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ABSTRACT Credit card fraud jeopardizes the trust of customers in e-commerce transactions. This led
in recent years to major advances in the design of automatic Fraud Detection Systems (FDS) able to
detect fraudulent transactions with short reaction time and high precision. Nevertheless, the heterogeneous
nature of the fraud behavior makes it difficult to tailor existing systems to different contexts (e.g. new
payment systems, different countries and/or population segments). Given the high cost (research, prototype
development, and implementation in production) of designing data-driven FDSs, it is crucial for transactional
companies to define procedures able to adapt existing pipelines to new challenges. From an Al/machine
learning perspective, this is known as the problem of transfer learning. This paper discusses the design
and implementation of transfer learning approaches for e-commerce credit card fraud detection and their
assessment in a real setting. The case study, based on a six-month dataset (more than 200 million e-commerce
transactions) provided by the industrial partner, relates to the transfer of detection models developed for a
European country to another country. In particular, we present and discuss 15 transfer learning techniques
(ranging from naive baselines to state-of-the-art and new approaches), making a critical and quantitative
comparison in terms of precision for different transfer scenarios. Our contributions are twofold: (i) we show
that the accuracy of many transfer methods is strongly dependent on the number of labeled samples in the
target domain and (ii) we propose an ensemble solution to this problem based on self-supervised and semi-
supervised domain adaptation classifiers. The thorough experimental assessment shows that this solution is

both highly accurate and hardly sensitive to the number of labeled samples.

INDEX TERMS Fraud detection, domain adaptation, transfer learning.

I. INTRODUCTION

Global card fraud losses amounted to 24.3 billion US dollars
in 2017 and are foreseen to continue to grow to more than
34 billion by 2022 [1]. In recent years, Al/machine learning
techniques played a significant role in automatic detection
solutions to deal with massive amounts of transactions [2].
State-of-the-art work showed that an effective detection
strategy needs to take into account the peculiarities of
the fraud phenomenon [3], [4]: unbalancedness (frauds are
less than 1% of all transactions), concept drift (typically
due to seasonal aspects and evolving fraudster strategies),

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino

114754

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

high overlap between fraudulent and non-fraudulent trans-
actions [5], and the big data and streaming nature [6] of the
problem. Disregarding those aspects might lead to a high false
alert rate, low detection accuracy, or slow detection (see [7]
for more details).

As aresult, the design of an accurate Fraud Detection Sys-
tem (FDS) goes beyond the integration of some standard off-
the-shelf learning libraries and requires a deep understanding
of the fraud context. It follows that the reuse of existing
FDS in new settings, like a new market or a new payment
system, is neither immediate nor straightforward. For this
reason, strategies allowing to adapt battle-proofed FDS to
new markets or systems can be an asset for credit card issuing
companies.
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In literature there are mainly three approaches to address
this problem:

o Re-use previous models: this is the simplest solution but

reusing existing models may exhibit poor performance
if the target domain is far from the original one (e.g.
concept drift). Also, quantifying the distance between
domains is not trivial.

o Train new models from scratch: due to the lack of data
from the target domain, this solution can be impractical
or very costly in terms of research, development, and
implementation.

o Adapt existing models: this approach is known as
transfer learning. Depending on which assumptions can
be made about the problem, different sub-fields of
transfer learning can be used. These are presented in
Section II.

This paper discusses the role of transfer learning strate-
gies [8] in the adaptation of existing detection models to
new domains. In particular, we focus on the heterogeneous
nature of e-commerce credit-card transactions, related to the
different behavior in different countries (see Section V-B for
more details). In a previous work [9], the authors studied
how to transfer a detection model trained on e-commerce
data to the face-to-face (F2F) setting.! Here the challenge
is to address the shift due to the different behaviors of both
fraudsters and genuine users in two neighboring countries.

It is crucial for the card issuer company to define which
portion of the accurate detection system, carefully tuned for a
specific market, can be reused and transferred to another one.
Note that the case study is based on a real business need of our
industrial partner, leading issuer in Belgium, which recently
opened new market lines in other countries.

The paper reviews the topic of transfer learning, presents
state-of-the-art and original approaches, and assesses them in
the fraud detection case. The main original contributions of
the paper are:

« L. a comprehensive literature review of domain adaptation
(Section III);

o II. a comparison of the three main domain adaptation
approaches in the fraud detection context: self-supervised,
semi-supervised, and supervised (Section I'V);

o III. the proposal of a novel approach based on the
combination of two settings: a self-supervised generative
naive Bayesian classifier and a non-linearly normalized (to
adapt to the target distribution) classifier (Section V). This
approach is both highly accurate and hardly sensitive to
variations in the number of labeled samples;

« IV. an extensive comparison and assessment of 15 transfer
learning approaches in a real case study based on a six-
month dataset (more than 200 million e-commerce trans-
actions) provided by the industrial partner (Section V).

IFace-to-face transactions occur when the buyer and merchant physically
meet to complete a purchase. In e-commerce, transactions can take place
when the cardholder is not physically with the merchant (e.g. exchange of
goods or services through a computer network, like the internet).
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An important aspect of this paper is the novel application
domain of transfer learning, typically restricted so far to
natural language processing and image recognition tasks [8].
To the best of our knowledge, only one other work [10],
and our preliminary study [9], addressed transfer learning
techniques in credit card fraud detection.

To summarize, our work is one of the first attempts to
apply transfer learning to fraud detection. We present a wider
comparison (Contribution II and IV) and propose an accurate
and robust model in this context (Contribution III).

The rest of this paper is structured as follows: Section II
introduces background and notation. Section III reviews
related work. Section IV details the methodological contri-
butions of the paper. Experimental comparisons are presented
and analyzed in Section V while Section VI discusses these
results. Finally, Section VII concludes the paper with some
future perspectives.

1. BACKGROUND AND NOTATION
Al and Machine learning often rely on human intelligent
behavior as a source of inspiration for their strategies (e.g.
neural networks, semi-supervised learning, . ..). The idea of
Transfer learning (TL) originates from the consideration
that humans take advantage of previously learned skills
(e.g. recognize apples or playing the piano) to speed up
the learning of somewhat related tasks (recognize pears or
playing the organ) [8]. The rationale of transfer learning is to
fill the gap between two supervised learning tasks by reusing
what was learned from the former (called source) to better
address the latter (referred to as rarget).

Let us now introduce in more formal terms the notions of
domain and task [8], [11]:

e A domain D is a tuple (X, P(X)), where X denotes
the multivariate input of size m and P(X) its marginal
probability distribution.

o Given adomain, atask T is defined as a tuple (y, P(y|X))
where y is the labeled output and f(x) = P(y|X = x)
the conditional distribution which formalizes the depen-
dency between inputs and output.

