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ABSTRACT Reliable and precise multi-step-ahead tool wear state prediction is significant to modern indus-
tries formaintaining part quality and reducing cost. This study proposes a Clustering Feature-basedRecurrent
Fuzzy Neural Network (CFRFNN) for tool wear state monitoring and remaining useful life (RUL) prediction
based on K-means Clustering, Recurrent Fuzzy Neural Network (RFNN) and Genetic Algorithm (GA).
K-means Clustering method is utilized to realize tool wear state definition and input signal division, which
reduces the dependence on the prior knowledge of tool wear degree and improves the prediction accuracy.
Then, an enhanced RFNN model is designed and applied on the clustered features to predict tool wear state.
The optimized GA technique is helpful for adaptive optimization of model parameters, which significantly
improves convergence rate and prediction accuracy. The experiments on tool state prediction are performed
to validate superiority of CFRFNN, and the results demonstrate that the proposed network could reasonably
configure the complex non-stationary tool wear process and have high prediction accuracy of tool wear state.

INDEX TERMS Multi-step-ahead tool state prediction, remaining useful life (RUL), recurrent fuzzy neural
network (RFNN), tool wear monitoring.

I. INTRODUCTION
Tool wear is a pervasive problem in manufacturing pro-
cess, which also has an extremely negative effect on the
perfor-mance and productivity of computerized numerical
control (CNC) machines. Effective methods that can pro-
cess big data in manufacturing and monitor tool wear state
are meaningful to improve processing quality and reduce
cost [1]–[3]. Meanwhile, it promotes the research and of tool
state management systems (TSMS), which have capacity to
effectively evaluate tool wear state and make prediction of
tool remaining useful life (RUL) in real time.

Data-driven method has been verified a reliable approach
for tool wear state monitoring and RUL prediction [4]. There
are three stages in this kind of method: the first is extracting
discriminant features, and the second is training machine
learning models by using historical feature data-sets, the final
is applying the trained model on real-time data to predict tool
state and RUL. Therefore, the premise of data-drivenmethods
is extracting discriminant tool features from input signals
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to train machine learning models [5]–[8]. Zhang et al. [5]
utilizedwavelet packet to extract the features of nonstationary
vibrations in three vertical directions. Zhu et al. [6] dis-
covered that the Holder exponents extracted from wavelet
transform modulus maxima can reflect tool wear state. After
extracting features from original signals, in order to enhance
feature space and reduce input dimension, principal com-
ponent analysis [7] and factor analysis [8] were adopted.
Finally, the extracted features are utilized as input to different
models, such as auto-regression [9], manifold learning [10],
hidden Markov [11], sparse decomposition [12], and deep
learning [13].

Among these methods, deep learning models have been
extensively applied in tool state diagnosis and prognosis
due to the powerful capabilities in complex sequence mod-
eling. Sun et al. [14] utilized features learned by sparse
auto-encoder (SAE) to train deep neural network (DNN) for
induction motor fault diagnosis. Jia et al. [15] proposed a
DNN with deep architectures to mine key information from
raw signals for intelligent fault diagnosis. Ren et al. [16]
constructed a prediction framework based on auto-encoder
and DNN for prognostics of bearing RUL. Rai et al. [17]
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encouraged a method based on a hybrid of empirical mode
decomposition (EMD) and k-medoids clustering to moni-
tor the degradation in bearings. Li et al. [18] developed a
convolutional neural network (CNN) to capture multi-source
data for industrial production monitoring. Wang et al. [19]
proposed a novel SAE-LSTM for tool wear prediction under
variable working conditions.

