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ABSTRACT The segmentation of cervical cell in liquid-based smear image plays an important role in
cervical cancer detection. Despite of research for many years, it is still a challenge for the complexity of
cell images such as poor contrast, cell irregularity, and overlapping. To solve this problem, a novel method
is proposed based on Cell-GAN - a generative adversarial network. Firstly, the Cell-GAN is trained to learn
a probability distribution of cell morphology by comparing the difference between the generated single-cell
images and annotated single-cell images. Thus, the Cell-GAN has the ability to judge the integrity of a cell
and treat other cellular information of a cell image, except for overlapping parts, as the background. Then,
a complete single-cell image is generated by the trained Cell-GAN for each cell, which is located by a guide
factor. The guide factor is constructed by a part of the cell to be segmented, such as the nucleus, to help Cell-
GAN locate the cell and avoid generating a multi-cell image in the presence of overlapping, which means
the contours of cells still cannot be distinguished. Finally, the segmentation line is defined by the contour
of the generated cell, and the input image is cropped using the cell size information. The cropped image is
reused for image generation until the area of generated cell varies within a small range.The proposed method
is evaluated on the segmentation of single-cell images and overlapping cell images and obtained significant
values of 94.3% DC, 7.9% FNRo for single-cell images and 89.9% DC, 6.4% FNRo for overlapping cell
images respectively. The experimental results indicate that the proposed method can adaptively approach
the boundary lines of cells to handle with different cases of overlapping in cervical cell images through what
learned by the Cell-GAN. The proposed method outperforms most current methods in both segmentation
accuracy and robustness.

INDEX TERMS Deep learning, Generative Adversarial Networks, cervical cell image segmentation,
overlapping cells.

I. INTRODUCTION
Cervical cancer is the fourth most common cancer in
women worldwide [1].According to Global Cancer Observa-
tory (GCO) in 2018, there is an estimated 570,000 new cases
and 311,000 deaths due to cervical cancer [2]. According to
GCO latest data, there is an estimated 604,127 new cervical
cancer cases in 2020. Early diagnosis and early treatment
are considered as the only effective way to reduce the risk
of cervical cancer [3]. At present, the Thinprep cytologic
test (TCT), combined with the human papillomavirus (HPV)
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detection, significantly improves the screening sensitivity and
specificity for cervical cancers, which is currently the most
effective screening method for the disease [4].This method
requires an experienced pathologist to make a diagnosis after
observing the diseased nuclei under a microscope, which ties
up a great deal of manpower and material resources. It is such
a heavy workload for a pathologist to search several abnormal
cells frommore than 300 thousands of cells that it is inevitable
for the pathologist to make error in diagnosis. Hence, with the
development of image processing, some automatic screening
techniques are used for cancer cells detection [5]. These
techniques usually segment cell images at first, and then
classify the segmented cells into different types, and even
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identify those cancerous cells [6]. An effective cell segmen-
tation method can reduce the complexity of the classifier
to be trained and help to improve the diagnosis accuracy
significantly.

So far, cell image segmentation methods can be grouped
into two categories: traditional cell segmentation methods
and deep-learning-based cell segmentation methods [7]. Tra-
ditional cell segmentation methods include watershed algo-
rithm [8], region growing segmentation [9], level set [10],
and joint optimization methods of multiple level set func-
tions [11]. N. Mat-Isa et al. [12] proposed a method named
the seed region growing features extraction (SRGFE) to
segment single-cell images. T. R. Jones et al. [13] improved
region growing method based on computing an approxima-
tion of the Voronoi regions of each seed on a manifold
to segment overlapping cell images. However, this method
could not deal with poor contrast cell images and could
not extract cells from the background, because the sepa-
ration of foreground and background was not considered
there. A. Kale et al. [14] combined hierarchical trees built
by the information of spectrum, shape, and gradient of cells
with multiple watershed algorithms to segment poor con-
trast and overlapping cells. Nevertheless, over-segmentation
of cells appeared serious when the overlapping degree was
high in this method. Z. Lu et al. [11] modified multi-
ple level set functions by optimizing the energy function
based on contour length, edge strength, prior knowledge
of shape, and area of overlapping, to segment overlapping
cell images. But the segmentation performance is still poor
for those cell images with complex background and poor
contrast. Phoulady et al. [15] detected candidate nuclei based
on iterative thresholding. Thresholding based segmentation
often fail for images with cell overlap, where overlap-
ping cytoplasm parts appear with similar mean intensity as
nucleus.

Cell segmentation methods based on deep learning
include two frameworks: convolutional neural networks
(CNN) [16] and fully convolutional networks (FCN) [17].
Song Y et al. [18] used CNNs to segment the cytoplasm of
cervical cells for the first time. And then, they proposed to use
multi-scale CNNs to segment cervical cell images. However,
this method can only get the outer contour of overlapping
cells. In order to segment overlapping cell images, it is
necessary to combine CNNs with traditional segmentation
methods, such as level set [19]. O.Ronneberger et al. [20]
proposed U-Net for biomedical image segmentation and got
the best ranking on the EM segmentation challenge. Although
the U-Net has good segmentation performance on single-cell
images, but it does not work well on overlapping cells [21].
There assume that the segmentation between background and
cells can be regarded as a binary classification problem of
pixels, but it is difficult for U-Net to classify the overlapping
areas of cells into two ormore cells at the same time [22]. As a
result, the researchers turn attention to generative adversarial
networks (GAN), to segment cell images by image generation
rather than pixels classification.

Generative Adversarial Networks(GAN) [23] have been
proposed by Goodfellow in 2014. In a simple GAN, the gen-
erator takes a random noise vector as an input and outputs
an image [24]. The original purpose of GANs is to generate
new images based on existing images [25]. Then they have
been widely used in fields of image inpainting [26], [27],
super-resolution image reconstruction [28], and image syn-
thesis [29], [30].

In this paper, a novel segmentation method based on deep
learning technique and generative model is proposed to seg-
ment overlapping cervical cell images. The highlight of the
proposed method is to segment both single-cell images and
overlapping cell images effectively. It can better capture the
topological relationship between pixels, whether local dis-
turbance changes (such as overlapping) or global smooth
changes (such as poor contrast), by using convolution struc-
ture [31]. It has the following advantages:

A. UTILIZE MULTI-INFORMATION OF THE LOCAL,
STRUCTURAL, AND PROBABILITY DISTRIBUTIONAL
As a generation model, the segmentation mechanism of
Cell-GAN is different from CNN and FCN. Compared to
the CNN and FCN, both of which just use local image
information for pixel classification, Cell-GAN utilizes the
structure information of the entire input image and the proba-
bility distribution of cell morphology to segment cells. Hence
Cell-GAN gets better segmentation performance, especially
on highly overlapping and poor contrast.

B. COMPLETE THE COVERED CONTOUR BY
PROBABILITY DISTRIBUTION
Since the contours of overlapping cells are difficult to
identify, those non-overlapping cells with identifiable con-
tours are used for data annotation. The training set con-
tains only a few highly overlapping cells, it can mainly use
non-overlapping cells to learn the probability distribution
of contour shapes of cells. Naturally, a reasonable part of
contour can be provided for the part of a covered overlapping
cell.