Given a source domain Dy, a learning task Ty, a target
domain D; and a learning task T}, transfer learning aims to
improve the learning of the target predictive function f;(-) by
using knowledge about D and Ty where Ds # D; or T # Ty.

Depending on the assumptions that can be made on Dy,
T, D;, and T, different sub-fields of TL can be considered.
Here, we will limit ourselves to consider the one that matches
our case study. For a complete overview of TL, we refer the
reader to [11].

Domain adaptation (DA) (also called transductive transfer
learning [11]) is a sub-field of transfer learning. In this case,
there is a change in the domain Ds; # D, but the task is
supposed to remain the same Ty = T;. The change between
D; and D; may occur due to X # X; or P(Xs) # P(X;). If the
source and target feature sets differ (i.e. Xy # X;) the domain
adaptation is called heterogeneous, otherwise homogenous.
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TABLE 1. The amount of labeled data in the target domain leads to three
different settings [11]. Notice that the problem is always fully supervised
in the source domain. [11] originally refer to self-supervised DA as
unsupervised DA. We choose to use this name instead, as unsupervised
can be misleading: the model will still receive some form of feedback,

at least from source labels.

Domain Adaptation Source labels | Target labels Setting

Fully supervised DA Yes Yes Transductive
Semi-supervised DA Yes Partially Transductive
Self-supervised DA Yes None Transductive

In this paper, we consider a homogeneous domain
adaptation where the feature sets for source and target are the
same, the task is the same (fraud detection), but there is a
change in the domain distribution P(X;) # P(X;).

In the following, by source we denote the original
domain of credit card transactions from the source country
(see Section I), while rarger refers to the new domain
of transactions from the target country. The actual name
of the source and target domain cannot be revealed for
confidentiality reasons.

Source data are assumed to be completely labeled since
they are collected in a fully-known production line with
sufficient historical feedback. The target data, however,
is only partially labeled: this means that we have only
limited information about the new production line (e.g.
in a start-up phase). This case is known as semi-supervised
domain adaptation and it is one of the three most common
configurations (see Table 1 inspired from [11]). In our
previous work [9], we discussed the fully supervised case
only. Here we extend this work by analyzing the three sub-
cases and assessing the impact of the labeling target rate on
the precision (Section V).

Homogeneous transfer learning has typically recourse to
one of the following strategies [12]: (i) adapt both the
marginal and conditional distributions in the source domain,
(ii) focus on the marginal distribution only (e.g. by normaliza-
tion), or (iii) focus on the conditional distribution only. Note
that the first approach is recommended in settings where the
mechanism behind the conditional and marginal distributions
is not independent. This is typically the case of fraud
detection where the link between inputs (e.g. transaction
features) and output (fraud/genuine) is anticausal [13], i.e.
we aim to predict the causes from the effects. As shown
in recent works in literature [14], in an anticausal scenario
the changes in the marginal and conditional distribution are
related, i.e. the change of P(X) tells us something about the
change of P(y|X). Those results encouraged the adoption
of semi-supervised approaches in our specific application
setting.

lll. RELATED WORK

There are five main DA approaches in the literature according
to the most cited reviews in literature [8], [11], [12]. We detail
them below by taking into consideration that our detection
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problem is homogeneous and that a subset of labels in the
target domain is available.
« Instance-based: its rationale is that the gap between

source and target tasks may be reduced by an appropriate
adaptation (e.g. by weighting samples or adding labels)
of the training set. Three versions are available in the
literature: instance weighting, cluster-based and, self-
labeling approaches.

Instance weighting focuses on the re-weighting of
the source domain instances to correct for marginal
distributions discrepancy. The re-weighted instances are
then directly used in the target domain for training.
This approach, inspired by importance sampling [11],
works best when the conditional distribution is the same
(or at least very similar) in both domains [12]. Exam-
ples in literature are kernel-mean matching (KKM) [15],
nearest neighbor-based importance weighting [16] and,
KL importance estimation procedure (KLIEP) [17].
Cluster-based approaches construct a graph or clusters
where the labeled and unlabeled samples are nodes and
the edge weights are based on their similarity. Labels
are then propagated according to the graphs (e.g. using
graph-based classification) [8]. The main assumption
is that samples connected by high-density paths are
likely to have the same labels [18]. Examples of this
approach are locally weighted ensemble (LWE) [18]
and topic-bridged PLSA [19]. Those methods may
be highly computationally intensive, especially when
working with large graphs.

Self-labeling methods include unlabeled target domain
samples in the training process, initialize their labels,
and then iteratively refine them. This is often done
using Expectation-Maximisation (EM) algorithms (for
example TrAdaBoost [20]). Hard versions add samples
with specific labels while others [21] assign label
confidences when fitting the model. A self-supervised
approach based on Fourier transform and Wavelet
transform is presented in [22].

Feature representation: these methods aim to find a
new feature representation and belong to two main
categories: distribution similarity and latent approaches.
Distribution similarity approaches aim to make the
source and target domain sample distributions similar,
either by penalizing/removing features whose statistics
vary between domains or by learning a feature space
projection in which a distribution divergence statistic is
minimized [18], [23]. This strategy has been applied to
the task of fraud detection in [10].

Latent feature approaches construct new features using
source and target domain data or, more in general, define
a new feature space [18], [24].

Weiss et al. [12] also distinguish between asymmetric
and symmetric feature transformation. The asymmetric
case transforms the source features by re-weighting
them to match the target domain (e.g. [25]). The sym-
metric case discovers underlying meaningful structures
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TABLE 2. This table summarises the considered methods of this paper. More details about the strategy and parameters can be found in Section IV. Run
time is an indicative execution time to transfer the data, train the classifier, and label the 82 days of data (see Section VI for details). The DA class
description can be found in Section Ill. DA configuration are resumed in Table 1 and in Section Il. Parameters tuned during validation are indicated in the
last column, and the value most frequently selected is underlined. Notice that the considered test set is always composed of the target domain only.

