Nh×3Nh

are diagonal and positive definite weighting matrices that
penalize the estimation error and the forgetting factor, respec-
tively. The constraints inclusion is used to add information to
the estimation problem [28], then, as the unknown parameters
must be positive, the minimization problem is proposed as

min
θ̂ i (k)

V i

s.t.

θ̂ i (k) ≥ 0. (13)

Note that the reachability of suitable sequences of the
unknown parameters (θ̂ i (k)) depends on the convexity of the
objective function (12). In Lemma 1, it is shown that the use of
a conventional MHE strategy does not guarantee an optimal
estimation of θ̂ i (k).
Lemma 1: From the objective function (12), only sub-

optimal estimations of θ̂ i (k) can be reached.
Proof: A necessary condition for any local minimum

to be a global minimum is the convexity of the objective
function (12). This condition can be reached if the Hessian
with respect to θ̂ i (k) is positive definite, i.e.,

∇
2
θ̂ i (k)

V i = �i (k)
>B>

i
R1iBi�i (k)+R2i � 0. (14)

SinceR1i andR2i are positive defined, the condition estab-
lished in (14) is achieved if �i (k)

>B>
i
Bi�i (k) � 0.

VOLUME 9, 2021 115353



G. Conde et al.: DIMEUF in OCIS

FIGURE 6. Proposed detection, isolation, and estimation mechanisms.

A sufficient condition for �i (k)
>B>

i
Bi�i (k) � 0 is that

the rank of Bi�i (k) should be equal to 3Nh. But, given the
dimensions of Bi and�i (k), the maximum rank of Bi�i (k) is
2Nh. Therefore, the condition (14) and an optimal estimation
of θ̂ i (k) cannot be reached.

However, by definition, �i (k)
>B>

i
Bi�i (k) is positive

semi-definite [29], then, the term

�i (k)
>B>

i
R1iBi�i (k)

is positive semi-definite.
Therefore, the Hessian ∇2

θ̂ i (k)
V i is positive semi-

definite and only sub-optimal estimations of θ̂ i (k) can be
guaranteed. �

A contextualized explanation of the problem can be syn-
thesized in that the minimization of the error between the
upstream and downstream levels can be reached with inac-
curate combinations of the estimated unknown flows. There-
fore, if only an unknown flows estimation algorithm is used,
inaccurate estimations of the unknown parameters can be
reached.

According to the approximate model order (5), the maxi-
mum rank ofBi is 2Nh. Therefore, if only two unknown inputs
are considered, the convexity of the objective function can
be guaranteed. For the two inputs case, Hi is in R2×2, and
the rank of Bi is still 2Nh. This solution can be reached by
estimation of the total amount of the upstream unknown flows
(−qtri (t) − supi (t)) and the total amount of the downstream
unknown flows (qtri (t) − sdni (t)). Then, by direct addition
of the upstream and downstream unknown flows, the total
amount of unknown flows that affect an open-channel can be
estimated. This problem is solved in [30] by using an MHE
strategy. Other strategies such as unbiasedminimum-variance
state estimation [31], and state estimators with quadratic
boundedness [32] could be explored to solve this issue.
However, by using the two unknown-inputs consideration,
the upstream and downstream origins of the unknown flows
cannot be established. Therefore, as a proposed solution,
following, an enhanced strategy that includes detection and
isolation mechanisms is proposed.

III. PROPOSED APPROACH
In order to overcome the non-convex estimation problem,
in Fig. 6 an enhanced strategy for DIMEUF is proposed,

where: i) the detection mechanism uses information about
variations of the known flows (1ξi (k)) and variations of
the measured levels (1yi (k + 1)) to estimate variations
of the unknown flows (1ψ̂i (k)); ii) in the isolation mech-
anism, the information about the estimated variations of
the unknown flows are used to establish the origin of the
unknown flow, which can be an either upstream or down-
stream unknown flow; and iii) in the estimation algo-
rithm, the forgetting factor of the unlikely unknown flow is
penalized in order to estimate the flow transition and the
corresponding unknown flow that minimizes the objective
function (12).

Next, deterministic and stochastic analyses of the proposed
strategies are performed. The deterministic analysis is devel-
oped assuming that the noise can be sufficiently attenuated by
the filtering stage. On the other hand, the stochastic analysis
is developed including information about remaining mea-
surement noise that can affect the detection, isolation, and
estimation processes.

A. DETERMINISTIC APPROACH
Note that under the assumption that the measurement noise
can be sufficiently attenuated, the difference between the esti-
mation mechanisms (Figures 5 and 6) is that in the proposed
strategy for DIMEUF the weighting matrix that penalizes
the forgetting factor (R2i (k)) is time variant. This weighting
matrix is adjusted by the isolationmechanism, which receives
information from the detection mechanism as it is described
next.