C. POSSESS A STRONG ROBUSTNESS
For traditional methods, cervical cell segmentation is seri-
ously dependent on its nuclear segmentation following that
each nucleus corresponds to a cell. So, if a nuclear is wrongly
segmented, the cervical cell segmentation will be misled in
traditional methods. Hence, nuclear segmentation needs to
be as accurate as possible. But for the proposed Cell-GAN
method, cervical cell segmentation is mainly dependent on
the guide factor, while the guide factor can be served by not
only its nucleus but also impurities such as inflammatory
cells in the image. That is to say, if an impurity is mistak-
enly referred to as a nucleus, which is usually called pseudo
nucleus, but as a guide factor, it doesn’t affect the cervical cell
segmentation result of Cell-GAN. Therefore, the proposed
Cell-GAN method has a strong robustness.
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II. RELATED WORK
Segmentation is one of the most effective and extensive
research fields in medical image analysis. The main goal of
segmentation is to partition the image into multiple regions to
quickly analyze the cell [32].Numerous works have been per-
formed on automatic segmentation of cytoplasm and nucleus
of a cervical cell. In [18], a super-pixel and CNN based
segmentation methods are proposed for cervical cell segmen-
tation. The author performs the cytoplasm segmentation first
since the background, and cytoplasm contrast is not evident.
Then CNN is applied here to detect the region of interest.
They achieved an F1 score above 0.89. In [33], the author
has developed a deep learning method via a multiscale con-
volutional neural network (MSCN) for feature extraction
and graph partitioning for nucleus segmentation. The MSCN
and graph partitioning algorithms can separate cytoplasm,
nuclei, and background. However, to solve the overlapping
nucleus in the cell image, a new robust nuclei clump algo-
rithm is introduced. In [19], the author proposed a unique
deep CNN-based framework that can accurately segment the
cervical cells form overlapping clumps. They achieved the
dice coefficient (DC) value 0.91 for cytoplasm and 0.93 for
nucleus in the ISBI challenge dataset and 0.90 and 0.92 for
cytoplasm and nucleus respectively in the private dataset.
The author in [34] presents a robust variational segmen-
tation framework based on pixel-wise CNN and a learned
shape prior, that can successfully segment nuclei and cyto-
plasm form densely overlapping mass. The proposed method
first classifies the cellular components into the background,
nuclei, and cytoplasm using CNN. Later, individual cyto-
plasm segmentation work is performedwith Voronoi segmen-
tation and dynamic shape prior based level set evaluation.
They achieved ZSI value 0.90, TP value 0.95 for cytoplasm
segmentation. The author in [35] presents an approach to
segment the whole cervical cell image by usingMask R-CNN
and transfer learning. ResNet10 is the backbone of Mask
R-CNN. In the beginning, the cell areas are partitioned by
using MASK R-CNN. Later, the cell areas are classified into
nucleus and cytoplasm. The proposed algorithm produced
a precision, recall, and ZSI value of 0.92, 0.91, and 0.90,
respectively. In [36], A novel Instant Relation Network (IR-
Net) is advised to segment the overlapping cervical cell.
ResNet-50 is the backbone of the IR-Net. They achieved
Average Jaccard Index (AJI) and F1 value of 0.7185 and
0.7497 for cytoplasm and 0.5496 and 0.7554 for nucleus
segmentation.

It is observed that most of the research work for the seg-
mentation of overlapping cells has been conducted using the
CNN or FCN, minimal effort has been made so far with
Generative Adversarial Networks(GAN). In [37], the authors
replace the traditional discriminator with a fully convolu-
tional multiclass classifier. The classifier assigns to each
input image pixel one label that corresponds to a semantic
class or to fake/real mark. In this way, they use unlabeled
non-real images created through Generative Adversarial Net-
works during the training process. In [38], the discriminator

is adapted to distinguish between manually segmented cell
microscopy images and generated images from CNNs. The
generated (estimated) segmentation images are similar to
manually annotated images and therefore are more accu-
rate than those obtained from a simple CNN segmenta-
tion model. In addition, such methods have been used as
domain adaptation techniques [39] to transform magnetic
resonance images (MRI) into computed tomography (CT)
images [40] or Differential Interference Contrast to Phase
Contrast microscopy images [41]. Inspired by these applica-
tions, the researchers assume that segmentation of cell images
can be regarded as a problem of filtering of invalid image
information, especially under the constraint of single-cell
generation, the rest of image information can be considered
invalid except for a special cell. Therefore, the main task is to
design a model that can learn the probability distribution of
cell morphology, which is what GAN is good at.

III. METHOD
Segmentation process for cervical cell image in this work can
be divided into two steps, as shown in Figure 1. The first step
is to generate a segmented cell image with an approximate
contour to the cell in the input image. For this purpose,
the Cell-GAN is designed based on generative adversarial
networks [23]. The Cell-GAN consists of a generator and a
discriminator. The generator is used to generate segmented
cell images. The discriminator is applied to help generator
to learn the probability distribution of cell morphology by
evaluating the difference between the segmented cell images
and the annotated cell images. Furthermore, L2 loss function
is introduced to capture the overall structure of cell images
and to adjust the generating scale of Cell-GAN for uncertain
cell area, retained or discarded. In this step, to ensure that the
generated results can be used to segment cells, the researchers
limit that only one cell can be generated in each generated
image, which is achieved with the help of guide factors. The
constraint makes Cell-GAN focus on generating a complete
cell whose contour is close to the cell to be segmented. The
other cellular information of input cell image, except for
overlapping parts, is treated as background. The guide factor
is constructed by a part the cell to be segmented, such as
the nucleus, and used to locate the cell to be segmented.
Without the help of guide factors, overlapping and multi-cell
images would make Cell-GAN so puzzled that could not
figure out which cell should be processed and a multi-cell
image would be generated, whose contours are still hard to
be distinguished. More details of guide factor are given in
section 3.3.1.

The second step is to extract real segmented cell image.
Because there is noise around the generated cell sometimes,
denoising is necessary before extraction. Under the constraint
of single-cell generation, it’s found that the generated cell
has the larger contour than noise in the generated image.
Therefore, the researchers combine the maximum contour
search with open operation and close operation to complete
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FIGURE 1. Panorama of the segmentation process for cervical cell image.

the transformation of the generated cell image to the seg-
mented cell image. At this point, segmentation is finished.

A. CELL-GAN
GAN models can be considered as a two-player game
between a generator, which learns how to generate samples
resembling real data, and a discriminator, which learns how
to discriminate between real and generated data. Both the
generator and the discriminator cost functions are minimized
simultaneously. The iterative minimization of cost functions
eventually leads to a Nash equilibrium where neither can
further unilaterally minimize its cost function. In the end,
the GAN discriminator provides an abstract unsupervised
representation of the input images. Cell-GAN is derived from
DCGAN [24]. Traditionally the target of GANs [23] is to
convert the random noise z into an image x by generator G,
mapped by G: z → x. Some improved GANs, for exam-
ple [26], try to repair incomplete image x̃ conditioned on its
surroundings, defined by G: x̃ → x, where x is the complete
image.

In this work, Cell-GAN is contrary to image inpainting
intuitively and attempts to generate single-cell image x̂ based
on cell image x, which can be described as: G: x → x̂.
To fulfill this task, the researchers redesign the generator
based on auto-encoder [42] and inception model [43], though
the discriminator has the similar architecture as the original
DCGAN.

