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ABSTRACT As the traffic infrastructure for collecting vehicle tolls, the capacity of the toll plaza determines
the service level of the entire highway. The capacity of a toll plaza is highly correlated with its operating
costs, especially in peak periods. In this paper, it is assumed that in a competitive transportation system, the
residential area and the workplace are connected by a highway with a toll plaza which forms a bottleneck,
parallel to a mass transit line; commuters can choose to travel by car or by public transport. By establishing
an equilibrium model and two mathematical programming models, the capacity designs of the toll plaza
were studied during the traffic service period to achieve three objectives, namely, the toll plaza breaking
even, profit maximization, and total social cost minimization of the transportation system. The travel modal
splits were analyzed under travel equilibrium in three situations, respectively. In addition, a bi-objective
optimization model was developed to optimize total profit and total social cost, and a Pareto optimization
scheme was analyzed. Finally, the theoretical analyses were also verified by numerical examples.

INDEX TERMS Bi-modal traffic, bi-objective optimization model, capacity design, highway toll plaza.

I. INTRODUCTION
In recent decades, with the acceleration of economic growth
and urbanization, rapid expansions and complex changes in
developing cities around the world have emerged. Urban
expansion results in commuters living further away from
workplaces, which, in turn, dramatically increases the
demand for motorized vehicles. Simultaneously, the rapid
development of highways and mass transit systems in these
cities provides major travel services for commuters. Highway
transportation plays an important role in themodern economy
and social life, although highway construction and mainte-
nance costs are high, therefore requiring a large amount of
capital investment. Toll plazas are thus set up on highways,
and the fees collected from highway users are the main source
of funds for highway construction and daily operation. How-
ever, the presence of a toll plaza obstructs the traffic flow.
The capacity of toll plaza seriously affects the fluency of
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highway traffic flow, which is determined by the capacity of
toll plazas and the time of service delivery, all being related to
operating costs. Without enlarging the toll plaza, the capacity
of toll plazas can be improved to a certain extent through the
technical training of toll personnel or the upgrading of toll
systems. Furthermore, due to land resources and financial
constraints, it is unrealistic to enhance traffic capacity at a
large scale; therefore, the increasing traffic demand makes
the congestion at the toll plaza increasingly serious. For
this purpose, transport departments often build mass transit
systems (for example, a railway) to provide passengers with
an alternative mode of transport.

Once the highway is put into use, the operation department
of the highway usually carries out daily management and col-
lects tolls at the toll plaza. However, highway operators do not
necessarily have the pricing power. As labor costs continue to
rise, the cost of operating toll plazas also increases, making
it necessary for operators to reduce operating costs to avoid
losses. This is the motivation for this paper to investigate
several strategies with consideration of the operating costs
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of toll plazas in a competitive transportation system with
highways and mass transit systems.

The main contribution of this paper is to discuss three
toll plaza capacity setting schemes and Pareto improvement
scheme in a competitive transportation system with highway
and public transport, taking into account the operating costs
of toll plazas. The analytical and numerical results could help
urban transportation system operators determine the appro-
priate highway toll and the service capacity of toll plaza.

The remainder of this paper is organized as follows.
Section 2 categorizes and reviews the related literature.
Section 3 provides basic settings of the bi-modal trafficmodel
and the equilibrium of the modal split. Section 4 introduces
the operating costs of the toll plaza and investigates the
capacity design under different strategies. Section 5 illustrates
the feasibility of the proposed models through numerical
examples. Finally, the conclusions are given in Section 6.

II. LITERATURE REVIEW
Literature related to three topics, namely, bottleneck models,
bi-modal transport systems, and toll plaza capacity designs,
are reviewed in this section.

A. BOTTLENECK MODELS
The traffic bottleneck model was first proposed by
Vickrey [1], who described that all travelers attempt to mini-
mize their individual travel costs by choosing their departure
time in their journey from origin to destination by making
trade-offs between travel costs and schedule delay costs.
The travel cost can be formulated as queuing delay at a
bottleneck, and the schedule delay cost can be formulated
as early/late arrival penalties incurred when travelers do not
arrive at their destination at the desired time. Thereafter,
the issue of heterogeneity is studied from various perspectives
in the literature, such as the value of time, schedule delay
penalty, desired arrival time, etc [2]–[4]. Many studies have
further investigated road congestion pricing, tradable credit
and their impact [5]–[7]. Uncertain and variable capacity
traffic bottleneck model have also received attention in the
literature [8]–[11].