1) DETECTION MECHANISM
The proposed detection mechanism is developed using a
similar MHE strategy than the developed for the estimation
mechanism, with the difference that in the detection strategy,
the objective is to estimate the variations of the unknown
flows. Therefore, from the proposed estimation model (9),
a variational estimation model is derived as

1x̂i (k + 1) = Gi1x̂i (k)+ Hi1ψ̂i (k)+ Hfi1ξi (k)

1ŷi (k) = 1x̂i (k), (15)

where, 1x̂i (k + 1) = x̂i (k + 1) − x̂i (k); 1ψ̂i (k) = ψ̂i (k) −
ψ̂i (k − 1); and 1ξi (k) = ξi (k) − ξi (k − 1). Note that the
variational estimation model maintains the same state and
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input matrices than the estimation model (9). Therefore, over
an estimation window, the variational estimation model is
given by

1ŷ
i
= 8i1x̂i (Nhp | Nhp)+ Bi1ψ̂ i (k)+ Bfi1ξ i (k),

where

1ŷ
i
= [1ŷi (Nhp + 1 | Nhp)> 1ŷi (Nhp + 2 | Nhp)>

· · · 1ŷi (k + 1 | Nhp)>]>,

1ψ̂ i(k) = [1ψ̂i (Nhp | Nhp)
> 1ψ̂i (Nhp + 1 | Nhp)>

· · ·1ψ̂i (k | Nhp)
>]>.

1ξ
i
(k) = [1ξi (Nhp | Nhp)

> 1ξi (Nhp + 1 | Nhp)>

· · ·1ξi (k | Nhp)
>]>,

with 1ŷ
i
∈ R2Nh , 1ψ̂ i(k) ∈ R3Nh , 1ξ i(k) ∈ R3Nh .

In the detection strategy, the objective is to find the vector
of variations of the unknown flows (1ψ̂ i (k)) that minimizes
the quadratic error between the variations of the measured
levels (1y

i
) and the variations of the estimated levels (1ŷ

i
).

Therefore, it is proposed to minimize the cost function
given by

J i=‖1yi−1ŷi‖
2
D1i
+‖1ψ̂

i
(k − 1)−1ψ̂

i
(k)‖2D2i

, (16)

where the vector of variations of the measured levels is given
by

1y
i
= [1yi (Nhp + 1 | Nhp)> 1yi (Nhp + 2 | Nhp)>

· · ·1yi (k + 1 | Nhp)>]>.

Besides, ‖1ψ̂
i
(k − 1)−1ψ̂

i
(k)‖2D2i

is included as a for-

getting factor, and 1ψ̂
i
(k − 1) is the vector of variations of

unknown flows estimated in a previous iteration. Moreover,
D1i ∈ R2Nh×2Nh and D2i ∈ R3Nh×3Nh are diagonal and posi-
tive definite weighting matrices that penalize the variational
estimation error and the forgetting factor, respectively.

2) ISOLATION MECHANISM
As it is shown in Fig. 6, the proposed isolation mechanism
uses unknown flows estimated variations (1ψ̂ i(k)) to estab-
lish the possible origin of the unknown flow and penalizes
the corresponding forgetting factor of the unlikely unknown
flow. This is developed under the following assumption.
Assumption 1 (No Simultaneous Variations of Leaks):

In an open-channel, upstream and downstream variations of
unknown flows do not coincide at the same time.
Based on Assumption 1, the isolation mechanism can

be described as a signal comparison mechanism, where:
i) a threshold value (31i ) is established in order to dis-
criminate between noise and real variations of unknown
flows; ii) the magnitudes of the estimated upstream and
downstream variations of unknown flows are compared
in order to establish the feasible origin of the variation;
and iii) in the objective function of the estimation mecha-
nism (12), the diagonal weighting matrix is transformed into
a dynamic matrix that penalizes the forgetting factor R2i (k).

Therefore, the forgetting factor is adjusted as R2i (k) =
diag(Rktri (k) Rkupi (k) Rkdni (k) . . . Rkdni (k)), and the isola-
tion mechanism modifies Rktri (k), Rkupi (k), and Rkdni (k) as
follows:
• if an upstream unknown flow variation is most likely,
thenRktri (k) = αi,Rkupi (k) = αi,Rkdni (k) = βi;

• if a downstream unknown flow variation is most likely,
thenRktri (k) = αi,Rkupi (k) = βi,Rkdni (k) = αi;

where, if βi � αi, the change of the unlikely unknown param-
eter is avoided, and theminimization of the objective function
of the estimation mechanism (12) is performed by ktri (k) and
the unknown parameter of the origin of the variation kupi (k)
or kdni (k).

3) ESTIMATION MECHANISM
Finally, the information of the isolation mechanism is
included in the cost function of the estimation mechanism as
follows:

V i = ‖yi − ŷi‖
2
R1i
+ ‖θ̂ i (k − 1)− θ̂ i (k)‖

2
R2i (k)

. (17)

The cost function is minimized in order to obtain the mag-
nitudes of the estimated parameters k̂tri (k) k̂upi (k), and k̂dni (k).
Note that the magnitude of leaks and seepage can be obtained
by linear combinations of the estimated parameters and func-
tions of the upstream and downstream measured levels (10).

B. STOCHASTIC APPROACH
Even though the deterministic approach contemplates noise
reductionwith the inclusion of a low-pass filter, the remaining
measurement noise can affect the detection, isolation, and
estimation processes. Therefore, in this section, mechanisms
that maximize the likelihood detection and likelihood esti-
mation of the unknown flows are designed. The stochastic
approach maintains the same detection, isolation, and esti-
mation sequence of the deterministic approach (see Fig. 6).
However, for the sake of simplicity, the stochastic estimation
mechanism is discussed first, and then the stochastic detec-
tion and isolation mechanisms are addressed.