Acronym DA class Strategy Train | DA configuration | Run time Parameters

G-NB Feat. repr. Generative naive Bayes S Self-supervised 9.21s -

N-DNN Baseline Use source labels only S Self-supervised 128.0s -

B-DNN Baseline Use target labels only t Supervised 91.2s -

C-DNN Baseline Simple concatenation s+t Supervised 194.3 s -
FEDA-DNN Feat. repr. Imputation S+t Supervised 258.8 s -

Aug-DNN Feat. repr. Add source-related features S+t Semi-supervised 5333s npc = [1,2,5]
Adv-DNN Feat. repr. Adversarial S+t Semi-supervised 219.2s A =10.01,0.1,1, 10, 100]
G-NB&DNN | Combined | Unsup. and sup. DA ensemble S+t Semi-supervised 211.8s a=1[0.1,0.3,0.5,0.7,0.9]
N-EE Baseline Use source labels only S Self-supervised 78.3s -

B-EE Baseline Use target labels only t Supervised 56.2s -

C-EE Baseline Simple concatenation S+t Supervised 82.0s -

FEDA-EE Feat. repr Imputation s+t Supervised 1059 s -

Aug-EE Feat. repr Add source-related features S+t Semi-supervised 179.6 s npc = [1,2,5]
TrAB-EE Inst. based Adaptative boosting S+t Semi-supervised 586.7 s -

G-NB&EE Combined | Unsup. and sup. DA ensemble s+t Semi-supervised 95.8s a =10.1,0.3,0.5,0.7,0.9]

between domains to find a common latent feature
space that has better predictive qualities and reduces
the marginal distribution gap between domains. Exam-
ples of this approach are frustratingly easy domain
adaptation (FEDA) [24], transfer component analysis
(TCA) [25], and Domain-adversarial training [23].

o Parameter-based: they assume that the source and
the target domains share some parameters or prior
distributions of the hyper-parameters of the models [11].
Knowledge is transferred through shared parameters
(or priors) of the source and target learners [12].
For example, a learner on the target domain can be
regularised according to a cost function measuring the
difference with the source parameters [26]. It is also
common to use an ensemble version of this approach:
create multiple source learner models and combine the
re-weighted learners to form an improved target learner.
Examples of this approach are form-free Gaussian
process [27], task-coupling SVM [28], and Neural
Network Adaptation [26].

« Relational-based: the basic assumption is that some
relationships among the data in the source and target
domains are similar [11]. Thus, the knowledge to be
transferred is the relationship between the data. This
approach, while promising on datasets with thousands of
samples, is not suitable for our volume of data (millions
of transactions). Instances of this approach are deep
transfer via Markov logic [29] and SR2LR [30].

o Deep neural network methods (DNN): DNNs have been
widely used for TL and DA since their multi-layer nature
can capture the intricate non-linear representations of
data, and provide useful level features for transfer
learning [8]. Multitask learning [31] can be as well
implemented by DNN, by training two or more related
tasks with a network sharing inputs and hidden layers
but having separate output layers. As far as domain
adaptation is concerned, hidden layers trained by the
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source task can be reused on a different target task.
For the target task model, only the last classification
layer needs to be retrained, though any layer of the
new model could be fine-tuned if needed [8]. In other
configurations, the hidden parameters related to the
source task can be used to initialize the target model [32].
Autoencoders can also be used to gradually change
the training distribution. In [33], a sequence of deep
autoencoders are trained layer-by-layer, while gradually
replacing source-domain samples with target-domain
samples. In [34], the authors simply train a single
deep autoencoder for both domains. Finally, [23] used
DNN in an adversarial way to tackle domain adaptation.
We will discuss more extensively this approach in
Section IV.

IV. TRANSFER LEARNING STRATEGIES

FOR FRAUD DETECTION

This section introduces the set of transfer learning strategies
that we designed and implemented for our fraud detection
case study (Table 2). Before detailing them, however,
we mention two important components of all discussed
methods, i.e. the classifier used for the supervised approaches
and the related normalization strategies.

A. SUPERVISED CLASSIFIERS
To better assess the impact of the transfer strategy on the final
result, we consider two different base classifiers: Random
Forests and DNN. The reason for our choice is that Random
Forests (RF) showed good performance in several works on
FDS [2], [35] while DNNs have been widely used for TL
and DA, as discussed in Section III. The domain adaptation
configuration corresponding to each strategy is reported
in Table 2.

To mitigate the effect of an unbalanced ratio between
genuine and fraudulent transactions we consider the Easy
Ensemble (EE) approach [36] based on Random Forests.
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Following a similar idea, we use random under-sampling to
re-balance the two classes for the DNN methods.

Note that to avoid bias related to the classifier structure,
all DNN strategies share the same topology composed of two
fully connected hidden layers. Based on preliminary results
(not reported here), we set the number of neurons in the
hidden layers to 1.5 times the number of input features. For
EE methods, the number of RFs in the ensemble and the
number of trees in each RF are the same for all approaches.

B. FEATURE NORMALIZATION

We refer to normalization as a nonlinear monotonous
transformation of the values of a continuous random variable
X, such that the cumulative distribution function (CDF) of
X after transformation matches a given CDF F. We consider
here only the univariate case where each feature is normalized
independently of the others. First, we compute the value of
the empirical CDF of X (noted F ) at each observed value
xi,i = 1,...,n. If all values x; are sorted in ascending
order (ties are allowed) the empirical estimation is F ) =
(i—1)/(n—1). The transformed value x! is then chosen such
that F (xlf ) = F (x;). In the context of TL, the normalization
process is performed separately on the source and target
domain data. We denote source examples by xi(s),i =
1,...,n" and target examples by x.(t),j =1,...,n", with
n® and n® respectively the number of source and target
examples. We also note the value of the empirical CDF as
pgs) = F (“)(xl-(s)) and pj@ = F (t)(x;t)). We consider two
different feature normalizations (note that methods with no

normalization are denoted by a subscript n).
o normalization to a standard uniform distribution: In this

case, the values of X can be transformed to a standard
uniform distribution in [0, 1] simply by choosing x] =
pi, since F(x) = x, Vx € [0, 1], for this particular CDF.
This normalization is denoted by a subscript u in the
method acronym.

o normalization to the target domain: the source examples
are transformed to a CDF that matches the empirical
CDF F® of the target examples. The target examples
are left unmodified. For each source example xl@ and the

corresponding empirical CDF value pgx), we find the two

consecutive empirical CDF values p(t) and pj(;) framing

it
pgs) in the target domain:

0L _ 0
Pjy =Pi" <Pj,

with j; + 1 = j». The value of xl.(s)/ is then computed as
) (.

the linear interpolation between the values X, and X,
0 _ 0
2 = (1= x4 with a = T
Pj, —Pj

This normalization is denoted by a subscript ¢ in the
method acronym.

Note that the normalization can be considered as a

very simple example of feature representation strategy
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(Section IIT), symmetric in the standard case and asymmetric
in the target case, respectively.