In addition to the above deep learning models for fault
monitoring and diagnosis, recurrent neural network (RNN) as
crucial branches of deep learning models, have been widely
applied in multi-step-ahead tool wear state and RUL pre-
diction. RNN is designed for processing sequential data and
has good capabilities in time series data modeling. Current
RNN models can be generally classified into three categories
according to the structures: RNN [20], [21], long short term
memory (LSTM) networks [22]–[24], and gated recurrent
units (GRU) networks [25], [26]. LSTM is a variant of RNN
and adds an approach to carry information across multiple
timesteps, which can prevent early signals from gradually
vanishing during processing. Zhao et al. [22] proposed a
convolutional bidirectional LSTM to predict tool wear by
analyzing raw sensory data. Zhang et al. [23] presented
a data-driven method based on LSTM to predict RUL of
engines. Hinchi et al. [24] proposed a deep frame-work based
on convolutional LSTM recurrent units for ball bearing RUL
estimation. GRU networks can be regarded as a streamlined
version of LSTM networks with cheaper computational cost.
Peng et al. [25] proposed a novel bidirectional gated recurrent
unit (BGRU) to realize fault diagnosis utilizing cost sensitive
active learning. Liu et al. [26] utilized GRU-based non-linear
predictive denoising autoencoders to detect anomalous con-
ditions and classify fault types of rolling bearing. Generally,
prediction methods based on deep learning models have the
capability to directly learn features from input datasets, which
may not make full use of extensive expert knowledge. The
adaptive network based fuzzy inference system (ANFIS) pro-
posed by Jang et al. [27] combined adaptive learning ability of
artificial neural network (ANN) with knowledge expression
ability of FIS and can effectively use expert knowledge to deal
with complex problems, such as fault diagnosis [28]–[30].
However, tool wear is a time-dependent dynamic process,
whose input-output modes are difficult to be fully recognized
only by static ANFI. Recently, amounts of researches have
been concentrating on time series analysis ability of RNN
with integrating knowledge expression ability of FNN, which
have been effectively applied in multi-step-ahead time series
prediction tasks [31]–[33].

In this paper, a clustering feature-based recurrent fuzzy
neural network (CFRFNN) is proposed for automatic iden-
tification and prediction of tool wear state. In the proposed
framework, features of each time step are first extracted
from segments of original sensor signals. Meanwhile, orthog-
onal wavelet packet transform (OWPT) is used to realize
multi-feature signal dimension reduction and noise elimi-
nation for creating initial datasets. Then, through K-means
algorithm, the extracted tool features are divided into three

wear degrees to provide a judgement basis for initial state and
RUL prediction. Finally, an enhanced RFNN model is pro-
posed with the aim of improving optimization performance
and convergence speed. Besides, several tradi-tional models
are also trained for comparison to prove the superiority of the
proposed CFRFNN in tool wear moni-toring and prediction.
The main contributions of this paper can be summarized as
follows.

1) The proposed framework can be regarded as a hybrid
approach of unsupervised feature division and supervised
feature learning. The multi-timestep feature extraction and
K-means clustering scheme can reduce the model size and the
enhanced RFNNmodel is able to process datasets of different
wear degrees separately to improve prediction accuracy.

2) An enhanced CFRFNN is proposed. A bidirectional
stacking recurrent structure is adopted to increase net-
work capacity. The clustering feature-based output averaging
operation can directly calculate node output, which can sup-
plement the output of the LSTM layers to ensure the full
connection to the fuzzification layer. Finally, the proposed
genetic-simulated annealing algorithm can determine the
optimal fuzzy rules and initial parameters of CFRFNN to
accelerate convergence and improve prediction accuracy.

3) The experimental studies in multisensory scenario
and comparisons between CFRFNN and some other pre-
diction methods are conducted to verify effectiveness and
genera-lization capability of the proposed framework.

The remainder of this paper is organized as follows.
In Section II, the LSTM model is reviewed, and then the
proposed CFRFNN is shown in Section III. Experimental
results are discussed in Section IV. More experiments are
conducted in Section V, and the conclusions are drawn in
Section VI.

II. BACKGROUNDS
The main objective of this study is to explore an optimized
hybrid method for multi-step-ahead prediction. The recurrent
mechanism is responsible for time series analyzing and tem-
poral processes. In this study, Long-Short Term Memory
(LSTM), a RNN variant, is adopted.

In LSTM layers, the core component is the state unit
c(t)j with a linear self-loop. The weight of the self-loop is

modu-lated by a forget gate f (t)j , which adjusts the weight to
a value between 0 and 1 by a sigmoid unit. There is also an
input gate i(t)j to control the new memory content that needs
to be added but with its own parameters. Gates are computed
by

f (t)j = σ (Wf x(t) + Uf h(t−1) + b
f
j ) (1)

i(t)j = σ (Wix(t) + Uih(t−1) + bij) (2)

where x(t) is the input signals and Wf , Wi, Uf , Ui, b
f
j , b

i
j are

the input weights diagonal matrices, recurrent weight diag-
onal matrices and biases, respectively. h(t) is the output of
LSTM unit that can also be modulated by the output gate o(t)j ,
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which can be expressed by:

h(t)j = o(t)j tanh(c(t)j ) (3)

o(t)j = σ (Wox(t) + Uoh(t−1) + boj ) (4)

which has the parameters Wo, Uo, boj for its input weights
matrices, recurrent weight diagonal matrices and biases. The
illustration of LSTM model is given in Figure. 1.