1) GENERATOR
The generator consists of an encoder network and a decoder
network. A schematic view of the generator is depicted
in Figure 2. The encoder network receives two inputs at the

same time, one is the cell image with background, and the
other is the guide factor that is constructed by the nucleus
to help Cell-GAN to locate the cell to be segmented. Con-
sidering the balance between the execution speed and the
segmentation accuracy, the sizes of inputs are set as 200 ×
200 pixels, RGB color channels is used for mean subtrac-
tion [44]. Furthermore, to establish the connection between
the two inputs, two convolutional layers are used to deal with
the guide factor specifically, and then merge the computed
feature maps into encoder network by additive operation [45].

The main structure of the encoder network is a four-layer
down-sample network, and per-layer down-sample network
adopts inception architecture [43]. To promote the general-
ization ability of the encoder network, the sizes of groups
of filters are 1 × 1, 3 × 3, and 5 × 5. According to the
guidelines for stable DCGANs [24], the max-pooling layer
and add Leaky-ReLU activation for each group of filters in
the inception architecture are ignored. In addition, use 3 ×
3 convolutions with stride 2 to replace max-pooling layer
used for dimension reduction.

In general, the traditional auto-encoder uses the full con-
necting to realize the connection between the encoder output
and the decoder input, both of which have the same sizes of
feature maps. However, in proposed architecture, given the
output of encoder network is 4× 4× 512= 8192, the number
of parameters is explosive under full connection approach
(over 100M). Considering that the number of 5 × 5 convolu-
tions in encoder network can be expensive with a deeper net-
work, the encoder network is not deepened. D. Pathak et al.
proposed channel-wise fully connected layer so that the num-
ber of parameters can be reduced by 500 times effectively,
compared with full connecting [26]. But in proposed work,
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FIGURE 2. Generator network.

TABLE 1. Parameter configuration of generator.

the integrity of the contour is more important than the quality
of the generated cell image. Hence, the researchers not only
remove full connecting, but also simplify the structure of the
decoder network which does not adopt inception architecture.
Thesemethods cut off the number of parameters, although the
quality of the generated images is reduced.

The decoder network contains 6-layer up-sample net-
works, each of which consists of 3 × 3 deconvolutions [46]
and ReLU activation. In particularly, the sigmoid function is
used to replace ReLU activation of the last layer network for
generating images. Here, the designed generator is described
in Table 1.

2) JOINT LOSS FUNCTION
The Cell-GAN is trained by comparing the differ-
ence between the annotated single-cell images and the

corresponding generated single-cell images. In addition to
the adversarial loss function, the joint loss function of the
Cell-GAN also employs the L2 loss function [28].

GANs apply a game-like mechanism to train the generator
and discriminator. The learning process is that the discrimina-
tor D tries to distinguish the real samples x with the generated
images, which are produced by the random noise z from G,
while G attempts to deceive D by generating samples more
similar to x [23].The original adversarial loss function can be
expressed as:

min
G

max
D
Ex∈X [log(D(x))]+ Ez∈Z [log(1− D(G(z)))] (1)

In proposed approach, the input of generator is no longer
a random noise, but a cell image x and its guide factor o.
D is used to measure the integrity of the annotated single-cell
image x̂ and the generated single-cell image. Therefore,
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the adversarial loss function Ladv can be defined as:

Ladv = min
G

max
D
Ex̂∈X̂ [log(D(x̂))]

+Ex∈X [log(1− D(G(x | o)))] (2)

The L2 loss function is chosen as part of the joint loss which
focuses more on capturing the overall structure of image [26].
Furthermore, divide the generated image into existent region
and non-existent region of a cell based on a binary mask M
constructed by the annotated cell image, and then the L2 loss
function Lsmi, can be described by:

Lsmi = α‖M · (X − G(x | o))‖2 + β‖(1−M )

·(X − G(x | o))‖2 (3)

α and β are used to adjust the generating scale of Cell-GAN
for uncertain cell area, retained or discarded. Specifically,
α makes Cell-GAN tend to retain the uncertain cell area as
part of the generated cell, which may lead to the contour of
generated cell larger than the ground truth, while β is the
opposite. Finally, the construction of joint loss functions Ltot
can format as follows:

Ltot = γsmi Lsmi + γadv Ladv (4)

and the Adam optimizer is used to train the generator and the
discriminator respectively [24].

B. EXTRACTION OF REAL SEGMENTED IMAGE
It is convenient to extract the cell contour from the generated
cell image. When the background of the image of the cell
to be segmented is complicated, such as highly overlap-
ping, the noise interference is unavoidable in the generated
result. The main task of segmentation contour extraction is to
denoise the image. Thus, before contour extraction, the guide
factor is used to locate the segmentation contour and discard
the remaining contours. Then, set the value of binarization
threshold to 245, which means that all image information is
preserved, except white.

It should be noted that the extraction process is not involved
in the training process of Cell-GAN. The researchers tried
to integrate them together and three methods were tested:
the first method output binary contours of segmented cells,
the other two methods output segmented cell images by com-
bining the last layer of decoder network with the input cell
image by additive operation or dot product. However, all of
them caused the difficulty of convergence of Cell-GAN.

C. IMAGE PREPROCESSING
1) GUIDE FACTOR
The guide factor is used to help Cell-GAN to locate the cell.
It is the key to segment the overlapping cells. Without guide
factor, multi-cell images would make Cell-GAN fell puzzled
about which cell should be segmented, resulting in that a
multi-cell image is generated, the contours of which are still
inseparable. The researchers choose the nucleus as the guide
factor because it is the best mark of the cell and is easy to be
detected [47].

In this paper, the guide factor is determined by the approach
described in literature [48] based on Depth Information.
It should be emphasized that the guide factor is only used for
localization, thus the construction of guide factor for nucleus
segmentation does not actually require precise segmentation,
which reduces the difficulty of the nucleus segmentation task.
Figure 3 shows the influence of guide factor on segmentation
results. In addition, when the nuclei of two cells are too
close to each other, using only the nucleus as the guide factor
still makes the segmentation confusing, therefore, part of the
cytoplasm around the nucleus can be included in the guide
factor to increase the confidence of cell location. At this point,
further increasing the amount of information contained in
the guide factor does not bring significant improvement to
the segmentation performance. This is because the perfor-
mance of segmentation comes more from the structure of the
Cell-GAN network itself rather than from the components of
the guide factor. Therefore, the segmentation of cell nuclei
only needs to achieve precise localization but not precise
segmentation.

FIGURE 3. Influence of guide factors on segmentation results. From up to
down row: guide factors, segmented images. The cell image is cropped by
floating box. (a) to (e) are the results of Cell-GAN trained with guide
factors. (d) is the result of guide factor containing all of nuclei. (e) is the
result of guide factor without any nucleus. (f) is from simplified Cell-GAN
trained without guide factor.

2) RECURRENT IMAGE CROPPING
Since the computation of large size images for Cell-GAN is
heavy, image cropping is necessary. However, it is difficult to
choose a suitable box size to crop cell images. To obtain the
appropriate size of boxes, recurrent image cropping (R-crop)
is proposed based on the trained Cell-GAN.

The core of R-crop is that for the cell to be segmented,
firstly, the approximate contour is gained by use of segmen-
tation result of Cell-GAN, and then use the approximate size
to crop the image and re-input it into Cell-GAN. As the
iteration progresses, the approximate size becomes closer to
the true size of the cell. Finally, when the area change of the
segmentation result is less than a certain threshold, the loop
is terminated.

