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ABSTRACT This paper proposes a novel individual variable step-size subband adaptive filter algorithm
robust to impulsive noises. A fixed step-size subband adaptive filter algorithm that is robust against impulsive
noises is newly derived by obtaining the optimal solution from a constrained optimization problem through
the Lagrangemultiplier. In addition, in order to further improve the convergence performance of the proposed
algorithm, the weight update formula with a single fixed step size is modified to have multiple individual
step sizes. By analyzing its mean-square-deviation (MSD), the optimal individual step size is designed.
Simulation results show that the proposed algorithm outperforms the algorithms robust to impulsive noises
in the literature.

INDEX TERMS Adaptive filters, subband adaptive filter algorithm (SAF), variable step size, individual step
size, mean square deviation, impulsive noises.

I. INTRODUCTION
Adaptive filters are used in various fields of signal pro-
cessing such as acoustic echo cancellation, active noise
cancellation, channel equalization, and system identifica-
tion [1]–[5]. They are also used in artificial intelligence and
linear algebra recently [6]. Among various adaptive filter
algorithms, the least-mean-square (LMS) algorithm and the
normalized-least-mean-square (NLMS) algorithm are most
used because of their simple structure and good perfor-
mance [7]–[11]. However, in an environment where the input
signal is colored, the convergence speed of the LMS-series
algorithms decreases and the steady-state error increases.
A normalized-subband-adaptive-filter (NSAF) algorithmwas
proposed to overcome these shortcomings of the LMS-based
algorithms [3], [12]–[17]. Because the NSAF algorithm
decomposes and decimates the input and the desired signals
for each frequency band, each input signal has the effect of
being decorrelated. However, when using a fixed step size in
NSAF, there is a trade off between convergence speed and
steady state error. Various variable step-size algorithms have
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been developed to ensure both fast convergence speed and
low steady state error [18]–[24].

In practice, in many cases, the performance of the adap-
tive filter is degraded due to various measurement noises.
In particular, when impulsive noises are included in mea-
surement noises, the performance of VSS NSAFs based on
L2-norm optimization is greatly degraded, and in severe
cases, they may diverge. Many studies have been con-
ducted to improve the performance degradation caused by
these impulsive noises [25]–[28], [28]–[30]. A sign sub-
band adaptive filter (SSAF) was proposed by minimizing
the L1-norm of a posteriori error, and a variable regular-
ization parameter sign subband adaptive filter (VRP-SSAF)
was proposed to improve convergence performance [26].
Subsequently, variable step-size algorithms were developed
to improve convergence performance. A variable step-size
NSAF algorithm (VSS-SSAF) induced a variable step-size
from the viewpoint of minimizing mean square deviation
(MSD), but tracking performance was poor [27]. A variable
individual step-size NSAF (VISS-NSAF) algorithm individ-
ually updates the step size for each subband to improve the
convergence performance [23]. A band-dependent variable
step-size SSAF algorithm (BDVSS-SSAF) further improved
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the convergence performance by applying the individual step
size for each subband based on the MSD [28]. A novel
SSAF improved performance by applying individual weight-
ing factors to SSAF [31], and a robust band-dependent vari-
able step-size NSAF algorithm (RBDVSS-NSAF) proposed
a robust algorithm regardless of the presence of impulsive
noise by simultaneously applyingL1 andL2 optimizations to
each subband [30]. These algorithms applying an individual
step-size for each subband assume that the divided signals
are completely uncorrelated with each other. However, such
divided signals are not actually completely uncorrelated with
each other, and the correlation among these signals must be
considered.

This paper proposes a new individual variable step-size
subband algorithm that is robust to impulsive noises. A fixed
step-size subband adaptive filter algorithm that is robust
against impulsive noises is newly derived by obtaining the
optimal solution from a constrained optimization problem
through the Lagrange multiplier. The new weight update
formula obtained in this way has the effect of normalizing the
error signal, so it is naturally robust against impulsive noises.
In addition, the correlation among the divided signals for each
subband is also considered without any assumptions. Also,
the weight update formula with a single fixed step size is
modified to have multiple individual step sizes and thereafter
the optimal individual step size is obtained through MSD
analysis. The proposed algorithm is simulated in the system
identification scenario and compared with the existing SAF
algorithms that are robust to impulsive noises.