In the model proposed in this study, the evolutionary fuzzy
neural layers are embedded into an enhanced LSTM net-
work. First, the enhanced LSTM layers are used to internally
loops over entire time series elements, and the output can be
calcu-lated by two components: the output of bidirectional
stacking recurrent layers and the clustering feature-based
averaging output, which can complement each other. Further-
more, an optimized genetic-simulated annealing algorithm is
proposed to select the optimal set of initial weights and rules
with high classification ability, which can enhance accuracy
and acce-lerate the convergence of CFRFNN.

III. TOOL STATE MONITORING AND PREDICTION WITH
CFRFNN
The core task of multi-step-ahead tool wear state prediction
is to estimate the expected time from current cutting features
to severe wear features. The accuracy of RUL prediction is
mainly affected by the following two ingredients: the current
tool wear features and the definition of severe wear. In this
paper, the K-Means clustering method is used to divide and
identify the tool wear state into three degrees according to
the features extracted from experimental datasets for realizing
real-time judgement of tool wear state as well as improving
prediction accuracy through datasets segmentation. Figure. 2
shows the diagram of prediction through CFRFNN. After
extracting local features of each timestep from raw sensor
signals, the CFRFNN is applied on the current features to
predict the features of subsequent timesteps.

A. CLUSTERING BASED ON K-MEANS METHOD
In the practical application of multi-step-ahead tool wear
state prediction, the first problem is defining tool wear state
and determine the initial state of monitored tool. In this
study, tool wear state is divided into three states by K-means
method referring to the Taylor tool life curve. Compared with
other clustering methods, K-means method has advan-tages
of good clustering effect and fast convergence, which is suit-
able for the real-time identification of tool wear state. The
purpose of K-means method is to classify the input features
into several clusters, and update the cluster centers on premise
of minimizing the objective function O. Therefore, it can be
utilized to determine tool wear degree. The distance between
input features xi and cluster centers cj can be defined by:

d(xi, cj) =
f∑
l=1

∥∥xil − cj∥∥ (5)

where ‖∗‖ is the general Euclidean distance and f is the
number of input features. Then the objective function can be

FIGURE 1. Illustrations of LSTM networks.

expressed as:

d(xi, cj) =
f∑
l=1

∥∥xil − cj∥∥ (6)

where p is the dimension of input features and q is the num-
ber of cluster centers.

B. ENHANCED LSTM WITH CLUSTERING OUTPUT
AVERAGING
Although fuzzy layers have unique characteristics of strong
knowledge expression and learning ability. In the real-world
RUL prediction, there also exist temporal correlations and
vanishing gradient problems [34], [35], which result in degra-
dation of the performance of fuzzy layers. LSTM networks
are time dependent and can process the timesteps in order,
which is why they perform well on RUL prediction tasks.
In CFRFNN, the enhanced LSTM layers are added to mem-
orize relations among features of various timesteps.

1) RECURRENT DROPOUT REGULARIZATION
To prevent the problem of overfitting with limited data,
the dropout regularization is applied to randomly zeroing-out
the input unit, thus to break happenstance correlation in train-
ing data. The core idea of dropout is to randomly drop units
(set to 0) from neural network during training. Each unit in
each timestep has same dropout mask p to avoid disrupting
error signals. Dropout generally utilized to the outputs of a
fully connected LSTM can be written as:

ht = Z ∗ H (xt , ht−1) (7)

where ∗ denotes the element wise product. Z is a binary mask
vector with each element generated from Zr ∼ Bernoulli(p).