C. TRANSFER LEARNING STRATEGIES

Overall we consider 15 methods which are detailed below.
When the “DNN/EE” string appears in the acronym
describing the strategy, this means that the strategy has
been implemented with both the Easy Ensemble Random
Forest (EE) and DNN classifiers. Note that though the first
three are very simple baselines, they are important to assess
the added value of more complex strategies.

e B-(DNN/EE): this is the baseline ‘“‘no-transfer” clas-
sifier (see Section IV) where the training dataset is
composed of the labeled target samples only.

o N-(DNN/EE): this is the naive strategy which consists in
training the classifier (DNN or EE) on the source dataset
and test it on the target test set. This approach is also
often considered in the literature as a baseline [24] to
assess the added value of a transfer learning strategy.

o C-(DNN/EE): this approach uses both source and target
data in the training phase by adding a binary feature
which plays the role of flag indicating the domain of
the data sample. This approach is probably the simplest
conceivable supervised DA strategy.

The list of non-baseline methods is:

o FEDA-(DNN/EE): FEDA (Frustratingly Easy Domain

Adaptation) is a basic feature representation method
(Section III) which combines three versions of the
original feature set: a general version, a source-specific
version, and a target-specific version [24]. Each source
column-feature X; is replaced by ¢*(X;) = (X;, X;, 0)
and each target column-feature X; is replaced by
o' (X;) = (X;, 0, X;), where 0 is a zero vector and ¢*(X;)
(¢*(Xy)) is the source (target) mapping.
This strategy boils down to represent both domains
in an extended feature space, where missing values
are imputed with a null value. The augmented source
data therefore contains only general and source-specific
versions while the augmented target data contains both
general and target-specific versions. Finally, ¢ is used
to obtain the test set from the original target data.

o Aug-(DNN/EE): this is an original technique, first
presented in [9], which uses information from the source
domain (e.g. conditional distribution, marginal input
distribution) to add potentially informative features.
This strategy allows the classifier to learn from data
how the relatedness [37] between source and target
samples is associated with the classification output.
Since the relatedness is not explicitly available but
can only be estimated, the strategy estimates both the
conditional (e.g. returned by a classifier) and marginal
distribution from the source dataset (see Figure 1(a)
for an illustration). Those quantities are then computed
for both the source and target samples and integrated
as additional variables to the original dataset. Here are
more details about the two steps in our specific case:
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-- We train a classifier (e.g. DNN or EE) on the
source dataset. The classifier is then used to return
an estimate of the conditional probability for each
source and target sample. These values are used to
create an additional feature Pred] to augment the e
original dataset. oricinal target 3 additional

-- We build a principal component analysis (e.g. 22gfeaturesg
PCA [38]) on the source training set. The pro-
jections of all (source and target) transactions on s A
the first PCs return several additional variables

train target transaction 1
train target transaction 2
train target transaction 3

Additional
features
from source

o)

{

features
from source

|

train target transaction 1

(denoted Pca) to augment the original dataset. train target transaction 2 Agiltt;:::l
As aresult, we augment the original dataset with several train target transaction 3 from source

0

new features: Predl, and Pca;, Pcay, . ... The number
of PCA components, npc, is tuned during validation.
The expectation is that such features could encode in the
training set the relatedness between the source and target
distributions, both from a marginal and conditionally

(a) AugDNN

fully fully

dependent perspective. Note that a similar idea has been connocted connected
discussed in [24] where a binary predicted value is used /
instead. f‘ij;‘b’fe
o Adv-DNN: this is an adaptation of the approach [23] oy
to the fraud detection setting. The rationale is that .
the prediction model should use features that cannot ~__

fully
connected

discriminate between the source and target domains. The
original approach has been proposed by Ganin for image
recognition and combines a labeled source domain and
an unlabeled target domain. In our case, both source
and target are (at least partially) labeled. The method
learns domain invariant features by jointly optimizing
the feature layer from the label predictor (discriminating

(b) AdvDNN

FIGURE 1. lllustration of methods AugDNN and AdvDNN. For (b), notice
that removing the domain classifier reduces the network to the BDNN
and NDNN baselines.

genuine versus fraudulent) and the domain label (dis-
criminating source versus target) predictor. The domain
classifier uses a gradient reversal layer (GRL) and a few
fully connected layers [23]. The effect of the GRL is
to multiply all domain-related gradients by a negative
constant A during back-propagation.

During the training, the feature layer is optimized to
minimize the label classifier loss and maximize (thanks
to GRL) the domain classifier loss at the same time. The
hyperparameter A, to be tuned by validation, weights the
contribution of the two terms. This approach promotes
the emergence of features that are discriminative for
the main learning task on the source domain and non-
discriminative with respect to the domain tag [23].
A network illustration can be found in Figure 1(b).
As this approach is based on a DNN architecture, the EE
version was not considered in this case.

TrAB-EE: this strategy implements TrAdaBoost [20],
a technique which uses a small amount of target domain
labeled data to leverage the source domain data and
return a high-quality classification model for the target
domain. This is implemented as a boosting algorithm
where, at each iteration, a re-weight of the source
domain is computed by using the error calculated on the
target data. A classifier is then trained using the instance-
weighted source data and target data. This technique has
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the advantage of being at the same time self-labeling
and instance-based (see Section III). As in the original
paper, only the EE classifier is included as a base learner.
The DNN classifier was initially considered as well, but
it failed to converge after only a few iterations of the
boosting procedure, leading to poor performance. Note
that the original approach described in [20] demanded
a specific adaption to our highly imbalanced dataset.
We excluded from the computation of the training error
the genuine transactions that were not used by the
EasyEnsemble classifier in the current iteration. Since
the EasyEnsemble selects a balanced subset of the
training set, this modification makes the training error
more balanced as well.

G-NB: this approach implements a Naive Bayes classi-
fier trained exclusively on the source domain. We take
advantage of the abundant labeled data present in the
source domain to estimate the conditional probabilities
in the source domain and the priors. This leads to

Py = 11X)
_ Pi(X|y=1) Py = 1)
P(Xly=0)Ps(y=0)+P,(X[y=1) Py = 1)’
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Assuming that all variables in X are conditionally inde-
pendent, each univariate density function is estimated
using univariate histograms. After a search on the range
of the number of bins, we found that a histogram with
100 equally-spaced bins works best.

Note that this is an example of generative classifier (i.e.
fitting first the dependency ¥ — X to estimate P(y|X))
unlike the discriminative ones (i.e. fitting directly the
dependency X — Y) implemented by EE and DNN
in the previous strategies [39]. Also, it is an instance
of self-supervised DA since it does not require any
target samples. Given that by construction the generative
classification approach is more compliant with the
causal mechanism underlying the transactional data,
we expect that this approach should be particularly
robust and insensitive to distribution shifts.