This paper is organized as follows. The NSAF algorithm
is briefly mentioned in Section 2. In Section 3, the proposed
algorithm robust against impulsive noise is derived, and the
individual variable step size is also derived. In Section 4, sev-
eral simulations are performed while comparing the proposed
algorithm with other impulsive noise-resistant algorithms.

II. SUBBAND ADAPTRIVE FILTER ALGORITHM ROBUST
TO IMPULSIVE NOISES
A. CONVENTIONAL NORMALIZED SUBBAND ADAPTIVE
FILTER ALGORITHM
In conventional NSAF, the desired signal dn is defined as

dn = xTnw+ vn. (1)

xn is the input signal of theNSAF algorithm and its dimension
isM .w is an unknownM -dimensional optimal weight vector.
The signal vn indicates measurement noise with variance σ 2

v .
Figure. 1 shows a basic signal flow diagram of NSAF. In the
figure, N represents the number of subbands. Hj (z) is an
analysis filter bank that decomposes the signal by frequency
band, andGj (z) is a synthesis filter bank that reconstructs the
divided signal, where j = 0, 1, . . . ,N − 1. The input signal
xn and the desired signal dn are decomposed to frequency
bands by the analysis filter bank to become xj,n and dj,n,
respectively. dj,n is also downsampled by factor N to output
dD,j,k . xj,n is also downsampled by factor N to output xj,k .
Then the downsampled signal xj,k is accumulatedN times and

FIGURE 1. The structure of the basic NSAF.

then filtered by an adaptive filter. Therefore, the decimated
output signal is defined as yD,j,k = xTj,k ŵk , where xj,k =
[xj,kN , xj,kN−1, . . . , xj,kN−M+1]T , and ŵk ∈ RM×1 is the
estimation of the weight coefficient w at the k-th iteration of
the adaptive filter. The decimated desired signal dD,j,k and
yD,j,k are added together. The added signal is then upsampled
back to factor N and reconstructed by the synthesis filter
bank. In this paper, n represents the iteration of the original
signal and k represents the iteration of the downsampling
signal. The input matrix, divided output signal, a priori error
signal, and a posteriori error signal are defined as follows:

dD,k = XT
k w+ vD,k , (2)

eD,k = dD,k − XT
k ŵk , (3)

ep,k = dD,k − XT
k ŵk+1, (4)

where Xk = [x0,k , x1,k , . . . , xN−1,k ] and vD,k is the mea-
surement noise signal which is divided into frequency bands
by the analysis filter bank. In (2), since Xk and vD,k are
the signals divided into frequency band by analysis filter
bank H (z), each element of dD,k is a desired signal divided
into frequency band. Then, NSAF’s weight update recursion
formula is as follows.

ŵk+1 = ŵk + µ

N−1∑
j=0

xj,k
xTj,kxj,k

eD,j,k . (5)

B. PROPOSED SAF ALGORITHM ROBUST TO IMPULSIVE
NOISES
The following constrained optimization problem is set up to
obtain a weight update formula that is robust to the impulsive
noises.

ŵk , argmin
ŵk

eTp,k
(
XT
k Xk

)−1
ep,k (6)

subject to ‖ ŵk+1 − ŵk ‖
2
2= µ

2, (7)

where µ is a step size that limits the abrupt change in weight
vector and is designed in section 3. In order to solve this
constrained optimization problem, the Lagrange multiplier λ
is introduced as follows:

ŵk+1 , arg min
ŵk+1

max
λ

f
(
ŵk+1, λ

)
, (8)
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where the cost function f
(
ŵk+1, λ

)
is described as

f
(
ŵk+1, λ

)
, eTp,k

(
XT
k Xk

)−1
ep,k

+ λ
(
‖ ŵk+1 − ŵk ‖

2
2 −µ

2
)
. (9)

The following equation can be obtained by differentiating
the cost function of (9) with respect to ŵk+1.

∂

∂ŵk+1
f
(
ŵk+1, λ

)
= −2Xk

(
XT
k Xk

)−1
ep,k + 2λ

(
ŵk+1 − ŵk

)
. (10)

If (10) is set to 0 and arranged, the following weight update
recursion formula can be obtained.