2) BIDIRECTIONAL STACKING RECURRENT LAYERS
To increase the model capacity and flexibility as well as
providing sufficient information for subsequent fuzzy lay-
ers, bidirectional stacking recurrent layers are introduced to
expand the network capacity. The bidirectional structure is
able to memorize both the past and future signals during
processing time series information by dividing the regular
LSTM neurons into two directions: one for forward direction
and the other for backward direction, which also enhance the
role of time series information by capturing potentially richer
patterns. The hidden layer concatenated vectors of the final
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FIGURE 2. Architecture of the proposed CFRFNN.

timestep ht+n can be written as follows:

ht+n = Eh1 ⊗
←

h t+n (8)

where Eh and
←

h represent the forward and backward layers
output, which are both calculated through the standard LSTM
updating equations as follows:

Eht = EF
(
Ext , Eht−1; E∇LSTM

)
(9)

←

h
(t)
=
←

F
(
←x t ,

←

h t+1;
←

∇LSTM

)
(10)

where F is the standard LSTM updating equations defined
by (1)-(4) and ∇LSTM is the parameter set.

In addition, to construct a more powerful recurrent struc-
ture, the stacking recurrent layers are adopted to extract more
generalized sequence features. Based on the above idea, a
method of stacking multiple LSTM hidden layers is proposed
to increase the capacity of CFRFNN. Each intermediate layer
returns a full sequence of outputs and the averaging method
is introduced to optimize the final output at each timestep t .
The final output can be expressed as:

h̄t =
1
n

n∑
l=1

h(l)t (11)

where n denotes the labels of hidden layers.

3) CLUSTRING FEATURE-BASED OUTPUT AVERAGING
The final output of the above LSTM layers at each timestep
can be regarded as the input of next fuzzy layers. However,
in the real process of data acquisition, feature extraction and
enhanced LSTM layers, sequence information might be lost.

Considering different output characteristics among several
wear states, clustering feature-based output averaging is pro-
posed to ensure integrity of output sequence. The average
output is expressed as:

h̄t =
Sn∑
i

ω(i)h(i)t (12)

where Sn = [T (s)
n ,T

(e)
n ] denotes the different wear states

divided by K-means algorithm, T (s)
n and T (e)

n denote the start
timestep and end timestep, respectively. n is the clustering
type of timestep t , i is the index for timestep.

As the LSTM layers are bidirectional and the extracted fea-
tures have been clustered by K-Means method, which means
the intermediate time series information of each cluster has
a larger impact on the output, thus the impact of clustering
middle output is highlighted to improve reliability of the
algorithm, weights are designed as follows:

ωi =
exp(l(i))

T (e)
n∑

k=T (s)
n

exp(l(k))

(13)

where the formula l(∗) denotes the minimum distance from
current timestep to cluster boundary, which is expressed as:

l(i) = min(i− T (s)
n ,T

(e)
n − i) (14)

C. FUZZY LAYERS WITH EVOLUTIONARY COMPUTATION
At last, the learned results h = [h1, h2 . . . , hn] are transmitted
into the fuzzy layers for further fitting. In fuzzy inference
system, themain difficulties are choosing the optimal weights
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and selecting the suitable fuzzy rules. Therefore, an opti-
mized genetic-simulated annealing algorithm is proposed to
optimize the initial weights and choose the fuzzy rules with
high classification ability. To prevent CFRFNN from falling
into local optimum and accelerate the convergence speed,
the proposed genetic algorithm increases probability of dom-
inant individual selection and accepts the worsening solution
with a certain probability.

1) FIVE-LAYER FEEDFORWARD STRUCTURE
In this study, the proposed CFRFNN can effectively integrate
the learning dexterity of neural layers with the humanlike
knowledge expression of fuzzy layers. In fuzzy layers, first
is fuzzification layer, in which neurons convert input features
into membership degrees through activation function. Then is
rule layer, in which each neuron represents a fuzzy rule. The
connection of rule antecedents can be calculated by operator
product, which can be expressed by:

y(2)i = ωAi × ωBi (15)

where y(2)i is the output of ith rule neuron. The value of ωi
corresponds to the true value of ith rule.
As shown in Figure. 2, the third layer is normalization

layer, in which each neuron evaluates normalized excitation
intensity to represent contribution rate to final result. Hence,
the output can be updated as:

y(3)i =
x(3)ii
m∑
j=1

x(3)ji

=
ωi
m∑
j=1
ωj

= ωi (16)

wherem is the sum of rule neurons, and x(3)ji represents the ith
input of jth neuron.