For the cell image with high density and large size,
the buildup of cells after image resize will cause that the size
of segmentation result is close to the input image. Therefore,
for R-crop, the first step is coercive crop. In addition, this
step helps to reduce the number of iterations. Based on the
location of the nucleus, every input image is cropped into a
set of images with size of 400 × 400.
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The researchers determine whether the segmentation is
completed by the change rate of per unit area of the cell It
for each iteration,

It =
2× [Tt (G(x | o))− Tt−1(G(x | o))]
[Tt (G(x | o))+ Tt−1(G(x | o))]

(5)

where Tt(G(x | o)) is the area of the segmentation result.
If both It and It−1 are less than a specified value, the seg-
mentation is completed,

|It−1| < ρ, and |It−1| < ρ (6)

where ρ is the area threshold.
The size of the crop box L is obtained by the sides j and l of

the external rectangle for the segmentation result. However,
there is a problem that needs to be noticed: The crop size
is equal to or smaller than cell size. In the early iterations,
especially for large-sized images, the size of the segmentation
result might be close to the input image. Furthermore, if the
cropping size is smaller than the size of the cell, the crop-
ping collapses into the nucleus. To solve these problems,
the dimension change operator ϑ is used to measure the
stability of the iteration. ϑ can be defined by:

ϑt =
l̄t

Lt−1
(7)

In which, l̄ is the longest side of the external rectangle:

l̄t = max (lt , jt) (8)

ϑ represents the proportion of the segmentation result in
the cropped image. The larger ϑ is, the greater risk of collapse
occurs, or it means that the last cropping has caused collapse.
When the iterative collapse happens, the segmentation result
becomes irregular, so the area ratio is unsuitable for ϑ . Then,
according to different ϑ , different cropping rules are defined:

Lt =


(1+ ϕ)×

√
l2t + j

2
t ϑt < ω

l̄t + 10 ϑt > ω, t = 1

Lt−1 +
(Lt−2 − Lt−1)2

Lt−2
ϑt > ω, t > 1

(9)

Lt = max (Lt , δ) (10)

where ϕ is the cropping coefficient, ω is the measure
threshold, and δ is the cropping threshold. For Eq. (9),
the researchers use the diagonal edges of the directly circum-
scribed rectangle of the cell outline to obtain the crop frame
size to ensure that the cropped image can contain the entire
cell, so that the risk of collapse is reduced [49]. However,
the diagonal side is easy to result in equal size for early
iteration. Hence, the researchers use the longest side to deal
with early iteration, and add a quantitative buffer to prevent
collapse. For Eq. (10), it limits the minimum size of cropping.
In general, it is equal to the input of Cell-GAN meaning that
the image is not resized. It helps to prevent iterative collapse.

D. EVALUATION MEASURES
The dice coefficient is one of the most popular measures
to evaluate the segmentation quality [51]. Let A denote
the region of the automatically segmented shape and let
B represent region of the ground truth shape. The dice
coefficient(DC) measures the overlapping degree between
the two regions and is given by

DC =
2× |A ∩ B|
|A| + |B|

(11)

where DC ∈ [0, 1]. Generally, when DC value is above 0.7,
it is considered as an effective segmentation, which means
that there is at least 70% similarity between the segmented
region and its ground truth. Where, the true positive (TP) area
is consisted of pixels that are true in both the segmentation
mask and the ground truth mask, while the true negative (TN )
area is consisted of pixels that are in neither the segmentation
mask and nor the ground truth mask. Similarly, the false
negative (FN ) area is consisted of pixels that are false in the
segmentation mask but true in the ground truth mask, and
the false positive (FP) area is consisted of pixels that are in the
segmentation mask but not in the ground truth mask. In this
paper, we show a pixel-level evaluation using the true positive
rate (TPR) and false positive rate (FPR) for evaluating the
accuracy of the segmentation.

TPR =
TP

TP+ FN
(12)

FPR =
FP

TN + FP
(13)

In addition, the object-level false negative rate (FNRo) is
significant for computing the underreporting rate of segmen-
tation from the proportion of cells with DC values below 0.7.
Here, the object-level true positive (TPo) term represents the
number of cells correctly segmented. The object-level false
positive (FPo) term represents the number of cells incorrectly
segmented. The object-level false negative (FNo) term repre-
sents the number of the segmented cells which are really the
background. Thus, the object-level false negative rate (FNRo)
can be calculated by (14).

FNRo =
FNo

TPo + FNo
(14)

IV. EXPERIMENT AND ANALYSIS
In this section, the details of the dataset and experiments
performed are presented, along with the specific settings,
results and analysis.

A. DATASET
The dataset is collected from Harbin Maria Obstetrics and
Gynecology Hospital. An automatic pathological scanner
was used to acquire images, as show in Figure 4. This equip-
ment consists of an automatic optical microscope, an indus-
trial camera, a personal computer. The computer is equipped
with 8G memory, i5-4590 CPU, 3.3GHz.
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1© Industrial camera: CMOS camera with the resolution
of 2048 × 2048 pixels, frame rate 50 frame/s, gray level
of 256;

2© Camera-microscope interface;
3© Electric platform: walking accuracy for both the X axis

and the Y axis is less than 5 µm2;
4© Remote control bar;
5©Microscope: objective lens of 20 times magnification;
6©Microscope light box;
7© Control box.

FIGURE 4. Equipment used to acquire images.

This equipment can control the electric platform to auto-
matically move, focus and control the camera to grab images.
The process of grab image is set to start from the center of
the slide and automatically move like snake, the overlapping
pixels is 30 and each slide shot 400 pictures.

In this paper, 60 cervical cell images of size 2048 ×
2048 pixels were selected from 12 pathology slides, 40 of
which were used to construct the training set and the remain-
ing 20 were used as the test set. After recurrent image crop-
ping, cell nuclei segmentation [48] and manual annotation,
each of training and test data is consists of three images:
small cell images, guide factors and annotated cell images.
Small cell images are the cropped cell images from the
original image set. Guide factors are the annotated nuclei
used to locate cell to be segmented. Annotated cell images
are the annotated complete single-cell images. The details
of the dataset is shown in Table 2. The training set consist
of 1571 cell images and 520 of which are repetitive but
contain different positional information. Some examples of
the training data are shown in Figure 5. Each cell is anno-
tated in the cropped image. On the one hand, it brings data
enhancement. On the other hand, it helps to strengthen the
positioning ability of guide factors. Under different guide
factors, the Cell-GAN needs to generate different cell images
for the same input image. The test set consists of 309 cell
images, including 100 single-cell images, 170 overlap-
ping cell images, and the rest are atypical cell images
and test images for ideal cropping.This dataset has been
uploaded to the website: https://ieee-dataport.org/documents/
cervical-cell-images.

TABLE 2. Details of the dataset.

FIGURE 5. Overview of the training set. From up to down row: cropped
images, guide factors, annotated images. (a) and (b) are cropped by fixed
box. (c) is cropped by floating box. (d) and (e) are annotated data for each
cell.

B. EXPERIMENT CONFIGURE
The proposed method use TensorFlow to build Cell-GAN,
and then train it by GTX 1080Ti. For the latest version of
Cell-GAN, the learning rate, Adam Optimizer momentum
and training iteration number are set as 5 × 10−4, 0.5 and
2 × 103, respectively. In addition, each training image is
rotated 4 times to increase the number of samples. For the
loss function Lsmi, two weights are both set to 1, meaning no
bias. To avoid overfitting, the output of each layer network is
normalized and the dropout with a probability of 0.5 is added
to the generator [51]. Finally, the number of parameters in the
proposed network is 7767k, around 31.7M.