ŵk+1 = ŵk +
1
λ
Xk

(
XT
k Xk

)−1
ep,k . (11)

Similarly, if (9) is partially differentiated with respect to λ
and the result is set to 0, we get:

‖ ŵk+1 − ŵk ‖
2
2= µ

2. (12)

Substituting (11) into (12), we get:

1
λ2

(
Xk

(
XT
k Xk

)−1
ep,k

)T
×

(
Xk

(
XT
k Xk

)−1
ep,k

)
=

1
λ2

eTp,k
(
XT
k Xk

)−1
ep,k = µ2. (13)

Therefore, λ can be represented as

1
λ
=

µ√
eTp,k

(
XT
k Xk

)−1 ep,k . (14)

As defined in (4), since the a posteriori error ep,k is a value
related to ŵk+1 that is not accessible at the present time, it is
reasonable to approximate ep,k to eD,k . So (11) can be written
as follows:

ŵk+1 = ŵk + µ
Xk
(
XT
k Xk

)−1 eD,k√
eTD,k

(
XT
k Xk

)−1 eD,k . (15)

III. INDIVIDUAL VARIABLE STEP SIZE
A. ALGORITHM DEVELOPMENT
To develop a individual variable step-size SAF algorithm,
the shape of the step size should be modified. We modify the
scalar step size into a diagonal matrix form as follows so that
different step sizes can be applied to each subband.

ŵk+1 = ŵk +
Xk
(
XT
k Xk

)−1Dµ,keD,k√
eTD,k

(
XT
k Xk

)−1 eD,k , (16)

where Dµ,k = diag[µ0,k , µ1,k , · · · , µN−1,k ]. The weight-
error vector is defined as w̃k = w − ŵk , then (16) can be
represented as

w̃k+1 = w̃k −
Xk
(
XT
k Xk

)−1Dµ,keD,k√
eTD,k

(
XT
k Xk

)−1 eD,k . (17)

Since the input matrix Xk is an observable signal, it is
regarded as a deterministic quantity. To perform the MSD
analysis, the MSD is defined as MSDk , E

(
w̃T
k w̃k | Xk

)
=

Tr (Pk) , where Pk , E
(
w̃k w̃T

k | Xk
)

and Xk ,
{xi | 0 ≤ i < k}. Therefore, the MSD update equation can be
expressed as

Pk+1 = Pk − 2E

Xk
(
XT
k Xk

)−1Dµ,keD,k w̃T
k√

eTD,k
(
XT
k Xk

)−1 eD,k


+E

eTD,kDµ,k
(
XT
k Xk

)−1Dµ,keD,k
eTD,k

(
XT
k Xk

)−1 eD,k
 . (18)

Since w̃k and vD,k are assumed to be independent, the sec-
ond term of (18) can be rearranged as follows:

E

Xk
(
XT
k Xk

)−1Dµ,keD,k w̃T
k√

eTD,k
(
XT
k Xk

)−1 eD,k


≈ E

Xk
(
XT
k Xk

)−1Dµ,kXT
k√

eTD,k
(
XT
k Xk

)−1 eD,k
Pk . (19)

Also, we define zk and DeD,k as follows:

zTk ,
[
µ0,k µ1,k · · · µN−1,k

]
, (20)

DeD,k , diag[eD,0,k eD,1,k · · · eD,N−1,k ]. (21)

Then the third term in (18) can be rearranged as follows:

E

eTD,kDµ,k
(
XT
k Xk

)−1Dµ,keD,k
eTD,k

(
XT
k Xk

)−1 eD,k


= E

zTk DeD,k
(
XT
k Xk

)−1DT
eD,k zk

eTD,k
(
XT
k Xk

)−1 eD,k
 . (22)

Therefore, (18) is finally summarized as follows.