The main function of next layer is defuzzification, each
neuron is connected to the corresponding normalized neuron
and initial inputs. The defuzzification layer calculates the
weighted consequent value, which is determined as:

y(4)i = ωi(pi1x1 + pi2x2 + qi) (17)

where pi are the consequent parameters.
The final layer is a neuron to synthesize the output of the

previous layer then to provide the actual outputs.

2) OPTIMIZING WEIGHT MATRICES VIA GENETIC
ALGORITHMS
In training process, each epoch can be divided into forward
transmission and backward propagation. In forward trans-
mission, each neuron output is calculated layer by layer. The
output of defuzzification layer, Eq. (17), is a linear function,
which can be established according to the consequent para-
meters in the matrix notation:

y(4) = Mp (18)

where M is the output. p are the consequent parameters,
which are expressed by Least Square Estimation (LSE).

And the LSE of p, p∗ can minimize the squared error∥∥Mp− y(5)∥∥2, which can be realized by pseudo-inverse
technique:

p∗ = (MTM )−1MT y(5) (19)

whereMT is the transpose ofM .
In backward propagation, when the optimal rule conse-

quent parameters are determined, the error signals will be
propagated backward. Antecedent parameters are evaluated
in terms of the chain rule:

f =
l∑
i=1

e2i =
l∑
i=1

(y(5)i − yi) (20)

where f is the fitness value of population, ei is the error vector
of ith variable, l is the total number of input variables, y(5)i
and yi are the actual output and desired overall output of ith
variable.

In back propagation learning algorithm, there may be the
problem of converging to sub-optimal weights, which indi-
cates the optimal solution may not be reached. To get better
initial weight parameters, an optimized genetic method is
proposed, and the procedure involves:

a. Chromosome population initialization and fitness func-
tion definition, including population size, mutation
probabi-lities and learning rate.

b. Roulette method has been employed as selection
strategy to choose optimal individuals with high fit-
ness. As well adjusting fitness with simulated anneal-
ing algorithm to stick out the excellent individuals,
the probability of individual selection is as follows:

pi =
e1/fiT
n∑
i=1

e1/fiT
(21)

where n is the size of population and T denotes the
temperature in simulated annealing algorithm.

c. Two genetic operators, crossover and mutation, are
used to produce offspring chromosomes. In order to
enable the algorithm to escape local extremum and
avoid premature convergence, the worsening solution
with better fitness value is accepted with probability
in process of mutation. The acceptance criteria are as
follows:

A =

{
1, df ≤ 0
edf , df > 0

(22)

where df is the difference between offspring and parent
chromosome fitness values.

d. Repeat the process (b) and (c) until the specified num-
ber of iterations is reached.

3) SELECTING APPROPRIATE FUZZY RULES VIA
EVOLUTIONARY COMPUTATION
In fuzzy layers, evolutionary computation is employed to
choose and optimize fuzzy IF-THEN rules for more precise
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FIGURE 3. Experimental setup for tool state prediction.

prediction. Since the number of multiple fuzzy rule tables
required may be quite large, genetic algorithm is adopted to
minimize the number of rule sets. The steps selecting fuzzy
IF-THEN rules by genetic algorithm are similar to the steps
described above, and fitness function satisfying optimization
requirements is as follows:

f (P) = ωA
AS
AALL

− ωR
RS
RALL

(23)

where As is the amount of successful prediction, AALL is
the total amount of prediction datasets, Rs and RALL are the
amount of IF-THEN rules in the set P and PALL . The impor-
tance of prediction accuracy and size of a ruleset are reflected
by specifying the weights ωA and ωR.
The whole framework of CFRFNN has been illustrated

in Figure. 2.

IV. EXPERIMENTAL VALIDATION
To test the performances of the proposed CFRFNN, real-
time series data of tool wear in same working conditions are
applied. In this study, according to the Taylor tool life curve,
the tool wear state can be classified into three stages: slight
wear, moderate wear, and severe wear. The specific degree of
tool wear is measured by K-means method.