B. BI-MODAL TRANSPORT SYSTEM
With the development of highly integrated urban traffic sys-
tems, researchers began to study bi-modal traffic problems
in integrated multimodal transport systems. Tabuchi [12] was
one of the first scholars to research modal split behavior in
a transport system with a physically separated mass transit
system parallel to a bottleneck road. Bottleneck roads and
co-existing mass transit bi-modal systems have been studied
by many scholars from different perspectives. Huang [13]
extended Tabuchi’s study by considering travelers’ crowd-
ing cost in carriages with two groups of commuters and
four different pricing schemes for comparison, and ana-
lyzed how charging policies affected model choice behaviors.
Danielis and Marcucci [14] examined the efficiency of dif-
ferent road pricing regimes in reducing the total travel cost

in a competitive bi-modal system of highways and transit
systems. Huang et al. [15] investigated the traffic modal split
and commuting patterns of private cars/buses in a bottleneck-
constrained highway, and they defined the bus travel cost
when considering bus waiting time at bottleneck, sched-
ule delay cost, crowding cost and bus fare, and analyzed
the equilibrium with both modal choice and departure time
choice. Wu and Huang [16] explored the departure patterns
of commuters through analyzing the equilibrium under three
road-use pricing strategies. Each strategy was the combina-
tion of a time-varying toll and a flat toll, and it was found
that the flat toll for minimizing total social cost was negative
and financial subsidy was needed to encourage some com-
muters to leave home earlier or later. Wang and Ding [17]
studied modal split in daily travel when there is a railroad
parallel to a bottleneck constrained road between home and
a workplace, and examined the optimality and efficiency of
different railroad fare and road toll schemes with the bound-
edly rational mode choice behavior of travelers. Under such
behavior, commuters did not necessarily choose the mode of
which the travel cost was absolutely lower than the mode
of the other. Wang et al. [18] explored a bi-modal equilib-
rium network to find optimal parking lots by considering
the transit travel cost and the auto travel cost under three
strategies: drivers with a tradable parking permit, drivers with
a nontradable parking permit, and drivers without a parking
permit. Zhang and Guan [19] established an evolutionary
game model based on the indifference threshold to analyze
the travelers mode choice behavior. The model supposed that
the travelers’ behavioral adjustment of decision-making of
travelers followed the principle of random utility maximiza-
tion only when the perceived difference in utility between
modes was greater than the indifference threshold; otherwise,
travelers chose randomly. Liu et al. [20] investigated modal
split and departure time choices of heterogeneous travelers
and two capacity design problems, i.e., total travel cost min-
imization with budget constraints and total system cost min-
imization with budget and equity constraints in a bi-modal
traffic corridor with a highway and a transit line.

C. TOLL PLAZA CAPACITY DESIGN
A toll plaza is a place where drivers stop to pay bills before
entering or leaving a highway. They are therefore bottle-
necks on the road. When the number of vehicles arriving is
higher than the service capacity of the toll plaza, a queue
is formed, resulting in traffic congestion. The length of the
queue is directly affected by the traffic demand and the ser-
vice capacity of the toll plaza. Edie [21] was one of the
first scholars who utilized empirical data to investigate the
relationship among the flows, the number of toll booths, and
the level of service, and proposed a method for determin-
ing the number of toll booths required and recommended
toll collectors’ schedules based on an analysis of data from
the Lincoln Tunnel. The operation of toll plazas is also
closely related to the charging problem. By altering the
pricing strategy, the length of the queue can be controlled
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and congestion at the toll booth can be alleviated [22]–[26].
Siamak and Francisco [27] have collected and synthesized
a large amount of scattered information on highway user
costs and incorporated it into an economic analysis of toll
plaza operations, examining the operating costs and revenues
of conventional toll plazas. Boronico and Siegel [28] used
M/M/1 queuing systems to compute the upper bounds of
the mean queue lengths and the mean wait times at a toll
plaza, and developed a capacity-planning model subject to
reliability constraints; subsequently, they have presented a
workforce policy through the utilization of a mathematical
program. Levinson and Chang [29] tried to monetize the
social benefit caused from the implementation of electronic
toll collection (ETC) lanes to an existing toll station and found
the best combination of ETC lanes and total discount for ETC
users so that the monetized social welfare was maximum.
Sadoun [30] adopted a micro-simulation model to evaluate
the performance of toll plaza systems through delay, the num-
ber of toll stations, and service types, i.e., cash or electronic
payment, and it was shown in the results that the perfor-
mance of toll plazas improves as the number of tollbooths
increased because less time was spent in queue. Kim [31]
built a non-linear integer programmingmodel to study the toll
plaza optimization problem, in which the waiting time cost of
the vehicles, as determined from the steady-state solution of
the queueing model, was minimized. Gu et al. [32] presented
a model for estimating the vehicle-processing capacities at
checkpoints with tandem, staggered, and branch configura-
tions, the models indicated that tandem designs tended to
produce the highest capacities among the three alternatives.
Kim et al. [33] presented an analytical method for dynami-
cally adjusting toll plaza capacity to deal with a sudden shift
in demand, which used a proxy measure developed from the
discharge rate observed at toll plazas and segments of travel
time measured by probe vehicles. Cao et al. [34] proposed
a framework for finding the optimal profit of toll highways
over 5 years of the operating period. Toll rates were adjusted
using the updated safety conditions of highway bridges as
constraints on the optimization task. Lu and Meng [35]
developed a two-stage stochastic programming model to
analyze the optimal build-operate-transfer highway capacity
under traffic demand uncertainty. Jin et al. [36] established
a prediction model based on historical multi-source traffic
flow data. Based on the prediction results, they proposed an
improved human resource planning strategy for toll plazas,
so as to reasonably arrange the working times and improve
the operational efficiency of the highway in peak periods. The
comparison of our contributions to those in reference can be
shown in Table 1.