Pk+1 ≈ Pk − 2E

Xk
(
XT
k Xk

)−1Dµ,kXT
k√

eTD,k
(
XT
k Xk

)−1 eD,k
Pk

+ zTk E

DeD,k
(
XT
k Xk

)−1DT
eD,k

eTD,k
(
XT
k Xk

)−1 eD,k
 zk . (23)

For the convenience of notation, ρ,
√
eTD,k

(
XT
k Xk

)−1 eD,k ,
and Ak , (DeD,k

(
XT
k Xk

)−1 DT
eD,k )/(e

T
D,k

(
XT
k Xk

)−1 eD,k )
are defined. After that, taking traces on both side of (23)
and using the same approximation method as in [32], [33],
the following approximation can be obtained.

pk+1 ≈ pk − 2
Npk
ρβM

lTN zk + zTk E [Ak ] zk , (24)

where lN is a N × 1 vector which components are all 1 and
β is a design parameter that the user optimizes according to
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the environment. By differentiating pk+1 with respect to zk to
minimize MSD, the following equation can be obtained:

Npk
ρβM

lN = E [Ak ] zk . (25)

Therefore, the optimal zk can be obtained as follows.

zk = E−1 [Ak ]
Npk
ρβM

lN . (26)

According to the definition ofAk , the following expression
holds.

E [Ak ] = E

DeD,k
(
XT
k Xk

)−1 DT
eD,k

eTD,k
(
XT
k Xk

)−1 eD,k
 . (27)

Based on this fact, we use the estimate of Ak , which is Âk ,
as follows through the moving average method.

Âk = αÂk−1 + (1− α)
DeD,k

(
XT
k Xk

)−1DT
eD,k

eTD,k
(
XT
k Xk

)−1 eD,k , (28)

where α is the forgetting factor with a value between 0 and 1.
Therefore, the final weight update formula can be written as
follows:

ŵk+1 = ŵk +
Xk
(
XT
k Xk

)−1Dµ,keD,k√
eTD,k

(
XT
k Xk

)−1 eD,k . (29)

zk represents the step size for each subband in the form of a
vector. Therefore, the i th diagonal element of Dµ,k is the i
th element of zk . Since the proposed algorithm is developed
in a stationary environment, a method is needed to make the
algorithmwork well even when an unknown system suddenly
changes. For this reset method, the method used in [28] is
applied. This is summarized in table 1.

B. STABILITY
In order to find the range of the step size in which the stability
of the algorithm is guaranteed, (24) is summarized as follows.

pk+1 ≈ pk − 2
Npk
ρβM

lTN zk + zTk E [Ak ] zk

=

(
1− 2

N
ρβM

lTN zk

)
pk + zTk E [Ak ] zk . (30)

In order to guarantee the convergence of the proposed
algorithm, the following conditions must be satisfied.∣∣∣∣1− 2

N
ρβM

lTN zk

∣∣∣∣ < 1. (31)

According to the definitions of ρ and zk , (31) is arranged
as follows.

0 <
N
∑N−1

j=0 µj,k

βM
√
eTD,k

(
XT
k Xk

)−1 eD,k < 1. (32)

TABLE 1. Proposed algorithm summary.

Therefore, the condition for step sizes that guarantee the
stability of the algorithm is as follows.

0 <
N−1∑
j=0

µj,k <
βM

√
eTD,k

(
XT
k Xk

)−1 eD,k
N

. (33)

IV. SIMULATION RESULTS
We perform computer simulation in this section to verify
the performance of the algorithm proposed in the system
identification scenario. The filter coefficients of the system
identified in the simulation are generated as a random unit
vector. In this simulation, the two filter banksH (z) andG (z)
are designed to be paraunitary so that the signals that have
passed through the analysis filter bank and the synthesis filter
bank are perfectly reconstructed. That is, analysis filter bank
H (z) and synthesis filter bank G (z) satisfy the following
conditions.

H (z)G (z) = I. (34)

The autoregressive (AR) models are defined in (35)
and (36) to confirm that the proposed algorithm works well
not only in white Gaussian input but also in AR input envi-
ronment. The impulsive noise environment is created with
ηi = qiAi. qi follows the Bernoulli process with a probability
of P[qi = 1] = Pr , and Ai is white Gaussian noise with
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FIGURE 2. MSD learning curves according to the number of subbands of
the proposed algorithm (M = 64, white Gaussian input, Pr = 0).