A. BENCHMARKING DATA DESCRIPTION
1) EXPERIMENT SETUP
The experiment was conducted on a high-speed CNC milling
machine without cutting fluid and the signals were col-
lected synchronously. The experimental platform is shown
in Figure. 3. The cutting work-piece material was CR12moV
and cutting tools were carbide end-milling cutters with
4 teeth, as shown in Figure. 4(b). The total length and
the diameter of the cutting tools were 50mm and 6mm,
respec-tively. Cutting force, torque and vibration signals were
selected as observational signals. Other processing para-
meters were as follows: The spindle rotation speed was
3000 r/min; the feed speed in x direction was 240 mm/min;
the cutting depth in y direction (radial direction) and z direc-
tion (axial direction) were both 0.5 mm; the sampling fre-
quency of signals was 20 kHz and the duration of each
cutting segment was 10 seconds. To get adequate information,

FIGURE 4. Tool wear. (a) Tool wear monitoring system. (b) Tool used for
processing. (c) Tool wear measurement.

the program was set to generate 389 cutting segments from
each cutting tool. Then, to acquire real-time cutting force
and torque signals in three directions, a Kistler compact
multi-component dynamometer was mounted under the cut-
ting work-piece. At the same time, to collect real-time
vibration signals in three directions, a DAQ Elsys TraNET
404S8 was adopted and piezo accelerometers were installed
on Kistler dynamometer with a same sampling frequency
of 20 kHz during the cutting experiment. The accelerometer
sensitivity was 100 mV/g and the frequency range was 0.5 Hz
to 13 kHz. The flank wear of the cutting tools measured
by a digital measuring microscope INSIZE ISM-WF200 is
shown in Figure. 4. To ensure the continuity of the production
process, K-means method is adopted to analyze the extracted
features instead of measuring the flank wear width. The main
type of tool wear in this paper is mechanical wear and the
tool life end criterion is based on the boundary determined
by K-means method. According to the Taylor tool life curve,
the tool wear range of slight wear state is under 0.15 mm and
the tool wear range of severe wear state is over 0.3 mm. The
features of the tool wear boundary are extracted and then the
number of clustering kernels is constantly adjusted to fit the
boundary features, thus K-means can be correlated to the real
tool wear. The input sensor signals contained nine types of
data: force, torque and vibration in three directions. Three sets
of tool wear experiments were carried out: two experi-ment
acquisition signals were used as training datasets, and the
third were used as test datasets.
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FIGURE 5. Cutting force, torque, and vibration signals and their energy
wavelet packet.

FIGURE 6. Two-dimensional (2-D) projection clustered by K-means
method.

2) FEATURE EXTRACTION AND DATA CLUSTERING
To reduce data size and extract features without losing infor-
mation, orthogonal wavelet packet transform (OWPT) is used
to extract the wavelet energy feature, whose energy spectrum
distribution is related to tool wear state. OWPT shows a
good effect on noise elimination and dimension reduction,
which can improve the prediction accuracy and calculating
speed. The input signals can be decomposed into 2i sub-bands
by i-level OWPT, and the energy of each sub-band can be
expressed by:

Ei(ti) =
m∑
k=1

∣∣xi,k ∣∣2 (24)

where xi,k is the amplitude of reconstructed signals.
Cutting force, torque and vibration signals and their mean

energies are shown in Figure. 5. Three sets of acquired signals

FIGURE 7. Mapping process to determine the tool wear boundary.

FIGURE 8. Average fitness calculated by CFRFNN.

were transformed into feature datasets by OWPT and the
feature of each timestep contains 81-dimensional vectors.
Then, in order to define the boundary of three wear degrees
and determine the tool wear degree in real time, K-means
method is used to cluster the training feature datasets. With
an increase in amount of training datasets, the boundary
becomes clearer and the tool wear diagnosis is more accurate.
The 2-dimensional projection of clustering results is shown
in Figure. 6. Two vectors are chosen as coordinate axes and
2-D projection can show the boundaries of different wear
state, which provides foundation for RUL prediction. The
mapping process to determine the tool wear boundary is
shown in Figure. 7.

B. CFRFNN TRAINED BY RUN-TO-FAILURE DATASETS
The practical application of multi-step-ahead tool wear state
prediction goes through two phases: offline training and
online application. The primary objective of training stage is
fitting the network offline, which means the more training
time cost due to the more complicated of methods will not
affect the real-time performance. Therefore, the optimization
method in training stage focus on the accuracy improvement.