1) STOCHASTIC ESTIMATION MECHANISM
In the stochastic estimation mechanism, the remaining mea-
surement noise after filtering is considered. Moreover, as the
known inputs qi , qouti , and qi+1 are obtained from measure-
ments of the levels (see Table 2), the remaining measurement
noise can also affect the model dynamics. Consequently,
an estimation model that includes remaining measurement
noise information can be stated by

x̂i (k + 1) = Gi x̂i (k)+ Hiψ̂i (k)+ Hfiξi (k)+ ωi (k),

ŷi (k) = x̂i (k)+ νi (k), (18)

where ωi (k) = [ωupi (k) ωdni (k)]
> is the process estimation

noise, ωupi (k), and ωdni (k) are normally distributed noise,
with zero mean and standard deviation σωupi and σωdni ,
respectively. Similarly, νi (k) = [νupi (k) νdni (k)]

> is the
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remaining measurement noise, with zero mean and standard
deviation σνupi and σνdni , respectively.
In order to consider the remaining measurement noise, and

the expected values of the levels, the estimation is performed
under the following assumption.
Assumption 2 (Expected Estimated Levels): Over an esti-

mation window, the expected values of y
i
can be estimated

from

ˆ̄y
i
= 8i x̂i (Nhp | Nhp)+ Bi�i (k)T i

ˆ̄θ i (k)

+Bfiξ i (k)+W i (k)+ N i , (19)

where ˆ̄y
i
∈ R2Nh is the vector of estimated expected val-

ues of the output, ˆ̄θ i (k) = [ ˆ̄ktri (k)
ˆ̄kupi (k)

ˆ̄kdni (k)]
>
∈ R3

are the expected values of the unknown parameters, and
T i ∈ R3Nh×3 is a block of identity matrices such that
T i
ˆ̄θ i (k) ∈ R3Nh . Finally, W i (k) ∈ R2Nh and N i ∈ R2Nh are

the corresponding process and measurement noise vectors,
respectively.

It is emphasized that additionally to the noise inclu-
sion, the deterministic and stochastic cases (Equations (11)
and (19)), differ in the configuration of the unknown parame-
ters. Note that in (11), θ̂ i(k) ∈ R3Nh is the estimated unknown
parameters for each instant of the estimation window. In con-
trast, in (19), it is considered that the unknown parameters
( ˆ̄θ i (k) ∈ R3) are the same over the entire estimation win-
dow. In that form, in the stochastic estimation mechanism,
the objective is to find the unknown parameters ( ˆ̄θ i (k)) that
makes the vector of measured levels y

i
most likely. For that

a likelihood function must be established, where over an
estimation window, the process covariance can be obtained
from the estimation error ei = yi (k + 1)− ˆ̄yi (k + 1), and the
covariance is the expected value given by

Pi (k + 1) = E
(
ei (k + 1)ei (k + 1)>

)
. (20)

Consequently, if a discrete model of the system is given by

xi (k + 1) = Gixi (k)+ Hiψi (k)+ Hfiξi (k),

yi (k) = xi (k), (21)

and if the unknown flows (ψi (k)) are considered to be zero or
identical to the unknown estimated flows (ψ̂i (k)), by subtrac-
tion, from (18) and (21), the estimated error can be written as

ei (k + 1) = Giei (k)+ ωi (k) + νi (k + 1).

Therefore, from (20), the process covariance is given by

Pi (k + 1) = GiPi (k)G
>

i
+ R+ S, (22)

where

R =

[
σ 2
ωupi

0
0 σ 2

ωdni

]
, S =

[
σ 2
νupi

0
0 σ 2

νdni

]
.

Finally, the process covariance (22) is given by

6i (k) = diag[(Pi (Nhp | Nhp),Pi (Nhp + 1 | Nhp), · · ·

Pi (k | Nhp))]. (23)

The process covariance contains information about the
deviation that the expected values present over an estimation
window. Next, the process covariance is included in the devel-
opment of the likelihood function used to find the expected
values of ˆ̄θ i (k). Then given the process covariance (23) and
the estimation process (19), a probability density function
(likelihood function) can be formulated as

f (y
i
|
ˆ̄θ i (k)) =

1

(2π )Nh
∣∣6i (k)

∣∣1/2 e− 1
2ϒ , (24)

where

ϒ = (y
i
− ˆ̄y

i
)6i (k)

−1(y
i
− ˆ̄y

i
).

Now, the goal is to find the estimated values ˆ̄θ i (k) that
makes the measured vector (y

i
) most likely. Therefore,

the probability density function (24) must be maximized with
respect to ˆ̄θ i (k). However, as it is shown in [33], for the sake
of simplicity, the logarithm of (24) can be maximized leading
to the following minimization problem:

minimize
ˆ̄θ i (k)

ϒ. (25)

Similarly to the deterministic case, in the objective func-
tion, in order to retain influence of past estimations, also the
forgetting factor (‖ ˆ̄θ i (k − 1)− ˆ̄θ i (k)‖

2
Rsi

) can be included,
leading to the cost function

V si = ‖yi − ˆ̄yi‖
2
6i (k)

−1 + ‖
ˆ̄θ i (k − 1)− θ̄ i (k)‖

2

Rsi(k)
, (26)

where Rsi (k) ∈ R3×3 is used to penalize the forgetting
factor. Moreover, if constraints on the unknown parameters
are included, the minimization problem of the estimation
mechanism is formulated as

min
ˆ̄θ i (k)

V si

s.t.
ˆ̄θ i (k) ≥ 0. (27)

Note that by following a similar analysis as in Lemma 1,
the convexity of the stochastic objective function (26) can be
reached if the rank of Bi�i (k)T i is 3Nh, but given the dimen-
sions of Bi , �i (k), and T i , the maximum rank Bi�i (k)T i

is 2Nh. Therefore, in order to obtain accurate estimations
of the unknown flows, in the stochastic approach, stochastic
detection and isolation mechanisms must be included.