FIGURE 3. MSD learning curve according to the number of subbands of
the proposed algorithm (M = 64, colored by R2(z), Pr = 0).

zero mean. In addition, to show that the performance of the
proposed algorithm is not a coincidence, all simulations are
obtained through averaging of 10 ensembles.

R1 (z) =
1

1− 0.97z−1
, (35)

R2 (z) =
1

1− 1.6z−1 + 0.81z−2
. (36)

A. SELF WHITENING EFFECT ACCORDING TO THE
NUMBER OF SUBBANDS
The advantage of subband adaptive filter is that performance
degradation is minimized due to self input whitening effect
in colored input situation. Therefore, it is important to set
the appropriate number of subbands in the colored input
situation. The length of the analysis filter was set to 8 times
the number of subbands. Figure. 2 shows the MSD learning
curves by the number of subbands of the proposed algorithm
in a white Gaussian input environment. In such an environ-
ment, since the input signal is already white Gaussian, there

FIGURE 4. Performance comparison between the proposed algorithm and
fixed step-size NSAF (M = 64, White Gaussian input, Pr = 0.1).

FIGURE 5. Performance comparison between the proposed algorithm and
existing algorithms that are robust to impulsive noises (M = 64, White
Gaussian input, Pr = 0.01).

is little difference in MSD learning curves by the number of
subbands. Figure. 3 shows the MSD learning curves by the
number of subbands of the proposed algorithm in the input
signal environment correlated with R2(z). In such an environ-
ment, as the number of subbands increases, the performance
degradation due to colored input is alleviated by the self input
whitening effect. This self input whitening effect is saturated
at N = 8, which means that 8 subbands sufficiently whiten
the colored input.

B. SIMULATION OF THE PROPOSED ALGORITHM AND
FIXED STEP-SIZE NSAF IN THE ENVIRONMENT OF
IMPULSIVE NOISES
Figure. 4 shows the performance comparison of the proposed
algorithm and the basic NSAF algorithm in the impulsive
noises environment. Simulation environment variables were
set to M = 64,N = 8, SNR = 30dB, SIR = −30dB,Pr =
0.1. As shown in figure. 4, the basic NSAF algorithms using
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FIGURE 6. Performance comparison between the proposed algorithm and
existing algorithms that are robust to impulsive noises (M = 64, White
Gaussian input, Pr = 0.1).

FIGURE 7. Performance comparison between the proposed algorithm and
existing algorithms that are robust to impulsive noises (M = 64, AR1
input, Pr = 0.1).

a fixed step-size diverge in an impulsive noise environment.
As the step size decreases, the influence of the error including
impulsive noises decreases, so it seems to be less divergent,
but it can be seen that weight update is hardly performed.
On the other hand, since the proposed algorithm has the effect
of normalizing the error signal, it shows a fast convergence
speed and a lower steady state error even in an impulsive noise
environment.

C. PERFORMANCE COMPARISON
Figure. 5-10 show a comparison of the proposed algorithm
with algorithms that have good performance robust to impul-
sive noise. The tuning parameters of the comparison algo-
rithms are set as follows: κ = 5, α = 1 − N/κm for
VSS-SSAF [27], λ = 1 − N/κm, C = 1.483

(
1+ 5

Nw−1

)
,

VT = Nw = M , VD = 0.75VT , ξ = 1, ε = 10−6 for BDVSS-
SSAF [28], β = 15, Tr [P(0)] = 100 for VISS-NSAF [23],

FIGURE 8. Performance comparison between the proposed algorithm and
existing algorithms that are robust to impulsive noises (M = 64, AR2
input, Pr = 0.1).

FIGURE 9. Performance comparison between the proposed algorithm and
existing algorithms that are robust to impulsive noises (M = 256, White
Gaussian input, Pr = 0.1).