We evaluated several alternative models: i) adding
known frauds from the target domain into the density
estimation of P(X|y = 1), ii) modeling important or
statistically dependent variables with joint histograms to
avoid the assumption of conditional independence, iii)
performing feature selection. In all cases, no significant
performance improvement was noted.

e G-NB&(DNN/EE): this is an ensemble of the self-
supervised approach (G-NB) and the supervised
approach C-(DNN/EE). The predicted probabilities
of fraud from both classifiers are averaged using a
weighted arithmetic mean where the weight o (with
o € [0, 1]) is tuned by validation. In our experiments
we considered five values of «: [0.1, 0.3, 0.5, 0.7, 0.9].

V. EXPERIMENTAL ASSESSMENT

This section describes the experimental assessment procedure
and is structured as follows. Section V-A presents the dataset
while Section V-B shows some visualizations to provide some
visual insight into the nature of the transfer task. Section V-C
details the experimental setting while Section V-D presents
the experimental results.

A. DATA

The source database is made up of about 143M e-commerce
transactions that occurred in the source country during
183 days (91 training, 10 validation days, and 82 test days).
The source fraud ratio is 0.13% and each transaction is
described by 23 features (in particular, there are no geo-
graphical data about cardholders as the country is different
for both domains). The target database is composed of about
60M e-commerce transactions from the target country (the
same days and features as the source database) with a fraud
ratio amounting to 0.21%. All data were standardized per
domain, before proceeding to the non-linear normalization
step (see Section IV). Validation days are used to tune the
hyperparameters introduced in the methodological section
and detailed in Table 2. We do not analyze the impact of
the training set size on the fraud detection accuracy, since
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this issue has already been extensively studied in previous
works [2].

B. VISUALIZATION OF SOURCE AND TARGET
DISTRIBUTIONS

In order to give a flavor of the complexity of our transfer
learning task, we present here a low variate visualization
of the source and target distributions by means of Principal
Component Analysis.

PCA is a well-known unsupervised visualization tech-
nique [38]. To give an insight into the two domains of
our problem, we show in Figure 2 the two first principal
components derived from the most discriminative features.
For this purpose, we restrained to consider the most relevant
features (notably the ones whose importance computed by
Random Forest is in the top third). The plot is made
of four subplots representing four possible combinations
(fraud/genuine, source/target). Figures 2(a) and 2(b) show
that the distribution of fraudulent and genuine transactions
is similar in the two countries. This is encouraging if
we aim to use transfer learning approaches. However,
Figures 2(c) and 2(d) indicate that both tasks are difficult
since they are scarcely separable (i.e. the two classes overlap
in both domains).

1) SOURCE/TARGET PREDICTION PER CLASS

In this second visualization, we train two random forests with
random undersampling for the majority class: one is trained
on half of the source data (denoted as source classifier) and
the other is trained on half of the target data (denoted as target
classifier). We then classify the rest (source and target) of the
data and report the histograms of the a-posteriori, for both
forests, in Figure 3. Figure 3(a) shows the distribution P( Y =
11Y = 0) for the source classifier and Figure 3(b) shows
the distribution P(f/ = 1|Y = 0) for the target classifier.
From these two plots, we can speculate that the origin of the
training data (source or target) does have an impact on the
classification results.

C. EXPERIMENTAL SETTING
In order to proceed to a paired assessment, we split the target
dataset into a training and a test portion.

The accuracy is measured in terms of Precision@ 100
(Pr@100) which represents the number of true compromised
cards among the first 100 alerts. The number 100 is chosen
since this is compliant with the daily effort of the team of
human investigators who manually check the transactions.
We include also accuracy results in terms of AUPRC,
a recommended alternative to the well-known ROC AUC
for unbalanced classification problems [40]. For a detailed
justification of the adoption of such measures, we refer
the reader to [2], [3], [6], [41]. Note that in literature
sometimes transaction-based precision is used instead of
card-based precision. Since we obtained similar conclusions
for transaction-based detection we limit to present here
card-based results.
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FIGURE 2. PC1 and PC2 stand for the main and second principal
components, respectively. The four subplots show that the fraud
detection task is related for both countries (source and target). Also,

the task is highly non separable in the PC space since the two classes
tend to overlap.

We denote by r (or simply ratio), the ratio of labeled
transactions in the target domain. For our analysis, it will vary
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FIGURE 3. The two subplots show that the origin of the training data
(source or target) does have an impact on the classification results.
Notice that Ps(Y = 1) (on the top, in blue) and P¢(Y = 1) (on the bottom,
in blue) somewhere have similar curves: The left part of Ps(¥ = 1|Y = 1)
is similar to Pt(? =1|Y =1) and the Ps(Y = 1|Y = 0) looks like

P,(? = 1|Y = 0) but dilated on the x-axis.

from 1 (fully labeled dataset) to 0.0001 (leaving less than five
actual labels). The rest of the transaction is not discarded but
is considered genuine instead: the probability to be a fraud
is less than 1/1000 and this is often assumed in real-life
settings. This can be viewed as an advantage of working in
an unbalanced world.

D. RESULTS

This section aims to provide a quantitative and paired assess-
ment of the 15 methods in several transfer configurations,
each characterized by a different ratio » of target labeled
transactions. Note that the ratio r = 0 corresponds to a self-
supervised DA setting (i.e. no labeled target sample) while
r = 1 denotes the configuration where all the target labeled
data are available for learning (and consequently transfer
from the source domain is of little use).

Figures 4 and 5 (resp. 6 and 7) report the Pr@100 (resp.
AUPRC) accuracy of the DNN and EE-based methods. A
boxplot is used to summarize the 82 evaluations (one per test
day) of the metric for each method. To avoid variability in
the DNN/EE training, each result is the mean of 10 different
initializations. The ratio r of labeled transactions is indicated
on the x-axis. DA self-supervised strategies are insensitive
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FIGURE 6. Boxplots representing the card-based area under the
precision-recall curve [40] for all DNN and baseline methods (82 days
with one precision score per day).

to the labeling ratio and are then presented only once on the
leftmost side.

Note that for each method, we report the accuracy associ-
ated with the best normalization method (see Section IV-C).
For the sake of comparison, the version with no normalization
(noted by a subscript 1) is also provided for the two baselines
(B-(DNN/EE) and N-(DNN/EE)).

114762

8
i . )
AR AR
10%{ § % §

wl 8

T T T T T T
[} 0.0001 0.001 0.01 0.1 1.0
Ratio r

FIGURE 7. Boxplots representing the card-based area under the
precision-recall curve [40] for all EE and baseline methods (82 days with
one precision score per day).