2) STOCHASTIC DETECTION AND ISOLATION MECHANISMS
In the stochastic case, by following a similar procedure as
employed in the obtaining of the variational estimation model
of the deterministic case, from (18), the variational estimation
model is given by

1x̂i (k + 1) = Gi1x̂i (k)+ Hi1ψ̂i (k)

+Hfi1ξi (k)+ ω1i(k)

1ŷi (k) = 1x̂i (k)+ ν1i(k), (28)
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FIGURE 7. Case Study simulation in EPA-SWMM.

where ω1i(k) = [ω1upi (k) ω1dni (k)]
> is related to the

remaining process noise, ω1upi (k) and ω1dni (k) are nor-
mally distributed noise with zero mean. Similarly, ν1i(k) =
[ν1upi (k) ν1dni (k)]

> is related to the remaining measurement
noise, where ν1upi (k) and ν1dni (k) are normally distributed
noises with zero mean. Similarly to the stochastic estimation
mechanism, in order to consider the expected values of the
level variations over an estimation window, the variational
model (28) is presented under the following assumption.
Assumption 3 (Expected Estimated Variations): Over the

estimation window, the expected values of 1y
i
can be esti-

mated from

1 ˆ̄y
i
= 8i1x̂i (Nhp | Nhp)+ BiT i1

ˆ̄ψ i (k)
+Bfi1ξ i (k)+ w1i (k)+ n1i ,

where 1 ˆ̄y
i
∈ R2Nh is the vector of estimated expected values

of the output variations, and

1 ˆ̄ψ i (k) = [1 ˆ̄qtri (k) 1ˆ̄supi (k) 1ˆ̄sdni (k)]
>,

is the vector of expected values of the unknown flows vari-
ations. Finally, w1i (k) ∈ R2Nh and n1i ∈ R2Nh are the
corresponding noise vectors.

In the same way as in (22), the process covariance can be
modeled as

P1i (k + 1) = GiP1i (k)G
>

i
+ R1 + S1.

Note that the measurement and process noises at different
time instants are not correlated (i.e., there is no correlation
between ωi (k) and ωi (k− 1), and νi (k) and νi (k− 1)). There-
fore, the noise standard deviations of ω1upi (k), ω1dni (k),
ν1upi (k), and ν1dni (k) are given by 2σωupi , 2σωdni , 2σνupi , and
2σνdni , respectively. Hence,

R1 =

[
2σ 2
ωupi

0
0 2σ 2

ωdni

]
, S =

[
2σ 2
νupi

0
0 2σ 2

νdni

]
.

As a result, the process covariance (61i (k) ∈ R3Nh×3Nh )
can be calculated yielding to a diagonal matrix of the form

61i (k) = diag(P1i (Nhp | Nhp),P1i (Nhp + 1 | Nhp),
· · · P1i (k | Nhp)). (29)

Consequently, following the same procedure to obtain (26),
the estimation of the unknown flow variation, can be reached
by minimizing the following objective function

Jsi = ‖1yi −1 ˆ̄yi‖
2
61i (k)

−1+‖1
ˆ̄ψ i (k − 1)−1 ˆ̄ψ i (k)‖

2

Dsi
,

(30)

where Dsi ∈ R3×3 penalize the forgetting factor.

Likewise as in the deterministic case, in the stochastic
case, the isolation mechanism uses the estimation of the
expected unknown flow variations to establish the origin of
the unknown flow and to penalize the corresponding forget-
ting factor of the estimation mechanism.

IV. CASE STUDY
The proposed deterministic and stochastic strategies are
tested using the benchmark based on the Corning canal in
California, which has been presented in [19] and the ASCE
Task Committee on Canal Automation Algorithms as a stan-
dardized testbed on canals with well-studied and realistic
properties.
The testbed has been implemented in the storm water man-

agement model (SWMM), developed by the United States
Environmental Protection Agency (EPA), which numerically
solves the SVE of the implemented testbed. The implemen-
tation is presented in Fig 7. Even though the testbed is
composed by eight channels, since the estimation strategies
present the same structure for any channel, the simulation is
limited to only one channel (the first channel of the testbed
in Figure 7). This is a rectangular channel with the following
dimensions: length of 7000m, width of 7m, upstream eleva-
tion of 4.4m, and downstream elevation of 3.29m. As it is
highlighted in Fig. 7, in the first channel, in order to emulate
the unknown flows to be detected and estimated, two orifices
with variable areas from 0 to 0.04m2 have been included.
Amore detailed description of the design and implementation
process follows.