For R-crop, the maximum number of iterations, the area
threshold ρ, the measure threshold ω, the cropping coeffi-
cient ϕ, and the cropping threshold δ are set as 15, 0.15, 0.69,
0.2, and 200, respectively.

For the latest version of non-optimized Cell-GAN, it took
us 36 hours to train. After training, the average segmentation
speed for cropped cell images is 0.10 second per image.

C. EXPERIMENTAL ANALYSIS
1) INFLUENCE OF GUIDE FACTOR
The guide factor is used to help Cell-GAN to locate the cell.
Each cell in the cropped images is annotated and used to
train Cell-GAN (see Figure 5). These annotated cells make
the Cell-GAN generate different single-cell images when
the input images are same but guide factors are different,
as shown in Figure 3.

To establish the connection between the guide factor and
the cell image in the Cell-GAN, the researchers use addi-
tive operation instead of parallel operation to merge the
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feature maps. Because experiment shows that parallel oper-
ation makes the guide factor lose positioning ability. The
conditional GAN [52] uses parallel operation and full matrix
which is constructed by image label to control the generated
results. By compare the difference between the guide factor
and the full matrix, the researchers find that because of the
low percentage of the guide factor, such as nucleus, in the
whole image, the guide factor is neglected. On the contrary,
additive operation plays an important role in strengthening
the local information, which makes the weights of the infor-
mation in some regions more significant than other regions.
Figure 6 shows the effect of the guide factor on the gen-
erator when the feature maps use additive operation. As a
result, the guide factor makes the color of the nucleus in the
middle cell different from other nuclei. And these feature
maps describe the contours of cells form different views,
which is more intuitive after the first additive operation (see
Figure 6 (a)).

FIGURE 6. Visualization of feature maps after additive operation between
cell image and guide factor. The guide factor lights up the nucleus of the
middle cell.

In addition, it should be noted that the amount of
information contained in the guide factor affects the final
segmentation result slightly. It can improve the performance
when the segmentation is successful, but it cannot turn over
the segmentation failure, even if the ground truth is used as
the guide factor, as shown in Figure 7.

FIGURE 7. Samples of segmentation failure completely. From left to right
column: cell images, guide factors, generated results, segmented results.
The third row shows the segmentation results under ideal cropping.

FIGURE 8. Comparison of the effect of different weights of loss functions
Lsmi on segmentation results. From up to down row: input images,
segmentation results when α is 0.1 and β is 10, segmentation results
when α is 1 and β is 1. The last column of images represents failed
segmentation.

2) INFLUENCE OF DIFFERENT WEIGHTS OF Lsmi
The effect of different weights of the cost function Lsmi on
the segmentation results is tested. The researchers test two
cases: one case is α and β both are equal to 1, and the other
is that α is 0.1 and β is 10. The experiment shows that the
contours of segmented cells in the first case are larger than
the contours in the second case (see Figure 8). During the
training process, a large β gives Cell-GAN severe punishment
when Cell-GAN generates pixels in non-existent region of
cell, while a small α gives it a low reward when segmentation
is correct. Therefore, Cell-GAN tends to discard the uncertain
regions. But when a cell is in a cell cluster, the Cell-GANmay
tend to retain these regions and even expand, because these
cells have similar forms so that they are treated as one cell.
In addition, it needs to be noted that the changes of contours of
segmented cell images in all direction are inconsistent, which
is different from erosion and dilation [53]. Hence, the weights
adjustment should be carefully.

3) INFLUENCE OF DIFFERENT ITERATIONS OF R-CROP
Figure 9 shows the segmentation performance of Cell-GAN
with R-crop at different iterations. The values of ρ, ϕ, and
ω are fixed. At the early iteration, due to the large size of
the cropped image, there is under-segmentation in multi-
cell overlapping area. The evaluation of iteration termination
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FIGURE 9. Segmentation results of Cell-GAN. Cells close to the boundary
are ignored.

begins in the third iteration. Figure 10 shows the change in the
number of remaining cropped images. After third iteration,
most cropped images have been segmented. However, it does
not mean that all cell images can be segmented well. There
is a cell in the third image cannot be segmented and makes
R-crop into a dead loop. This is because that for a small cell,
a tiny change is easy to make the value of It bigger than the
area threshold ρ. Figure 11 shows the size distribution of
final cropped images. Cropped images with the largest and
the smallest sizes are regard as two special cases. Then, with
50 pixels as a dividing scale, the remaining cropped images
are classified as four cases. A good cropping rule shouldmake
the distribution wider and does not contain many images with
the largest and the smallest sizes.

4) INFLUENCE OF DIFFERENT PARAMETERS
For proposed segmentation method, there are six parameters
to be considered. α and β as essential parameters have been
introduced in 3.3.2. The area threshold ρ determines the
condition of the iteration termination, is the key of R-crop.
Figure 12 shows the change of It for several cropped images.
Several cropped images are tracked, including the special
image that makes R-crop into a dead loop. For most cropped

FIGURE 10. Relationship between the iteration number and the Number
of remaining cells. From the third iteration, the segmentation termination
condition is judged and most cells are segmented in the middle of
iteration. Only a small number of cells reach the late iteration, most of
which are small cells.

FIGURE 11. Size distribution of final cropped images. For each image,
the leftmost column represents 200, the rightmost column represents
400. With 50 pixels as a dividing scale, the remaining sizes are divided
into four cases.

images, the area change tends to be in a regular and small fluc-
tuation. The regular fluctuation means that the segmentation
result changes regularly with the number of iterations. The
small fluctuation means that the difference between segmen-
tation results is not obvious. As the special case mentioned
above, large fluctuation is caused by inaccurate cropping. The
cropping threshold δ is used to prevent the collapse, but it also
stops R-crop cropping smaller images for small cells. In the
experiment, the researchers find that reducing the value of δ
can handle the special dead loop. Precise cropping reduces the
fluctuation. However, the risk of collapse is also increased.
Hence, keeping the limitation of δ is more suitable. The mea-
sure threshold ϕ is the most important parameter affecting the
segmentation performance. In the experiment, one can find
that large ϕ is easy to result in equal size, while small ϕ results
in a collapse.

5) INFLUENCE OF CELL OVERLAPPING
In general, the constraint of single-cell generation ensures
that Cell-GAN does not care about whether the cells are
overlapping or not and treats them in the same way.
Figure 13 shows the segmentation results for overlapping cell
images cropped by floating box. In general, the ideal cropped
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FIGURE 12. The change of It for cropped images. Large fluctuations often
occur in small cells.

FIGURE 13. Samples of overlapping cells segmentation. Due to the
floating box cropping, overlapping cells do not usually appear in one
image. The last group of images show the segmentation results for three
overlapping cells.

FIGURE 14. Samples of multi-cell images segmentation. There is
segmentation failure in the last image. The solution is discussed in
Section 4.3.4.

images contain only one complete cell, thus the segmentation
results of overlapping cells appear in the different cropped
images. However, ideal cropping is hard to be achieved. Espe-
cially, due to under-segmentation, the cropped images often
containmultiple cells. Therefore, guide factors are introduced
to cope with this problem. Moreover, the proposed method is
tested bymulti-cell images, as shown in Figure 14. To demon-
strate the segmentation performance and the positioning abil-
ity of guide factors, each cell in the multi-cell images is
segmented. As a result, because the positioning ability of
guide factors has been enhanced in the training process,

FIGURE 15. Samples of segmentation performance improving. From up to
down row: segmented images, corresponding generated images.