Figures 8 and 9 summarizes the previous results in the
form of Friedman/Nemenyi (F/N) tests [42], for DNN-based
methods and EE-based methods, respectively. There is one
F/N test per ratio r. A method is considered significantly
better than another if the difference between their mean ranks
is larger than the critical difference CD.

All experiments were carried on a server with 10 cores,
256 GB RAM, and an Asus GTX 1080 TI. The relative
execution time (feature manipulation and classification only,
no time for tuning), expressed as a ratio with respect to the
fastest method (G-NB), appears in the last column of Table 2.
Note that the B-DNN, N-DNN, and C-DNN execution times
are slower when the training set is larger. More advanced
methods (e.g. FEDA-DNN, Aug-DNN, Adv-DNN, TrAB-
EE) typically require more time than their naive counterparts.
In particular, Aug-DNN needs to train two classifiers and is
therefore the slowest approach.

Model hyperparameters were tuned using a validation set
on the 10 first days of data. The parameter value selected most
often, per method, is npc = 5 for Aug-DNN, npc = 2 for
Aug-EE, and A = 0.1 for Adv-DNN. The optimal value of «
for G-NB&DNN and G-NB&EE depends on the ratio » and
is generally higher when r is higher (i.e. the supervised part
of the model is favored when more samples are available).
For all EE-based models, we use 25 balanced forests, each
composed of 25 trees. For all DNN-based models, we use two
hidden layers with 1.5d hidden neurons, d being the number
of input features.

VI. DISCUSSION
Several considerations can be made based on the results
shown in the previous section.

In this section, the different methods of Table 2 are
compared on a real-life credit card transaction dataset
obtained from our industrial partner. To complete the names
of the methods from Table 2, we will also specify the
normalization method (only the best is reported), and the
actual train and test set for this method (under the form
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FIGURE 8. Mean rank (the higher, the better) and critical difference (CD)
of the Friedman/Nemenyi test for each labeling rate r, for all the
DNN-based methods. A method is considered significantly better than
another if its mean rank is larger by more than the critical difference

CD = 1.496. The bold horizontal lines indicate clusters of methods having
equivalent performances (difference between the mean less than CD).

train2test). As this leads to quite long names, they will be
formatted in italic form for clarity.

Figure 4 to 7 presents the performance for the 15 methods
of Table 2, plus the four versions without normalization of the
baselines: B-(DNN/EE),, and N-(DNN/EE),,.
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FIGURE 9. Friedman/Nemenyi test for each labeling rate r, for all the
EE-based methods. See also the caption of Figure 8. Here, the critical
difference CD equals 1.496.

e Accuracy in terms of Pr@100 vs. AUPRC metric:
though the Pr@100 is considered by our partner as
the most relevant metric, for the sake of completeness
we reported the AUPRC results as well. It is then
interesting to check if they provide similar insights about
the accuracy of the assessed methods. For instance, from
Figures 4 and 6 it appears that the AUPRC and the
Pr@100 rankings are similar, with the exception that
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Adv-DNN,, is less accurate in terms of AUPRC. For
EE-based methods, the AUPRC ranking (Figure 7) is
nearly identical to the Pr@100 one (Figure 5). Due to
the low and varying proportion of fraud in our data,
there is a large variability for a given model in terms
of Pr@100 and AUPRC. This variability is acceptable
in our setting because the semi-supervised approach is
deployed in a new environment only in order to obtain
a sufficient number of labels, which are eventually used
to train a fully supervised model.

o Accuracy vs. target labeling ratio r: from Figure 4,
it appears that all methods perform similarly when the
ratio r is high. However, as expected, when the ratio
r decreases, the accuracy of all methods decreases as
well. In order to compare the different strategies, it is
then important to consider the trend of the accuracy for
decreasing r (i.e. the slower the deterioration the better).
In this perspective, the most accurate DNN methods
are C-DNN; and Aug-DNN;, while the most sensitive to
a decreasing r are B-DNN,, and FEDA-DNN,,. Among
EE-based methods, C-EE; and Aug-EE; are the best
methods while the ones with the lowest accuracy are
B-EE, and FEDA-EE,. Interestingly, TrAB-EE, has the
best accuracy when r is large but becomes one of the
worst methods when r is small.

From Figure 8, G-NB,, is the best option when few
labels are available. When r increases it is outperformed
by supervised techniques: mainly by C-DNN; and Aug-
DNN; and FEDA-DNN;.

For the EE-based methods, on Figure 9, G-NB,, is also
the best methods, significantly equivalent to C-EE; (for
r = 0.0001) and Aug-EE; (for r = 0.001). When more
labels become available, the best option becomes TrAB-
EE,,, with a few equivalent methods: mainly C-EE;, Aug-
EE; and B-EE,, (whenr = 1).

o Supervised vs. self-supervised DA approaches: self-
supervised approaches (notably G-NB,)) are competitive
with most supervised methods for low r though they are
outperformed for large values of r.

o Baseline accuracy: the naive strategies C-DNN; and
C-EE; (using both source and target domain sam-
ples) are among the best approaches though less
accurate for small r. The other baselines (using
only one domain, either source or target) have much
worse accuracy. In particular, N-DNN,, is the poorest
approach, confirming that just reusing the source
classifier for the target domain is inadequate and
that the use of some transfer learning principle is
recommended.

o EE vs. DNN: overall, EE methods tend to be better than
DNN methods, probably because a medium-complex
baseline NN was used. This is also confirmed when
AUPRC is used as the performance metric.

« Impact of normalization: normalization is a key feature
for enhancing transfer performance. The normalization
to the target domain is often the best strategy. However,
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some methods (Adv-DNN,, FEDA-(DNN/EE), and
TrAB-EE,) are more accurate for raw data.

« Combined approach G-NB&(DNN/EE): The challenge
was to design a method that keeps constant per-
formances when the number of available labels in
the target domain decrease. The G-NB&(DNN/EE)
leverages on two of the two best methods of this section:
G-NB, and C-DNN/EE,. The hyperparameter o, which
allows weighting the contribution of the two approaches,
is easily tuned using a few data of validation (in our
case the ten first days of data, see Section V-A).
From the F/N tests in Figures 8 and 9, it appears that
G-NB&(DNN/EE) outperforms, or is not worse than,
all corresponding DNN (or EE) methods. Therefore,
we recommend this approach for transfer in FDS.

To summarize, the baseline combining source and target
(C-DNN/EE) and the augmented approach Aug-(DNN/EE)
are the best approaches when a sufficient number of labels
is available. The self-supervised approach G-NB is the best
approach when few or no labels are available. Feature
normalization is key to obtain the best performance, and the
combined approach G-NB&(DNN/EE) is the best approach
overall, by leveraging the strengths of both supervised and
self-supervised models.