A. SAMPLING TIME
Although most of the OCIS are large-scale systems with very
slow dynamics, it has been observed that the time response
of the system variation can be almost ten times faster than the
system dynamics. Therefore, in order to capture the dynamics
of the system variation, the sampling time has been selected
by analysis of the time response level variation. In this anal-
ysis, the classical control rule of choosing a sampling time
ten times smaller than the rise time [23] is used, yielding to a
sampling time of τs = 100s.

B. MODEL AREAS
The model areas have been found by using data fitting (7),
with the constraint given by aup1 + adn1 = 49000, obtaining
upstream and downstream areas given by aup1 = 21864m2

and adn1 = 27136m2.
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FIGURE 8. Monte Carlo tests to establish the d1i
values that offer the lowest detection errors.

C. NOISE AND LOW-PASS FILTER
As it is shown in [34], there is a close relationship between
the measurement noise standard deviation and the sensor
quality. In this case study, it is considered that in OCIS,
levels are measured with ultrasound sensors, and according
to the quality of the commercial sensors, the measurement
noise standard deviation could be between 1 × 10−3m and
2.5×10−3m. Therefore, the deterministic and stochastic algo-
rithms have been tested with measurements obtained from
the testbed implemented in the SWMM, and the measure-
ments have been contaminated with noise of these standard
deviations.

Moreover, it must be contemplated that in comparison with
the system sampling time (τs), the sensor’s sampling time
should be small. This data availability is exploited with the
integration of low-pass filters to reduce the measurement
standard deviation. For this reason, a third-order low-pass
filter is included with a cutoff frequency of 0.02Hz. This
frequency is chosen by using the Nyquist-Shannon sampling
theorem, and the selected sampling time of 100s. With the
inclusion of the low-pass filter, the standard deviation of the
remaining measurement noise is almost ten times lower than
the original.

D. WEIGHTING MATRICES
1) DETECTION WEIGHTING MATRICES OF THE
DETERMINISTIC MECHANISM
In the deterministic mechanism, for the sake of simplicity,
the detection weighting matrices of (16) can be described
as D1i = d1iI2Nh , and D2i = d2iI3Nh , where d1i , and
d2i are positive weighting constants and I2Nh , and I3Nh are
identity matrices with dimensions 2Nh×2Nh and 3Nh×3Nh,
respectively. In the deterministic case, the relation between
the weighting parameters (d1i , and d2i ) has been used as a
tuning parameter. In the tuning procedure: i) the weighting
parameter that penalizes the forgetting factor has been chosen
as d2i = 1; and ii) Monte Carlo tests have been developed,
where a key performance indicator (KPI) has been established
in order to find the value of d1i that minimizes the detection
error of the unknown flows. The KPI that has been estab-
lished in order to mitigate the noise detection and give strong

penalization of large detection errors is given by

KPI =
kf∑
k=1

(1supi (k)−1ŝupi (k))
4

kf − 1

+
(1sdni (k)−1ŝdni (k))

4

kf − 1
, (31)

where kf is the length of data used in the tests. The tests show
that small values of d1i attenuate the estimation noise, but
also increase inaccurate detections. On the other hand, large
values of d1i increase the detection accuracy but also increase
the noise detection. The results of the Monte Carlo tests are
shown in Fig. 8, where it is observed that d1i values close to
2× 105 offer the lowest detection errors.

2) ESTIMATION WEIGHTING MATRICES OF THE
DETERMINISTIC MECHANISM
Note that in the estimation cost function of the determin-
istic mechanism (12), the weighting matrix that penalizes
the forgetting factor R2i is modified by the isolation mecha-
nism. In this mechanism, the parameters αi and βi have been
selected as αi = 1 and βi = 1×106, where the arbitrary value
of βi is higher enough to avoid the change of the unlikely
flow. On the other hand, the weighting matrix R1i has been
simplified as R1i = r1iI2Nh , where r1i is a tuning constant.
In order to find accurate r1i values, Monte Carlo tests have
been performed. In these tests, the r1i values are evaluated in
order to minimize the mean square error (MSE) between the
estimated and measured unknown flows by

MSE =
kf∑
k=1

(supi (k)− ŝupi (k))
2

kf − 1
+
(sdni (k)− ŝdni (k))

2

kf − 1
. (32)

As it is shown in Fig. 9, it has been found that small
values of r1i reduce the noise estimation with an inaccurate
estimation of the unknown flows, and large values of r1i
increase the estimation accuracy but also the noise estima-
tion, finding that with r1i values close to 0.5 × 105, accu-
rate and readable estimations of the unknown flows can be
reached.
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FIGURE 9. Monte Carlo tests to establish the r1i
values that offer the lowest estimation errors.

FIGURE 10. Monte Carlo tests, where the red line correspond to a threshold value of 4.5 times the maximum standard
deviation of the estimated upstream and downstream unknown flow variations.

3) WEIGHTING MATRICES OF THE STOCHASTIC
MECHANISM
Note that in the stochastic mechanism, the penalization
matrices 6i (k)

−1 and 61i (k)
−1 (Equations (26) and (30),

respectively), are obtained from the process covariance (23)
and (29), where the information about the noise standard
deviations (σνupi , σνdni , σωupi and σωdni ) is required. All the
standard deviations have been obtained from system mea-
surements at steady state. σνupi , and σνdni have been estimated
directly from the standard deviation of the measured noise.
The standard deviations associated to the flows measure-
ments (σωupi and σωdni ) have been estimated using the respec-
tive hydraulic relation presented in Table 2, and discretized
multiplying by τs

aupi
or τs

adni
as appropriate. On the other hand,

the forgetting penalization matrices (Dsi and Rsi (k)) have
been set as Dsi = I3, and Rsi (k) is modified by the isolation
mechanism with αi = 1 and βi = 1× 106.