FIGURE 16. Samples of non-encompassed cells segmentation. (a), (b) are
cervical cancer. (c), (d) are glandular clusters. (e) contains large number of
inflammatory cells. (f) to (j) are non-typical cells.

FIGURE 17. Segmentation results for different methods. From up to down
row: input images, outlined by Phoulady, Z. Lu, the proposed method and
the ground truth.

the proposed method also works well when overlapping
degree is high. Furthermore, for serious overlapping that
the contours of cells are difficult to be distinguished by
human, the segmentation results are acceptable. In the last
image, there is segmentation failure, but it can be solved
by more suitable cropping and amendment of extraction
(see Figure 15).
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FIGURE 18. Segmentation results on ISBI2015. Cells close to the boundary are ignored for the proposed method.

TABLE 3. Results for various methods of cell region segmentation.

6) THE GENERALITY OF CELL-GAN
Because the training set is not classified, it includes three
types of cells: the upper squamous cells, the mid-level squa-
mous cells, and the basal cells. The researchers test the seg-
mentation performance for cervical cancer cells, glandular
clusters, and special-shaped cells, as shown in Figure 16. The
net can segment these special cells effectively even if they
are not used to train Cell-GAN. The glandular clusters have
different forms from other cells. They are tested as a basis for
glandular cancer detection which needs further study.

V. EVALUATION
After reviewing the literatures on cervical cell segmentation
in recent years, it was found that this work mainly focused
on nuclear segmentation and few methods for cytoplasmic
segmentation [54]. The CELL-GAN proposed in this paper
can achieve a good effect of cytoplasmic segmentation, here
choose Phoulady’s method EMSEG [15] and Lu’s method
MSSEG [11] for comparison. The former is based on the EM
algorithm,while the latter is based onmultiple level sets. Both
of them are evaluated on ISBI2015 using traditional methods
and have excellent performance. The results of the three
compared methods on own database are shown in Figure 17.
It shows that when the contrast of images is poor and cells are
highly overlapping, the cell contour information is difficult
to obtain, however, in these cases, the proposed method can
achieve better performance than that obtained by Phoulady’s
and Lu’s methods.

The researchers test the Cell-GAN on the ISBI2015
database, as shown in Figure 18. It should be noted that the
Cell-GAN is not fine-tuned by the ISBI2015 training set and

does not use the stack of multi-focal images. All parameters
are set as default values, except for the cropping threshold δ.
Where δ = 150, because cell number in ISBI2015 database
is smaller than private database. The default parameter α and
β are both set to 1, the area change threshold ρ is set to 0.15,
the scale change thresholdω is set to 0.69, the cropping buffer
coefficient ϕ is set to 0.2, and the minimum cut size δ is set
to 200. The maximum number of iterations is set to 15.

Further, excellent deep-learning-based cell segmentation
methods are chosen for comparison. Song Y et al. [18]
propose the segmentation method based on CNN and
D. Pathak et al. [26] propose Context Encoders which is pur-
posed to repair images based on GAN, the researchers made
it available for segmentation of cell images by adding guide
factors to demonstrate the advantage of Cell-GAN. Given that
Song Y’s method cannot segment overlapping cells only by
using CNNs, the performance of thesemethods for single-cell
images and overlapping cell images are evaluated respec-
tively. As a result, the proposed method achieves the best
performance both on DC and FNRo, the detail is shown
in Table 3. Because the single-cell images are elected with
poor contrast, it causes that the value of FNRo for single-cell
images is bigger than overlapping cell images. In addition,
serious overlapping is not included because annotation is
hard.

VI. CONCLUSION
In this paper, a new approach is proposed to segment cer-
vical cells based on the Cell-GAN. For each cell to be
segmented in the cell image, the Cell-GAN generates a
single-cell image by judging the integrity of a cell based
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on the probability distribution of cell morphology. And the
contour of the generated cell serves the final segmentation
line. In the process of segmentation, the guide factor used
to locate the cell guarantees the success of segmentation,
especially for overlapping cells. As an automatic image
cropping method, R-crop further improves the segmentation
performance.Overall, the proposed method well grasps the
common properties of cervical cells by the estimation of
probability distribution and effectively deals with the cell-
overlapping problems. Moreover, the guide factor and the
R-crop operation further improve the segmentation accuracy
and computational efficiency. The segmentation results show
that the proposed Cell-GAN method can achieve a compre-
hensive segmentation capability, especially in the case of
highly overlapping cells and complex backgrounds, the seg-
mentation failure rate is significantly lower than that of other
four methods.

The proposed method may be applied to some kinds of
histopathology image cell segmentation, such as prostate and
breast cancer histopathology images. Another potential appli-
cation may be blood image cell segmentation. However, there
are still some issues that need further study in the proposed
method, such as how to improve the performance of R-crop
and how to segment cells that have adjacent nuclei. In the
future, the researchers also need to improve the applicability
of proposed method so that it can meet the segmentation of
more categories of cells at the same time.

REFERENCES
[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, andA. Jemal,

‘‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries,’’ CA, Cancer J. Clin-
icians, vol. 68, no. 6, pp. 394–424, Nov. 2018, doi: 10.3322/caac.21492.

[2] M. Arbyn, E. Weiderpass, L. Bruni, S. de Sanjosé, M. Saraiya, J. Ferlay,
and F. Bray, ‘‘Estimates of incidence and mortality of cervical cancer
in 2018: A worldwide analysis,’’ Lancet Global Health, vol. 8, no. 2,
pp. e191–e203, 2020, doi: 10.1016/S2214-109X(19)30482-6.

[3] A. Ray, I. K. Maitra, and D. Bhattacharyya, ‘‘Detection of cervical cancer
at an early stage using hybrid segmentation techniques from PAP smear
images,’’ Int. J. Adv. Sci. Technol., vol. 112, pp. 23–32, Mar. 2018, doi:
10.14257/ijast.2018.112.03.

[4] G. Naizhaer, J. Yuan, P. Mijiti, K. Aierken, G. Abulizi, and Y. Qiao,
‘‘Evaluation of multiple screening methods for cervical cancers in rural
areas of Xinjiang, China,’’Medicine, vol. 99, no. 6, 2020, Art. no. e19135,
doi: 10.1097/MD.0000000000019135.

[5] A. Sarwar, A. A. Sheikh, J. Manhas, and V. Sharma, ‘‘Segmentation of
cervical cells for automated screening of cervical cancer: A review,’’ Artif.
Intell. Rev., vol. 53, no. 4, pp. 2341–2379, Apr. 2020, doi: 10.1007/s10462-
019-09735-2.

[6] S. S. Geetha, ‘‘Enhancing the classification of pap smear images using
ENN–TLBOclassificationmethod,’’ Int. J. Innov. Technol. Exploring Eng.,
vol. 9, no. 6, pp. 553–558, 2020, doi: 10.35940/ijitee.f3708.049620.

[7] Y. Al-Kofahi, A. Zaltsman, R. Graves, W. Marshall, and M. Rusu,
‘‘A deep learning-based algorithm for 2-D cell segmentation in microscopy
images,’’ BMC Bioinf., vol. 19, no. 1, pp. 1–11, Dec. 2018, doi: 10.1186/
s12859-018-2375-z.

[8] J. Ao, S. Mitra, R. Long, B. Nutter, and S. Antani, ‘‘A hybrid water-
shed method for cell image segmentation,’’ in Proc. IEEE South-
west Symp. Image Anal. Interpretation, Apr. 2012, pp. 29–32, doi:
10.1109/SSIAI.2012.6202445.