III. BASIC MODELS
Here, we consider a simplified corridor network that contains
two modes to provide transportation services between a res-
idential area and a place of work, as illustrated in Figure 1.
Mode A represents a highway with a toll plaza which is a
bottleneck located at the leaving point of the highway and has

TABLE 1. Comparison of our contributions to those in reference.

a maximum capacity of s commuters per unit of time. The toll
plaza may not be able to operate at maximum capacity due to
operating costs including labor or other costs. Therefore, the
actual service capacity of the toll plaza is represented as θs.
Every automobile commuter pays a highway toll uwhen they
pass through the toll plaza. Mode R represents a mass transit
system (for example, a railway) with an assumed infinite
capacity. Every morning, The commuters either travel by car
on the highway or by train on the railway from the residential
area to the workplace, and N = NA + NR. The notations in
this paper are listed in table 2.

In accordance with the empirical evidence [37], it was
assumed that γ > α > β > 0.

In this section, we investigate the costs of two travel modes
and mode choice at an equilibrium state. To facilitate discus-
sion later, further assumptions are listed below:
Assumption 1: All individuals traveling by car (one person

per car) have exactly the same preferred arrival time as train
commuters.
Assumption 2: The number of commuters N is large

enough that both modes would be simultaneously used by
commuters.
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TABLE 2. Model parameters and decision variables.

FIGURE 1. Bi-modal traffic system.

Assumption 3: Themass transit canmake commuters arrive
at work on time, and there is a linear relationship between the
discomfort for a commuter caused by body crowding and the
number of transit commuters in the carriage.

A. AUTO MODAL
During the morning peak period, NA homogeneous travelers
commute from the residential district to the workplace via
the highway with identical desired arrival times t∗ at the
destination. When a commuter arrives at their workplace,
their schedule delay is the difference between the actual and
desired arrival times. When traffic flows exceed the actual
service capacity of toll plaza θs, a queue forms, and con-
sequently, commuters experience queuing delays. Therefore,
the travel time on the highway is given as T0+ T (t). Without
a loss of generality, T0 is assumed to be zero, and thus

T (t) hereafter represents an individual’s travel time via the
highway with respect to the departure from their home at
time t .

Notably, it was assumed that parking spaces were
considered to be sufficient and parking fees were ignored.
Additionally, it was assumed that there was a one-to-one cor-
respondence between commuters and private vehicles, which
means that car-sharing was not taken into consideration.
Thus, the individual travel cost CA(t), which consists of the
travel time costs, highway tolls, and schedule delay costs, can
be formulated as

CA(t) =

{
αT (t)+ β

(
t∗ − t − T (t)

)
+ u, t ∈

[
te, t̃

)
,

αT (t)+ γ
(
t + T (t)− t∗

)
+ u, t ∈

(
t̃, tl

]
.

(1)

The waiting time at the bottleneck T (t) is equal toD(t)
/
θs.