E. ISOLATION MECHANISM THRESHOLD
For the deterministic and stochastic cases, the threshold value
has been adjusted from tests of the detection mechanisms at
steady state, where the standard deviations of the estimated
upstream and downstream unknown flow variations have
been used to adjust the threshold value.

As it is shown in Fig. 10, by the development of
Monte Carlo tests, it has been found that a threshold value
equal to 4.5 times the maximum standard deviation of the
estimated upstream and downstream unknown flow vari-
ations avoids false detections and allows unknown flows
detections.

Algorithm 1 Deterministic Estimation Algorithm
Define, build, and obtain Nh,8i , Bi , Bfi ,D1i ,D2i ,31i , βi,
αi, andR1i .
while estimation is on do
Acquire and evaluate yupi (k), ydni (k), ui (k), ξi (k),
1yupi (k), 1ydni (k), 1ξi (k)
if k > Nh + 1 then
Obtain y

i
, ξ i(k), 1yi , 1ξ i(k)

Obtain 1ψ̂ by minimizing J i
if |1ŝupi (k)| < 0.131i and |1ŝdni (k)| < 0.131i

then
fl = 0

end if
if fl = 0 and |1ŝupi (k)| > 31i and |1ŝupi (k)| >
|1ŝdni (k)| then

Rktri = αi, Rkupi = αi,Rkdni = βi
else if fl = 0 and |1ŝdni (k)| > 31i and |1ŝdni (k)| >
|1ŝupi (k)| then

Rktri = αi, Rkupi = βi,Rkdni = αi
end if
BuildR2i
Obtain θ̂ i (k) by minimizing V i

Obtain the unknown flow ψ̂i (k) = �i (k) θ̂i (k)
end if

end while

F. IMPLEMENTATION
Finally, the deterministic and stochastic approaches are
implemented by using the algorithms 1, and 2 respectively.
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FIGURE 11. Performance comparison of the deterministic and stochastic detection mechanisms.

Algorithm 2 Stochastic Estimation Algorithm
Define, build, and obtain Nh,8i , Bi , Bfi ,61i (k),Dsi ,31i ,
βi, αi,Rsi(k), ωi (k), νi (k), and T i .
while estimation is on do
Acquire and evaluate yupi (k), ydni (k), ui (k), ξi (k),
1yupi (k), 1ydni (k), 1ξi (k)
if k > Nh + 1 then

Obtain y
i
, ξ i(k), 1yi , 1ξ i(k)

Obtain 1 ˆ̄ψ i (k) by minimizing Jsi
if |1ˆ̄supi (k)| < 0.131i and |1ˆ̄sdni (k)| < 0.131i

then
fl = 0

end if
if fl = 0 and |1ˆ̄supi (k)| > 31i and |1ˆ̄supi (k)| >
|1ˆ̄sdni (k)| then
Rktri = αi, Rkupi = αi,Rkdni = βi

else if fl = 0 and |1ˆ̄sdni (k)| > 31i and |1ˆ̄sdni (k)| >
|1ˆ̄supi (k)| then
Rktri = αi, Rkupi = βi,Rkdni = αi

end if
BuildRsi

Obtain ˆ̄θ i (k) by minimizing V si

Obtain the unknown flow ψ̂i (k) = �i (k)
ˆ̄θi (k)

end if
end while

In these algorithms, the fl variable has been included to
prevent false triggering of the stochastic and deterministic
detection mechanisms.

V. SIMULATION RESULTS AND DISCUSSION
In the simulation results, the deterministic and stochastic
approaches are contrasted using filtered measurement noise,

where a noise attenuation close to 20dB is obtained. There-
fore, in order to test the approaches in the highest and lowest
measurement noise scenarios, first, the approaches are con-
trasted with a filtered measurement noise with a standard
deviation of 1 × 10−4m; and second, the approaches are
contrasted with a filtered measurement noise with a standard
deviation of 2.7× 10−4m.

A. EVALUATION FOR THE SMALLEST NOISE CASE
Figure 11 shows the performance comparison of the deter-
ministic and stochastic detection mechanisms, where it is
observed that when an unknown flow variation occurs,
both approaches present estimated upstream and downstream
unknown flows variations. Also, as expected, the stochastic
mechanism presents the lowest noise amplitude. Addition-
ally, in both cases, it is observed small false detections that
account for the upstream and downstream levels interactions.
Figure 12 shows the operation mode of the deterministic and
stochastic isolation mechanisms, where the threshold 311 is
established at six times the maximum experimental standard
deviations between 1ŝup1 and 1ŝdn1 . Therefore, only detec-
tions that overcome the threshold value are used to establish
the origin of the unknown flow and change the corresponding
forgetting factor. In Fig. 12, the deterministic and stochastic
strategies present similar behavior. However, the relations
between the maximum detected variation and the threshold
of the deterministic and stochastic approaches are close to
3.8 and 6.6, respectively. That means that the stochastic
detection mechanism offers a better relationship between the
estimated signal and the estimated noise. Therefore, with the
stochastic mechanism, it is most likely to detect unknown
flows from noisy measurements. In Fig. 13, the behaviors
of the deterministic and stochastic estimation mechanisms
are shown, where the deterministic mechanism presents more
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FIGURE 12. Comparison of the deterministic and stochastic isolation mechanisms, only detections that overcome 311 are
compared to establish the origin of the unknown flow.