After data clustering, the training datasets can be input into
CFRFNN for network training. The first step is determining
network structure, the amount of input and output nodes is
adjusted according to the extracted features. Furthermore,
initial population of two kinds of chromosomes is randomly
generated: each gene in one kind of chromosome represents
a true value of each initial weight and the threshold of whole
network, each gene in the other kind represents a specific
fuzzy IF-THEN rule. During training process, the average
fitness of each generation is calculated and recorded by
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averaging the fitness of all individuals in current popula-
tion. The relationship between the average fitness and the
iteration number is shown in Figure. 8. It can be seen that
an obvious decreasing of the average fitness exists along
with the increase of iteration number, which means the train-
ing error is decreasing gradually. Compared with traditional
genetic algorithms, the proposed genetic algorithm is a more
effective optimization method for the proposed CFRFNN
network, which has higher prediction accuracy and conver-
gence speed.

C. TOOL WEAR STATE AND RUL PREDICTION RESULTS
Different from training stage, the main task of application
stage is predicting wear state and RUL of a new tool. Dur-
ing data preprocessing phase, the amount of input param-
eters is reduced by the feature extraction and the K-means
method. As all networks have been trained, only one forward
trans-mission process is conducted. Therefore, CFRFNN is
able to make multi-step-ahead prediction in real time.

In application stage, the validation dataset is input into the
trained network. As run-to-failure tool wear state describes
the wear percentage and increases along with cutting step
forward. To quantitatively measure the change of tool wear
degree, the wear degree formula is defined as follows:

W =
f̄ − f̄min

f̄max − f̄min
(25)

where f̄ denotes the average feature. To highlight the impact
of extracted features containing major information. Root
mean square (RMS) values are adopted to calculate the aver-
age feature:

f̄ =

√√√√1
n

n∑
i=1

f 2i (26)

where n is the number of extracted features.
In this study, the interval between cutting segments, and

timesteps, is set to 6min. Each tool is designed to create 389
segments (horizons 0 up to t+ 7, each horizon = 4.86h) and
20 steps ahead tool wear state prediction is studied by recur-
sive method to demonstrate the effectiveness of CFRFNN.
More specifically, the information of 20 timesteps is pre-
dicted and then complemented with the existing time series
for the feature prediction of subsequent 20 timesteps. The
prediction results of tool cutting force sub-feature, vibration
sub-feature, torque sub-feature and wear degree in online
application stage are shown in Figure. 9. Time steps T1 and T2
are the boundaries of different wear degree, which are deter-
mined by K-means method. More specifically, the number of
clustering kernels is constantly adjusted to match the required
boun-daries, and the number of tool wear stages reorganized
according to the demand, which is set at 3 in this paper. It can
be seen that the predicted values approximate real values very
well, which shows CFRFNN is an effective multi-step-ahead
prediction method for tool wear monitoring. At last, RUL can

FIGURE 9. Eight cutting steps ahead prediction results learned by
CFRFNN. (a) tool cutting force sub-feature and RUL prediction. (b) tool
torque sub-feature and RUL prediction. (c) tool vibration sub-feature and
RUL prediction. (d) tool wear degree and RUL prediction.

be calculated as follows:

RUL = T2 (27)

To investigate the relationship between the outputs of the
above variables, the correlation analysis is conducted and
the scatter plots is shown in Figure. 10. The results show
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FIGURE 10. The relationship between the outputs of multiple variables.

TABLE 1. MAE achieved by compared algorithms in multi-step-ahead
prediction tasks.

a strong linear correlation between the predicted outputs,
which means each output vector can effectively represent and
predict the tool wear state.

Furthermore, to quantify the performance of all prediction
models, two indicators for the evaluation of model robustness
and prediction ability are utilized including mean absolute
error (MAE) and root mean squared error (RMSE). The
corresponding equations of the two indicators are expressed
as follows:

MAE =
1
N

N∑
i=1

|Ti − Pi| (28)

RMSE =

√√√√ 1
N

N∑
i=1

(Ti − Pi)2 (29)

where Ti and Pi are the true and predicted tool wear features,
respectively. The errors of tool state and RUL prediction are
shown in Table 1 and Table 2. It shows that low prediction
errors are acquired by CFRFNN, which shows effectiveness
for RUL prediction.