[9] S. S. Pfister, M. Betizeau, C. Dehay, and R. Douglas, ‘‘Robust 3D cell
segmentation by local region growing in convex volumes,’’ in Proc.
IEEE 10th Int. Symp. Biomed. Imag., Apr. 2013, pp. 426–431, doi:
10.1109/ISBI.2013.6556503.

[10] S. Kaur and J. Sahambi, ‘‘Curvelet initialized level set cell segmentation
for touching cells in low contrast images,’’ Comput. Med. Imag. Graph.,
vol. 49, pp. 46–57, Apr. 2016, doi: 10.1016/j.compmedimag.2016.01.002.

[11] Z. Lu, G. Carneiro, and A. Bradley, ‘‘An improved joint optimization of
multiple level set functions for the segmentation of overlapping cervi-
cal cells,’’ IEEE Trans. Image Process., vol. 24, no. 4, pp. 1261–1272,
Apr. 2015, doi: 10.1109/TIP.2015.2389619.

[12] N. Mat-Isa, M. Mashor, and N. Othman, ‘‘Seeded region growing features
extraction algorithm; its potential use in improving screening for cervical
cancer,’’ Int. J. Comput. Internet Manag., vol. 13, no. 1, pp. 61–70, 2005.

[13] T. R. Jones, A. Carpenter, and P. Golland, ‘‘Voronoi-based segmentation of
cells on image manifolds,’’ in Proc. Int. Workshop Comput. Vis. Biomed.
Image Appl., vol. 3765. Berlin, Germany: Springer, 2005, pp. 535–543.

[14] A. Kale and S. Aksoy, ‘‘Segmentation of cervical cell images,’’ in
Proc. 20th Int. Conf. Pattern Recognit., Aug. 2010, pp. 2399–2402, doi:
10.1109/ICPR.2010.587.

[15] H. A. Phoulady, D. B. Goldgof, L. O. Hall, and P. R. Mouton, ‘‘A new
approach to detect and segment overlapping cells in multi-layer cervical
cell volume images,’’ in Proc. IEEE 13th Int. Symp. Biomed. Imag. (ISBI),
Apr. 2016, pp. 201–204, doi: 10.1109/ISBI.2016.7493244.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. 26th Annu. Conf.
Neural Inf. Process. Syst., Lake Tahoe, NV, USA, vol. 2, Dec. 2012,
pp. 1097–1105, doi: 10.1061/(ASCE)GT.1943-5606.0001284.

[17] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017, doi: 10.1109/TPAMI.2016.2572683.

[18] Y. Song, L. Zhang, S. Chen, D. Ni, B. Li, Y. Zhou, B. Lei, and T. Wang,
‘‘A deep learning based framework for accurate segmentation of cervical
cytoplasm and nuclei,’’ inProc. 36th Annu. Int. Conf. IEEE Eng.Med. Biol.
Soc., Aug. 2014, pp. 2903–2906, doi: 10.1109/EMBC.2014.6944230.

[19] Y. Song, E. L. Tan, X. Jiang, J. Z. Cheng, D. Ni, S. Chen, B. Lei, and
T. Wang, ‘‘Accurate cervical cell segmentation from overlapping clumps in
pap smear images,’’ IEEE Trans. Med. Imag., vol. 36, no. 1, pp. 288–300,
Jan. 2017, doi: 10.1109/TMI.2016.2606380.

[20] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Com-
put. Comput.-Assist. Intervent., vol. 9351. Cham, Switzerland: Springer,
2015, pp. 234–241.

[21] J. Yu, M. Tan, H. Zhang, D. Tao, and Y. Rui, ‘‘Hierarchical deep
click feature prediction for fine-grained image recognition,’’ IEEE Trans.
Pattern Anal. Mach. Intell., early access, Jul. 30, 2019, doi: 10.1109/
tpami.2019.2932058.

[22] G. Ting, W. Weixing, L. Wei, and Y. Dandan, ‘‘Rock particle image
segmentation based on improved normalized cut,’’ Int. J. Control Autom.,
vol. 10, no. 4, pp. 271–286, Apr. 2017, doi: 10.14257/ijca.2017.10.4.24.

[23] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Int. Conf. Neural Inf. Process. Syst., vol. 3, 2014, pp. 2672–2680.

[24] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,’’ in Proc. 4th
Int. Conf. Learn. Represent. (ICLR) Conf. Track, 2016, pp. 1–16.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),
San Diego, CA, USA, May 2015.

[26] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
‘‘Context encoders: Feature learning by inpainting,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2536–2544, doi:
10.1109/CVPR.2016.278.

[27] W. Wang, Q. Huang, S. You, C. Yang, and U. Neumann, ‘‘Shape inpaint-
ing using 3D generative adversarial network and recurrent convolutional
networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2317–2325, doi: 10.1109/ICCV.2017.252.

[28] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic
single image super-resolution using a generative adversarial network,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 105–114, doi: 10.1109/CVPR.2017.19.

[29] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image trans-
lation with conditional adversarial networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976, doi:
10.1109/CVPR.2017.632.

[30] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
‘‘Generative adversarial text to image synthesis,’’ in Proc. 33rd Int. Conf.
Mach. Learn., (ICML), vol. 3, 2016, pp. 1681–1690.

VOLUME 9, 2021 115427

http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.1016/S2214-109X(19)30482-6
http://dx.doi.org/10.14257/ijast.2018.112.03
http://dx.doi.org/10.1097/MD.0000000000019135
http://dx.doi.org/10.1007/s10462-019-09735-2
http://dx.doi.org/10.1007/s10462-019-09735-2
http://dx.doi.org/10.35940/ijitee.f3708.049620
http://dx.doi.org/10.1186/s12859-018-2375-z
http://dx.doi.org/10.1186/s12859-018-2375-z
http://dx.doi.org/10.1109/SSIAI.2012.6202445
http://dx.doi.org/10.1109/ISBI.2013.6556503
http://dx.doi.org/10.1016/j.compmedimag.2016.01.002
http://dx.doi.org/10.1109/TIP.2015.2389619
http://dx.doi.org/10.1109/ICPR.2010.587
http://dx.doi.org/10.1109/ISBI.2016.7493244
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001284
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://dx.doi.org/10.1109/EMBC.2014.6944230
http://dx.doi.org/10.1109/TMI.2016.2606380
http://dx.doi.org/10.1109/tpami.2019.2932058
http://dx.doi.org/10.1109/tpami.2019.2932058
http://dx.doi.org/10.14257/ijca.2017.10.4.24
http://dx.doi.org/10.1109/CVPR.2016.278
http://dx.doi.org/10.1109/ICCV.2017.252
http://dx.doi.org/10.1109/CVPR.2017.19
http://dx.doi.org/10.1109/CVPR.2017.632


J. Huang et al.: Segmentation of Cervical Cell Images Based on GAN

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 2,
pp. 84–90, Jun. 2012, doi: 10.1145/3065386.

[32] Y. Tan, GPU-Based Parallel Implementation of Swarm Intelligence Algo-
rithms. San Francisco, CA, USA: Elsevier, 2016.

[33] Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T.Wang, ‘‘Accurate segmen-
tation of cervical cytoplasm and nuclei based on multiscale convolutional
network and graph partitioning,’’ IEEE Trans. Biomed. Eng., vol. 62,
no. 10, pp. 2421–2433, Oct. 2015, doi: 10.1109/TBME.2015.2430895.