VIl. CONCLUSION

The paper is, to the best of our knowledge, one of the
first [9], [10] to study the use of transfer learning strategies in
transaction-based fraud detection systems. Though the case
study is limited to 6 months of data, we consider it fully
realistic from a business perspective. It is indeed a top priority
for transactional companies to develop strategies to reuse
detection models trained on consolidated markets to new
ones.

The paper discusses, implements and assesses 15 transfer
learning techniques in a number of settings characterized
by different amounts of supervised labeling in the target
domain. It is interesting to note for very low amounts of target
labels, generative classifiers (e.g. Naive Bayes) outperform
discriminative ones. This robustness might be due to the
fact that generative approaches are more compatible with the
causal relationship existing between the inputs and the output
of a fraud classifier: indeed, the most commonly used input
features are not causes of the output binary class (fraud or
genuine), but descriptors of the fraudulent event (and as such
effects of the output binary variable). However, if we increase
the number of target labels, the adoption of adversarial or
augmented feature strategies is recommended. Overall the
most accurate method is an ensemble of unsupervised and
semi-supervised domain adaptation classifiers, which outper-
forms all considered approaches. Indeed, self-supervised DA
is better suited for situations where few (or no) labels in the
target domain are known, whereas semi-supervised domain
adaptation is more suited if enough target domain labels can
be gathered. The adoption of a weighting hyperparameter
allows tuning the contributions of the two approaches.
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Future work will focus on extending the set of considered
methods and in using transfer strategies to address problems
related to the single market case, e.g. nonstationarity and
drift. At the same time, we expect to assess the robustness of
the approaches by applying them to other transfer problems
(e.g. new countries). Thanks to our promising results,
our industrial partner Worldline has already implemented
in production a combination of self-supervised and semi-
supervised approaches [43].

ACKNOWLEDGMENT

The authors would like to thank Innoviris for allowing them to
conduct both fundamental and applied research. The authors
and the parties cited above have no competing interests.

REFERENCES

[1] HSN Consultants, Inc. (Oct. 17, 2019). The Nilson Report 2018. [Online].
Available: https://nilsonreport.com

[2] A. D. Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and
G. Bontempi, “Learned lessons in credit card fraud detection from a prac-
titioner perspective,” Expert Syst. Appl., vol. 41, no. 10, pp. 4915-4928,
Aug. 2014.

[3] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit card fraud detection and concept-drift adaptation with delayed
supervised information,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2015, pp. 1-8.

[4] A. D. Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit card fraud detection: A realistic modeling and a novel learning
strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8,
pp. 3784-3797, Aug. 2018.

[5] F. Carcillo, Y. L. Borgne, O. Caelen, and G. Bontempi, ““Streaming active
learning strategies for real-life credit card fraud detection: Assessment and
visualization,” Int. J. Data Sci. Anal., vol. 5, no. 4, pp. 285-300, 2018.

[6] F. Carcillo, A. Dal Pozzolo, Y.-A. Le Borgne, O. Caelen, Y. Mazzer, and
G. Bontempi, “SCARFF: A scalable framework for streaming credit card
fraud detection with spark,” Inf. Fusion, vol. 41, pp. 182-194, May 2018.

[71 A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system,”
J. Netw. Comput. Appl., vol. 68, pp. 90-113, Jun. 2016.

[8] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer
learning using computational intelligence: A survey,” Knowl.-Based Syst.,
vol. 80, pp. 14-23, May 2015.

[9] B. Lebichot, Y.-A. Le Borgne, L. He-Guelton, F. Oblé, and G. Bontempi,
“Deep-learning domain adaptation techniques for credit cards fraud
detection,” in Recent Advances in Big Data and Deep Learning, L. Oneto,
N. Navarin, A. Sperduti, and D. Anguita, Eds. Cham, Switzerland:
Springer, 2020, pp. 78-88.

[10] Y. Zhu, D. Xi, B. Song, F. Zhuang, S. Chen, X. Gu, and Q. He, “Modeling
users’ behavior sequences with hierarchical explainable network for cross-
domain fraud detection,” in Proc. Web Conf., Apr. 2020, pp. 928-938.

[11] S.J.Panand Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

[12] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” J. Big Data, vol. 3, no. 1, p. 9, 2016.

[13] J. Peters, D. Janzing, and B. Scholkopf, Elements of Causal Inference.
Cambridge, MA, USA: MIT Press, 2017.

[14] D. Janzing and B. Scholkopf, ‘““Semi-supervised interpolation in an
anticausal learning scenario,” J. Mach. Learn. Res., vol. 16, no. 1,
pp. 1923-1948, 2015.

[15] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf,
“Correcting sample selection bias by unlabeled data,” in Proc. 19th Int.
Conf. Neural Inf. Process. Syst. (NIPS). Cambridge, MA, USA: MIT Press,
2006, pp. 601-608.

[16] M. Loog, “Nearest neighbor-based importance weighting,” in Proc. IEEE
Int. Workshop Mach. Learn. Signal Process., Sep. 2012, pp. 1-6.

[17] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Biinau, and M. Kawanabe,
“Direct importance estimation with model selection and its application
to covariate shift adaptation,” in Proc. 20th Int. Conf. Neural Inf.
Process. Syst. (NIPS). Red Hook, NY, USA: Curran Associates, 2007,
pp. 1433-1440.

VOLUME 9, 2021

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]
(38]
(39]

(40]

[41]

[42]

(43]

J. Gao, W. Fan, J. Jiang, and J. Han, “Knowledge transfer via multiple
model local structure mapping,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2008, pp. 283-291.

G.-R. Xue, W. Dai, Q. Yang, and Y. Yu, “Topic-bridged PLSA for cross-
domain text classification,” in Proc. 31st Annu. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr. (SIGIR), 2008, pp. 627-634.

W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,”
in Proc. 24th Int. Conf. Mach. Learn. (ICML), 2007, pp. 193-200.

S. Tan, X. Cheng, Y. Wang, and H. Xu, “Adapting naive Bayes to domain
adaptation for sentiment analysis,” in Proc. 31th Eur. Conf. IR Res. Adbv.
Inf. Retr. Berlin, Germany: Springer, 2009, pp. 337-349.

R. Saia and S. Carta, “Evaluating the benefits of using proactive
transformed-domain-based techniques in fraud detection tasks,” Future
Gener. Comput. Syst., vol. 93, pp. 18-32, Apr. 2019.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural
networks,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2030-2096, 2016.