FIGURE 13. Performance comparison of the deterministic and stochastic unknown flows estimators.

accurate estimations than the stochastic mechanism. It occurs
since the deterministic estimation mechanism finds the opti-
mal unknown parameters (k̂tr1 , k̂up1 , and k̂dn1 ) for each time
instant. On the other hand, in the stochastic approach, over
the estimation window, it is found the expected value of the
unknown parameters, showing difficulties for rapid changes
response. However, it is observed that the estimations of
the stochastic approach are suitable enough to be used for
DIMEUF.

The total amount of the estimated unknown flows and
the estimated flow transition are shown in Fig. 14, where
both, the deterministic and stochastic strategies present an
ideal estimation of the total unknown flows. That means that
despite the discrepancies that the upstream and downstream

unknown flows may show, the estimation satisfy the overall
channel mass balance, and levels and flows discrepancies are
compensated with the flow transition. Note that, in order to
compensate rapid changes, the flow transition of the deter-
ministic approach presents rapid variations.

The level’s estimation of the deterministic and stochastic
approaches are similar and accurate (Fig. 15). This result
corroborates the suitability of the selected modeling strategy
because, despite the downstream level of the reference model
changes almost a meter, the simplified selected strategy
describes accurately the behavior of the system. Moreover,
it is highlighted that in the measured and estimated level,
the presence of remaining noise is almost imperceptible.
This shows one of the hardest problems in the estimation
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FIGURE 14. Total amount of the estimated unknown flows and the estimated flow transition.

FIGURE 15. Levels estimation comparison.

of unknown flows in OCIS, where due to the usual large
areas that the OCIS present, even large flow variations can
be imperceptible from level measurements, or can be masked
between measurement and process noises. For that, next,
the behavior of the stochastic and deterministic approaches
are tested in presence of highly-noised measurements.

B. EVALUATION FOR THE HIGHEST NOISE CASE
Figure 16 shows the advantage of the stochastic strategy
in the detection of unknown flows. In the deterministic
strategy, it is observed that there are unreadable unknown
flow detections, which are masked for the noise estimation.
Similarly, in Fig. 17 it is shown that the deterministic isolation

mechanism is not capable of distinguish between the esti-
mated noise and all the estimated unknown flow variations.
On the other hand, the stochastic isolationmechanism is capa-
ble to accomplish with suitable detections for all variations.

Fig. 18, shows how the isolation problems of the determin-
istic mechanism induce wrong penalizations and inaccurate
estimations of the unknown flows. Conversely, in the stochas-
ticmechanism, the highest noise induce negative effects to the
estimation algorithm. However, in the stochastic mechanism,
the estimated unknown flows are accurate enough to be used
for DIMEUF.

In the deterministic case, the isolation mechanism prob-
lems also affect the total estimation flow (Fig. 19), and the
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FIGURE 16. In presence of highly-noised measurements, it is highlighted that the deterministic detection mechanism
presents unreadable unknown flow detections.

FIGURE 17. In presence of highly-noised measurements, it is highlighted that the deterministic isolation mechanism is not
capable of distinguish between the estimated noise and all the estimated unknown flow variations.

estimation of the upstream and downstream levels (Fig. 20).
In contrast, the stochastic mechanism only presents small
discrepancies in the estimation of the upstream and down-
stream unknown flows (Fig. 18), highlighting the proper
performance of the stochastic strategy in presence of noisy
measurements.

C. UNKNOWN FLOWS ESTIMATION ERRORS
COMPARISON
In order to summarize the performance comparison among
the deterministic and stochastic approaches under the small-
est and highest noise scenarios, Fig. 21 shows the box
plots corresponding to distribution data of the upstream plus

downstream unknown flows estimation error, where the red
lines are the average error value, and the blue lines are
first and third quartiles (25th percentile and 75th percentile),
showing that even though the distribution is not normal,
in the four cases the error is distributed close to zero. The
black lines represent the upstream and downstream limits
that contain about 93% of the data, the red marks corre-
spond to the outliers (0.7% of the data). This comparison
reveals the advantage of using the stochastic approach (b, d).
In the smallest and highest noise scenarios, the data dis-
persion of the stochastic approach is smaller than the data
dispersion presented for the deterministic approach. It must
be highlighted that, according to the data distribution, in both
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FIGURE 18. In presence of highly-noised measurements, the isolation problems of the deterministic mechanism induce
wrong penalizations and inaccurate estimations of the unknown flows.

FIGURE 19. In presence of highly-noised measurements, the isolation mechanism problems of the deterministic case also
affect the total flow estimated.

scenarios, by using the stochastic approach the estimation
precision is increased almost ten times. This finding justifies
the use of the stochastic over the deterministic approach.