Mathematically, D(t) can be formulated as

D(t) = max
{∫ t

te
r(t)dt − θs (t − te) , 0

}
. (2)

Each commuter independently chooses a departure time
to minimize their individual travel cost. Through day-to-day
travels and learning, all commuters gain a complete under-
standing of their journey, and the traffic system gradually
converges to a stable state. In this state, all commuters will
have an identical individual travel cost, and no commuter has
an incentive to unilaterally alter their departure time choices,
i.e., dynamic user equilibrium. Mathematically, the equilib-
rium condition can be expressed as

dCA(t)
dt
= 0 if r(t) > 0. (3)

According to Equation (3), as given by Arnott et al. [38],
the equilibrium departure rate can be expressed as the follow-
ing piecewise linear equation:

r(t) =


α

α − β
θs, t ∈

[
te, t̃

]
,

α

α + γ
θs, t ∈

(
t̃, tl

]
.

(4)

The three critical departure times, i.e., te, t̃ and tl , can be
expressed as

te = t∗ −
δNA
βθs

, t̃ = t∗ −
δNA
αθs

, tl = t∗ +
δNA
γ θs

(5)

Respectively, δ = βγ
β+γ

. Furthermore, the equilibrium of
individual travel costs, denoted as CA, is given by

CA =
δNA
θs
+ u. (6)

According to Equation (6), the total travel cost for all
automobile commuters, denoted as TCA, can be expressed by

TCA =
δ(NA)2

θs
+ NAu. (7)

The total travel time cost for all commuters, denoted as
TTCA, is expressed by

TTCA =
δ(NA)2

2θs
. (8)
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The variables te, tl , TCA and TTCA are independent of the
unit cost of travel time α and are related to the proportion of
the toll plaza capacity used, θ .

B. TRAIN MODE
Huang [13] considered body crowding in train carriages and
proposed a cost of individual travel for train commuters.
Below, we draw lessons from Huang’s method to estimate
travel costs for train commuters. Let NR be the number of
train commuters, and therefore the individual travel cost of
train commuters can be defined as

CR = p+ ωg(NR), (9)

Marginal cost pricing is widely used in the pricing of
transportation products. The marginal cost of train travel
mainly comprises the expenses on labor, fuel, electricity, and
routine materials by the train operators. In reality, most of
these expenses are independent of the number of passengers
carried. It is assumed that the train fare p is equal to its
marginal cost in this paper. The increase in the number of
commuters in the carriage will cause commuter’s discomfort,
to simplify, the discomfort degree g(NR) is expressed as a
linear function of the number of commuters in the carriage,
i.e g(NR) = NR.

C. THE EQUILIBRIUM OF MODAL SPLIT
Next, we investigated the equilibrium state with two modes.
We limited our attention to a situation in which both mode
A and mode R were used, which means that the equilibrium
occurred at an interior point of the highway/transit system.
Therefore, the Wardrop equilibrium is defined as when the
total cost per commuter on a highway is equal to that using
a transit system, i.e., CA = CR. The equilibrium state of
individual travel costs can be expressed by

p+ ωNR = δ
NA
θs
+ u. (10)

According to N = NA + NR, we can obtain the number of
automobile commuters

NA =
θs(ωN + p− u)

ωθs+ δ
. (11)

Therefore, the total travel cost of the highway/transit sys-
tem from Equations (10) and (11) is

TCM =
(
δ(ωN + p− u)
ωθs+ δ

+ u
)
N . (12)

Taking the derivative of NA and TCM with respect to θ for
Equations (10) and (11), we have

dNA
dθ
=
ωsδ(p− u+ ωN )

(ωθs+ δ)2
, (13)

dTCM
dθ

= −
δωNs(ωN + p− u)

(ωθs+ δ)2
. (14)

Due to the assumption that both modes are used, the num-
ber of automobile commuters NA is non-negative, thus

ωN + p − u > 0 from Equation (11). Therefore, from
Equations (13) and (14), we can derive

dNA
dθ

> 0 and
dTCM
dθ

< 0. (15)

In the above, the derivative of the number of automobile
commuters NA with respect to the parameter θ is greater than
0, and the derivative of the bi-modal system cost, TCM with
respect to θ is less than 0, indicating that with the increase in
θ , i.e., an increase in the capacity of the toll plaza, the number
of automobile commuters increases and the bi-modal system
cost decreases.