H. Daume, III, “Frustratingly easy domain adaptation,” in Proc. Annu.
Meeting Assoc. Comput. Linguistics, Jun. 2007, pp. 256-263.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, ‘“Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199-210, Feb. 2011.

H. Liao, “Speaker adaptation of context dependent deep neural networks,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013,
pp. 7947-7951.

E. V. Bonilla, K. M. Chai, and C. Williams, ‘“Multi-task Gaussian process
prediction,” in Proc. Adv. Neural Inf. Process. Syst., J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, Eds. Red Hook, NY, USA: Curran Associates,
2008, pp. 153-160.

T. Evgeniou and M. Pontil, “Regularized multi-task learning,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2004,
pp. 109-117.

J. Davis and P. Domingos, “Deep transfer via second-order Markov
logic,” in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML), 2009,
pp. 217-224.

L. Mihalkova, T. Huynh, and R. J. Mooney, ‘“Mapping and revising Markov
logic networks for transfer learning,” in Proc. 22nd Nat. Conf. Artif. Intell.,
vol. 1. Palo Alto, CA, USA: AAAI Press, 2007, pp. 608-614.

A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing, “Training hierarchical
feed-forward visual recognition models using transfer learning from
pseudo-tasks,” in Proc. ECCV, vol. 3, Oct. 2008, pp. 69-82.

D. C. Ciresan, U. Meier, and J. Schmidhuber, ““Transfer learning for Latin
and Chinese characters with deep neural networks,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jun. 2012, pp. 1-6.

S. Chopra, S. Balakrishnan, and R. Gopalan, “DLID: Deep learning for
domain adaptation by interpolating between domains,” in Proc. ICML
Workshop Challenges Represent. Learn., 2013, pp. 1-8.

X. Glorot, A. Bordes, and Y. Bengio, ‘““Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in Proc. 28ht Int.
Conf. Mach. Learn. (ICML), 2011, pp. 1-8.

1. Sohony, R. Pratap, and U. Nambiar, “Ensemble learning for credit card
fraud detection,” in Proc. ACM India Joint Int. Conf. Data Sci. Manage.
Data, Jan. 2018, pp. 289-294.

X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39,
no. 2, pp. 539-550, Apr. 2009.

R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, pp. 41-75,
1997.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2th ed. New York, NY, USA: Springer, 2009.

1. Guyon, C. Aliferis, and A. Elisseeft, Causal Feature Selection. London,
U.K.: Chapman & Hall, 2007, pp. 63-85.

D. Hand, “Measuring classifier performance: A coherent alternative to the
area under the ROC curve,” Mach. Learn., vol. 77, no. 1, pp. 103—123,
2009.

B. Lebichot, F. Braun, O. Caelen, and M. Saerens, A Graph-Based, Semi-
Supervised, Credit Card Fraud Detection System. Cham, Switzerland:
Springer, 2017, pp. 721-733.

J. Demsar, “Statistical comparaison of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Dec. 2006.

'W. Siblini et al., “Transfer learning for credit card fraud detection: A
journey from research to production,” 2021, arXiv:2107.09323. [Online].
Available: https://arxiv.org/abs/2107.09323

114765



IEEE Access

B. Lebichot et al.: TL Strategies for Credit Card Fraud Detection

BERTRAND LEBICHOT received the M.Sc. and
Ph.D. degrees in engineering from the Uni-
versité catholique de Louvain (UCL), Belgium,
in 2011 and 2018, respectively. He worked as a
Postdoctoral Researcher at the Université Libre
de Bruxelles (ULB), Belgium, and is currently
a Research Associate with the University of
Luxembourg. He is also a part-time Lecturer at
UCL. His research interests include graph mining,
deep learning, and fintech applications.

THEO VERHELST received the bachelor’s degree
in computer science from the Université Libre
de Bruxelles (ULB), in 2017, and the M.Sc.
degree in artificial intelligence program, under the
Erasmus Program, from Southampton University.
He completed his second year of master’s degree
(Hons.) in computer science from ULB. After a six
months research contract on machine learning for
credit card fraud detection, he is currently pursuing
the Ph.D. degree with the ULB Machine Learning
Group on machine learning and causal analysis for telecom customer data,
in collaboration with Orange Belgium.

YANN-AEL LE BORGNE received the M.Sc.
degree in cognitive sciences from Joseph Fourier
University, France, in 2003, and the Ph.D. degree
in computer science, under EU Marie Curie
Fellowship, from the University of Brussels,
Belgium, in 2009. He is a Senior Consultant
in machine learning and scientific collaborator
at the Machine Learning Group, University of
Brussels. His research interests include machine
learning and big data technologies, with a focus on
applications related to scalable time series forecasting, fraud detection, and
the Internet of Things.

114766

LIYUN HE-GUELTON received the degree in
engineering from Telecom Bretagne, France, and
the Ph.D. degree from the French Institution
of Research for Sea Exploitation (IFREMER),
in 2014. She then worked as a Research Engineer
with the National Institute for Research in Com-
puter Science and Automation (INRIA). Since
2015, she has been working with the Research and
Development Department, Worldline. Her current
research interests include Al, machine learning,
big data, and fintech applications.

FREDERIC OBLE received the Ph.D. degree in
computational fluid dynamics from the Université
de Lille, in 1997. He has been working with
Worldline, since 2000. After ten years journey
within operational units making business and
pushing technical innovation, he has been leading
an Research and Development Department for ten
years and has led big data and artificial intelligence
research and development programs for Worldline
and Atos Group. He is currently the Head of the
scientific and technical direction at Worldline Labs and leading a research
program related to Al, trust, and hyper automation.

GIANLUCA BONTEMPI (Senior Member, IEEE)
is a Full Professor with the Computer Science
Department, Université Libre de Bruxelles (ULB),
Brussels, Belgium, the Co-Head of the ULB
Machine Learning Group. He has been the Direc-
tor of (IB)2, ULB/VUB Interuniversity Institute
of Bioinformatics, Brussels, from 2013 to 2017.
He was a Marie Curie Fellow Researcher. He is
the author of more than 200 scientific publications.
He is also a coauthor of several open-source
software packages for bioinformatics, data mining, and prediction. His
research interests include big data mining, machine learning, bioinformatics,
causal inference, predictive modeling, and their application to complex
tasks in engineering (time series forecasting and fraud detection) and life
science (network inference and gene signature extraction). He is a member
of the Scientific Advisory Board of Chist-ERA. He was awarded in two
international data analysis competitions and took part in many research
projects in collaboration with universities and private companies all over
Europe.

VOLUME 9, 2021