[34] A. Tareef, Y. Song, H. Huang, Y. Wang, D. Feng, M. Chen, and W. Cai,
‘‘Optimizing the cervix cytological examination based on deep learning
and dynamic shape modeling,’’ Neurocomputing, vol. 248, pp. 28–40,
Jul. 2017, doi: 10.1016/j.neucom.2017.01.093.

[35] Kurnianingsih, K. H. S. Allehaibi, L. E. Nugroho, Widyawan, L. Lazuardi,
A. S. Prabuwono, and T.Mantoro, ‘‘Segmentation and classification of cer-
vical cells using deep learning,’’ IEEE Access, vol. 7, pp. 116925–116941,
2019, doi: 10.1109/ACCESS.2019.2936017.

[36] Y. Zhou, H. Chen, J. Xu, Q. Dou, and P. A. Heng, ‘‘IRNet: Instance
relation network for overlapping cervical cell segmentation,’’ in Proc. Int.
Conf. Med. Image Comput. Comput.-Assist. Intervent., vol. 11764. Cham,
Switzerland: Springer, 2019, pp. 640–648.

[37] N. Souly, C. Spampinato, and M. Shah, ‘‘Semi supervised semantic
segmentation using generative adversarial network,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5689–5697, doi: 10.1109/
ICCV.2017.606.

[38] A. Arbelle and T. R. Raviv, ‘‘Microscopy cell segmentation via adver-
sarial neural networks,’’ 2017, arXiv:1709.05860. [Online]. Available:
http://arxiv.org/abs/1709.05860

[39] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-
image translation using cycle-consistent adversarial networks,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232, doi:
10.1109/ICCV.2017.244.

[40] Y. Huo, Z. Xu, S. Bao, A. Assad, R. G. Abramson, and B. A. Land-
man, ‘‘Adversarial synthesis learning enables segmentation without target
modality ground truth,’’ 2017, arXiv:1712.07695. [Online]. Available:
http://arxiv.org/abs/1712.07695

[41] L. Han and Z. Yin, ‘‘Transferring microscopy image modalities with
conditional generative adversarial networks,’’ inProc. IEEEConf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 99–107, doi:
10.1109/CVPRW.2017.118.

[42] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, ‘‘Extract-
ing and composing robust features with denoising autoencoders,’’ in
Proc. 25th Int. Conf. Mach. Learn. (ICML), 2008, pp. 1096–1103, doi:
10.1145/1390156.1390294.

[43] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, ‘‘The
application of two-level attention models in deep convolutional neu-
ral network for fine-grained image classification,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 842–850, doi:
10.1109/CVPR.2015.7298685.

[44] S. A. Tuama and J. H. Saud, ‘‘An efficient segmentation method for
automated tongue extraction using HSV color model,’’ Int. J. Adv. Sci.
Technol., vol. 133, pp. 1–10, Dec. 2019, doi: 10.33832/ijast.2019.133.01.

[45] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[46] L. Xu, J. S. J. Ren, C. Liu, and J. Jia, ‘‘Deep convolutional neural network
for image deconvolution,’’ in Proc. 27th Int. Conf. Neural Inf. Process.
Syst., vol. 2, Dec. 2014, pp. 1790–1798.

[47] H. Lee and J. Kim, ‘‘Segmentation of overlapping cervical cells in micro-
scopic images with superpixel partitioning and cell-wise contour refine-
ment,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2016, pp. 1367–1373, doi: 10.1109/CVPRW.2016.172.

[48] T. Wang, J. Huang, D. Zheng, and Y. He, ‘‘Nucleus segmentation of cer-
vical cytology images based on depth information,’’ IEEE Access, vol. 8,
pp. 75846–75859, 2020, doi: 10.1109/ACCESS.2020.2989369.

[49] I. . and I. M. Sudarma, ‘‘Automatic segmentation of U-Zone area on facial
images using fuzzy edge detection,’’ Int. J. Adv. Sci. Technol., vol. 133,
pp. 19–30, Dec. 2019, doi: 10.33832/ijast.2019.133.03.

[50] L. R. Dice, ‘‘Measures of the amount of ecologic association between
species,’’ Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945, doi: 10.2307/
1932409.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[52] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial nets,’’
2014, arXiv:1411.1784. [Online]. Available: http://arxiv.org/abs/
1411.1784

[53] I. Ragnemalm, ‘‘Fast erosion and dilation by contour processing and
thresholding of distance maps,’’ Pattern Recognit. Lett., vol. 13, no. 3,
pp. 161–166, 1992, doi: 10.1016/0167-8655(92)90055-5.

[54] M. M. Rahaman, C. Li, X. Wu, Y. Yao, Z. Hu, T. Jiang, X. Li, and S. Qi,
‘‘A survey for cervical cytopathology image analysis using deep learn-
ing,’’ IEEE Access, vol. 8, pp. 61687–61710, 2020, doi: 10.1109/ACCESS.
2020.2983186.

JINJIE HUANG received the B.Sc. and M.Sc.
degrees from Harbin University of Science and
Technology, in 1990 and 1997, respectively, and
the Ph.D. degree from Harbin Institute of Tech-
nology, in 2004. He is currently a Professor with
Harbin University of Science and Technology. His
main research interests include intelligent control
of complex industrial process, pattern recognition,
and image processing.

GUIHUA YANG received the B.Sc. degree from
Northeast Forestry University, in 2007, and the
M.Sc. degree from Harbin University of Science
and Technology, in 2010, where she is currently
pursuing the Ph.D. degree. Her main research
interests include medical image segmentation,
medical text classification, and disease detection.

BIAO LI received the B.Sc. and M.Sc. degrees
from Harbin University of Science and Technol-
ogy. His main research interests include medical
image processing and prediction of diseases in
medical images.

YONGJUN HE received the B.S. degree in elec-
trical engineering from Harbin University of Sci-
ence and Technology, Harbin, China, in 2003, and
the M.S. and Ph.D. degrees from the School of
Computer Science, Harbin Institute of Technol-
ogy, Harbin, in 2006 and 2008, respectively. He is
currently a Professor with the School of Com-
puter Science and Technology, Harbin University
of Science and Technology. His research inter-
ests include speech speaker recognition, machine

learning, image processing, and speech processing.

YANI LIANG received the bachelor’s degree in
engineering from Harbin University of Science
and Technology, in 2018, where she is currently
pursuing the master’s degree. Her main research
interests include medical image segmentation and
medical image classification.

115428 VOLUME 9, 2021

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TBME.2015.2430895
http://dx.doi.org/10.1016/j.neucom.2017.01.093
http://dx.doi.org/10.1109/ACCESS.2019.2936017
http://dx.doi.org/10.1109/ICCV.2017.606
http://dx.doi.org/10.1109/ICCV.2017.606
http://dx.doi.org/10.1109/ICCV.2017.244
http://dx.doi.org/10.1109/CVPRW.2017.118
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1109/CVPR.2015.7298685
http://dx.doi.org/10.33832/ijast.2019.133.01
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPRW.2016.172
http://dx.doi.org/10.1109/ACCESS.2020.2989369
http://dx.doi.org/10.33832/ijast.2019.133.03
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1016/0167-8655(92)90055-5
http://dx.doi.org/10.1109/ACCESS.2020.2983186
http://dx.doi.org/10.1109/ACCESS.2020.2983186