D. COMPARISON AND DISCUSSION
To investigate the performance enhancement of multi-step-
ahead prediction caused by CFRFNN, six algorithms for

TABLE 2. RMSE achieved by compared algorithms in multi-step-ahead
prediction tasks.

TABLE 3. The cutting parameters for extend experiments.

the time series analysis are conducted to compare the
prediction accuracy. For accurate display and compari-
son, the MAE and RMSE are shown in Table 1 and
Table 2.

In RNN and its variants, RMSprop optimizer is adopted
as the gradient descent method to optimize the learning
rate. The online prediction errors of all algorithms have
been calculated. From the results comparison, the per-
formance of CFRFNN shows the improved accuracy and
generalization ability in multi-step-ahead tool wear state
prediction. By comparing the prediction errors, several
significant findings have been acquired and discussed as
follows:

1) As expected, the prediction accuracy of all algo-
rithms deteriorates with the increasing of cutting steps.
In multi-step-ahead tool wear prediction, CFRFNN
gradually shows its superiority compared with other
algorithms. As cutting steps forward, the difference
of prediction perfor-mance among various algorithms
becomes larger, but CFRFNN can maintain the stable
operation and consis-tently provide the lowest MAE
and RMSE values. Owing to the fact that the wear state
of same tools has a common trend, the bidirectional
structure can fully consider the trend and capture the
missed aspects. Besides, the clustering feature-based
output ensures the full connection of the network and
the evolutionary computation can provide the parame-
ters with higher accuracy. Therefore, CFRFNN has the
stronger learning ability and the better performance in
tool wear prediction.

2) As a hybrid model, CFRFNN can combine the advan-
tages of sub algorithms to improve the performance.
In addition, as RNN and its variants can process series
information incrementally thus to give a fluid rep-
resentation, the performance of RNN is better than
FNN.
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FIGURE 11. Predicted and true values of two extend tools. (a) tool
sub-features and wear state of tool2. (b) tool sub-features and wear state
of tool3.

V. MODEL ANALYSIS AND PERFORMANCE EVALUATION
A. MODEL ANALYSIS
In Section IV, the tool wear state and RUL prediction is
performed by the proposed CFRFNNmethod and other com-
pared algorithms. However, the tool cutting conditions are
rather limited. To further verify the effectiveness and gener-
alization ability of the proposed method, more experiments
with different cutting parameters are conducted. The specific
parameters during the cutting process are shown in Table 3,
in which the Case 1 is the initial experiment and the cutting
depth represent both radial and axial.

B. MODEL PERFORMANCE EVALUATION
The feature vectors of tool cutting force, torque and vibration
are used as input for RUL prediction in this section. Dur-
ing cutting process, the cutting parameters, including spin-
dle speed and cutting depth, may lead to different dynamic
ranges, which will affect prediction accuracy. Two cutting
parameters commonly used in practical manufacturing are
chosen to verify the generalization ability of CFRFNN. The
feature and RUL prediction results are shown in Figure. 11.
The predicted value has similar trend and fluctuates around
the actual value, which indicates that the proposed method
has good accuracy and adaptability. It can be found that tool
RUL is different along with the change of cutting parameters,
which can be reflected in location moving of the point T2.

As wavelet packet decomposition is adopted to calculate
energy coefficient, the input for prediction models is stable
and low dimensional, which ensure the strong generaliza-
tion ability to various cutting parameters. At the same time,
the growth of extracted features in real machining will pro-
vide the ample training data, which is conducive to the fur-
ther improvement of prediction accuracy through continuous
learning.

VI. CONCLUSION
In this paper, we have proposed a clustering feature-based
recurrent fuzzy neural network (CFRFNN) based on TSMS
for multi-step-ahead tool wear state and RUL prediction.
After extracting features from sensor signals, K-means algo-
rithm is first adopted to cluster for real-time tool state
monitoring. Then, an enhanced CFRFNN is utilized to
learn the extracted features for prediction. The experimental
results verify that the proposed CFRFNN model possesses a
more accurate prediction precision and better generalization
capabilities.

This method could be extended to the other systems whose
degradation process resembles tool wear process, and can
also be generalized to determine new tools quality. In the
future work, the evolutionary capability of CFRFNN weights
will be expanded so that it may adapt to the sudden change of
working parameters.
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