λ = 1 − N/κM , κ = 5, VT = 3M , VD = 0.75VT , ξth = 1,
ε = 10−6 for RBDVSS-NSAF [30]. Figure. 5 and 6 show
the performance comparison between the algorithms that are
robust against impulsive noises and the proposed algorithm.
In both simulations, M = 64, N = 8, SNR = 30dB, SIR =
−30dB and input signal is white Gaussian were set. Pr is
set to 0.01 in figure. 5, and set to 0.1 in figure. 6. As shown
in the simulations, VSS-SSAF is robust in impulsive noises
environment because only the sign of the error signal is used
as information when updating weights [9]. In addition, a vari-
able step size was applied to improve the convergence perfor-
mance. VISS-NSAF tried to further improve the convergence
performance by applying an individual variable step size for
each frequency band, but it is very vulnerable to impulsive
noises, so it does not convergewell [23]. Since BDVSS-SSAF
applies variable step size for each frequency band to SSAF,
it is robust against impulsive noises and the convergence
performance is further improved [28]. RBDVSS-NSAF also

VOLUME 9, 2021 112927



T. Park et al.: Novel Individual Variable Step-Size SAF Algorithm Robust to Impulsive Noises

FIGURE 10. Performance comparison between the proposed algorithm
and existing algorithms that are robust to impulsive noises (M = 512,
White Gaussian input, Pr = 0.1).

FIGURE 11. Performance comparison between the proposed algorithm
and existing algorithms that are robust to impulsive noises in a rapidly
changing system environment (M = 256, White Gaussian input, Pr = 0.1).

showed good performance by applying a variable step size
for each frequency band to an algorithm that is robust against
impulsive noises [30]. However, it was confirmed that the
proposed algorithm improved the convergence speed and
steady state error more than other algorithms mentioned
above through the application of a new weight update method
that normalizes the error signal and a new individual variable
step size.

Additional simulations are shown in figure. 7-10 to show
that the proposed algorithm has good performance for vari-
ous parameters. Figure. 7 and 8 are simulation results when
a white Gaussian signal correlated with R1 (z) and R2 (z),
respectively, is used as an input. Other parameters were the
same, and Pr was set to 0.1. Simulation results confirm that
the NIVSS-NSAF algorithm for colored input signals also
has the best performance in impulsive noises environment.
Figure. 9 and 10 are simulation results for different tap
lengths. In both simulations, the other parameters are the

FIGURE 12. Performance comparison between RAPSA, RAPSAF, and
proposed NIVSS-NSAF (M = 256, White Gaussian input, Pr = 0.01).

same as in the previous simulation, and the tap lengths are
set to 256 and 512, respectively. The input signal follows the
white Gaussian distribution, and the frequency of occurrence
of impulsive noises is 0.1. As can be seen from the simulation
results, it was confirmed that the proposed NIVSS-NSAF
has consistently excellent performance in various tap lengths.
Figure. 11 shows the tracking performance of the proposed
algorithm and comparison algorithms when the coefficient of
an unknown system suddenly changes in the middle of the
whole iteration. Even in a situation where the system changes
rapidly in the middle, the proposed algorithm estimates the
unknown system again by the reset method and shows bet-
ter performance than other algorithms. Figure. 12 compares
the proposed algorithm with the existing RAPSA [25] and
RAPSAF [29]. In general, the NSAF algorithm has a lower
computational amount than APA, but the proposed algorithm
has to calculate all multiple step sizes, so the computational
amount is similar to that of APA. As shown in figure. 12,
RAPSA uses a fixed step size, so there is still a trade-off
between the convergence speed and the steady-state error,
but the proposed algorithm shows a sufficiently good con-
vergence performance without such trade-off. In addition,
although the RAPSAF algorithm is also a subband affine
projection algorithm that is robust against impulsive noises,
it can be confirmed that the convergence performance of the
proposed algorithm is better than the RAPSAF algorithm as
shown in figure. 12.

V. CONCLUSION
This paper proposed the NIVSS-NSAF algorithm that is
robust against impulsive noises. An optimal solution of the
constrained optimization problem was obtained through the
Lagrange multiplier. Since the derived algorithm has the
effect of normalizing the error signal, it is robust against
impulsive noises. In addition, the individual variable step
sizes obtained through the MSD analysis of the proposed
algorithm improved not only the convergence speed of the
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proposed algorithm, but also the steady state error perfor-
mance. The simulation results showed that the proposed
algorithm in the system identification scenario outperforms
other existing variable step-size SAF algorithms robust to
impulsive noises.
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