D. HYDRAULIC CONDITIONS
Despite the developed test has been performed over a realistic
system, and the estimation strategies have been contrasted
against data obtained from a modeling tool that numeri-
cally solves the SVE of the hydraulic systems (obtaining
successful results), one question arises over the operative
hydraulic conditions of the proposed DIMEUF strategies.
Note that the selected simplified modeling strategy is the fun-
damental element of the DIMEUF approaches. Therefore, the

operative hydraulic conditions of the estimation strategies can
be addressed from hydraulic analyses of the different flows
that conform the simplified modeling strategy. With respect
to the known channel inflows and outflows, by using the
respective flow relations, such as the presented in Table 2,
the modeling strategy can be easily adapted to multiple types
of hydraulic structures. On the other hand, the flow transition
in (2) presents a hydraulic condition that must be analyzed.
The flow transition only is real if the head loss due to fric-
tion (hLi ) is strictly positive. In that way, the proposed estima-
tion approaches are only useful in OCIS with a considerable
potential decay. In order to illustrate this claim, the testings
of the estimation strategies using a canal inspired on lateral
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FIGURE 20. In presence of highly-noised measurements, the isolation mechanism problems of the deterministic case also
affect the estimation of the upstream and downstream levels.

FIGURE 21. Comparison of the upstream plus downstream unknown flows estimation error, where: a. corresponds to the
evaluation for the smallest noise case of the deterministic approach; b. corresponds to the evaluation for the smallest
noise case of the stochastic approach; c. corresponds to the evaluation for the highest noise case of the deterministic
approach; and d. corresponds to the evaluation for the highest noise case of the stochastic approach.

canal WM of the Maricopa Stanfield Irrigation and Drainage
District in central Arizona, reported in [19] is also proposed.
This canal is chosen because it presents hydraulic character-
istics that are highly different from the characteristics of the
Corning canal. The WM canal is a 100m length canal, with
upstream elevation of 3.6m, downstream elevation of 3.3m,
and width of 1.5m. Moreover, due to the short length of the
WM canal, their potential decay can be easily changed by
modification of the channel roughness.

In this order of ideas, in Fig. 22, the performance of a
stochastic DIMEUF strategy over the WM channel is shown.

In this case, the WM channel has been simulated in
EPA-SWMM using a Manning roughness coefficient of
0.004 s/m1/3, and the DIMEUF strategy has been designed
following the same procedure that had been exposed to the
Corning canal. Moreover, in Fig. 22, the behavior of the head
loss due to friction is shown. Note that despite the head
loss due to friction is small, this is always positive and
the DIMEUF strategy reaches an accurate estimation of the
unknown flows. On the other hand, in Fig. 22, the head loss
due to friction behavior of the WM channel with a Manning
roughness coefficient of 0.001 s/m1/3, is shown, where it is
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TABLE 3. Notation.
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TABLE 3. (Continued.) Notation.

observed that the head loss due to friction is close to zero, and
there are sections that show negative values of the head loss
due to friction. This negative values, which could be attained
to the equal mean flow velocity assumption of the approx-
imated model, make impossible the implementation of the
developed DIMEUF strategies. This result, which could be
interpreted as a limitation of the simplified modeling strategy
and therefore of the DIMEUF strategies, can be overcome if,
for control and estimation purposes, the channels that have a
small head loss due to friction aremodeled as a unique storage

unit, with area equal to the channel area and known inflows
modeled by using the hydraulic relation given in Table 2.
In this case, there is a limitation on identifying the either
upstream or downstream unknown flow origin, and there is
no need to use detection and isolation mechanisms. Another
option, which is out of this work scope, could be to eliminate
the modeling assumption of an equal mean flow velocity
along the channel. This solution implies to use of the SVE
in order to establish differential equations that describe the
momentum conservation. This information could be used
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FIGURE 22. Head loss due to friction for channel with high roughness coefficient.

FIGURE 23. Head loss due to friction for channel with low roughness coefficient.

to identify the instant differences between the momentum
conservation of the real and modeled systems. Therefore,
the development of DIMEUF strategies designed from the
SVE have the potential of improving the reached results in
this work. However, due to the complexity of the SVE, and
the probable model order increases, this development is not
evident.

VI. CONCLUSION
In this paper, two strategies for detection isolation and mag-
nitude estimation of unknown flows, which take into account
the effects of flow conduction, have been proposed. These
strategies have been developed exploiting the advantages that
the moving horizon estimation approach has in dealing with
constrained non-linear systems. The proposed strategies also
take advantage of the forgetting factor, which has been used
to incorporate physical information about the most likely
unknown flow detected. The strategies have been designed
from deterministic and stochastic points of view, showing
that including information about noise and expected level
values increase the estimation performance. The strategies
have been tested using two well-known benchmarks, which

have been implemented in an specialized software, showing
that although the strategies have been developed using a
simplified modeling approach, they are capable of accurately
estimate the channel behavior and unknown flows in long
operation regions. Into the test, it has been highlighted that
due to the nature of the OCIS, in the estimation of unknown
flows, the most important challenges to overcome are the
measurement and process noise and the uncertainties. For
this reason, the real system implementation is an important
pending task. Moreover, the integration of the estimation
mechanism with control strategies that minimize losses due
to unknown flows could be an interesting future direction.
Finally, the development of more tests and strategies that
mitigate noise detection and estimation impact is an open
problem that deserves more attention.
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