IV. CAPACITY DESIGN OF HIGHWAY TOLL PLAZA
A. THE OPERATING COST OF TOLL PLAZA
Operation costs of the toll plaza are the necessary expenses
to maintain normal operation of the toll plaza, which can be
divided into fixed costs and variable costs. The fixed cost
consists of facility costs and fixed operating costs, mainly
related to tollgate capacity. The variable costs include labor,
power, and maintenance costs related to tollgate capacity and
operating time. LetOC = F+κ1t be the toll plaza operating
cost per unit capacity, and the operating time1t is expressed
as the time period between the first and last car to pass
through the toll plaza during the peak hour. Thus, the total
operating cost of capacity θs is

TOC = (F + κ1t)θs. (16)

The travel time is assumed to be 0, according to the earliest
departure time and the latest departure time in Equation (5);
therefore, the operating time is obtained as

1t = tl − te =
NA
θs
. (17)

Then, TOC can be rewritten as

TOC = Fθs+ κNA. (18)

The total profit TP is

TP = (u− κ)NA − Fθs. (19)

From Equation (18), we know that because F , s and κ are
constant, the total operating cost of toll plaza is positively
correlated with the parameter θ and number of automobile
commuters NA.

B. CAPACITY DESIGN SCHEMES UNDER DIFFERENT
STRATEGIES
In reality, toll plazas can control and optimize the traffic flow
distribution of highways and transit systems by changing the
capacity. In this section, under the premise of a fixed transit
fare p and highway toll u, three capacity design schemes
are studied, which aim to make the toll plaza break-even,
maximize the profits, or minimize the total social cost of the
bi-modal system.

113646 VOLUME 9, 2021



G. Yong et al.: Capacity Design and Pareto Improvement of Highway Toll Plaza

1) THE CAPACITY DESIGN SCHEME WHICH MAKES THE
TOLL PLAZA BREAK EVEN
In states of equilibrium, NA commuters pass through the toll
plaza and the total amount paid is uNA. The toll plaza breaks
even when the total revenue uNA is equal to the total operating
cost TOC , which is

NAu = θFs+ κNA. (20)

Combining this with Equation (10), the proportion of
the toll plaza capacity used θ1 under this situation can be
obtained:

θ1 =
(u− κ)(ωN + p− u)− δF

ωFs
. (21)

The number of automobile commuters is

N 1
A = N −

δF − (u− k)(p− u)
ω(u− κ)

. (22)

2) THE CAPACITY DESIGN SCHEME WHICH MAXIMIZES THE
PROFITS
Next, we considered the proportion of capacity needed to
maximize the profit of the toll plaza, i.e., to maximize the
difference between total tolls and total operating costs. The
mathematical programming form of the problem is

Maximize TP(θ,NA,NR) = (u− κ)NA − Fθs

Subject to ωNR −
δ

θs
NA = u− p,

NR + NA = N . (23)

Solving the maximization problem (23) (See appendix A),
we derive the proportion of the toll plaza capacity used θ2, as

θ2 =

√
δF(u− κ)(ωN + p− u)− δF

ωFs
. (24)

In this situation, the result is

N 2
A=

1
ω
(ωN+p−u)

(
1−

√
δF

(u− κ)(ωN + p− u)

)
. (25)

3) THE CAPACITY DESIGN SCHEME WHICH MINIMIZES THE
TOTAL SOCIAL COST
In this section, we discuss a capacity design that minimizes
the total social cost in a competing system consisting of
highways and public transport. The total social cost includes
three parts, namely, the total cost of automobile commuters,
the total cost of transit commuters, and the total operating cost
of toll plazas. Then, a minimization model can be formulated
as follows

Minimize TSC(θ,NA,NR) =
δ

θs
(NA)2 + ω(NR)2

+ κNA + pNR + θFs

subject to ωNR −
δ

θs
NA = u− p,

NR + NA = N . (26)

Using the Lagrange multiplier method, the proportion of
the toll plaza capacity used θ3 and the number of automobile
commuters can be obtained as (See appendix B)

θ3 =

√
δF(ωN + u− κ)(ωN + p− u)− δF

ωFs
, (27)

and

N 3
A=

1
ω
(ωN + p− u)

(
1−

√
δF

(ωN+u−κ)(ωN + p− u)

)
.

(28)

Due to TP(θ2) ≥ TP(θ1) = 0, we can derive that θ1 ≥ θ2.
In addition, the difference between θ2 and θ3 is

θ2 − θ3 = −
N
√
δF(ωN + p− u)

Fs
(√

u− κ +
√
(ωN + u− κ)

) < 0. (29)

According to Equations (25) and (28), this can be rewritten
as

N 2
A − N

3
A =

√
δF(ωN + p− u)

ω

×

(
1

√
ωN + u− κ

−
1

√
u− κ

)
< 0. (30)

From the above two expressions, we know that the capacity
of a toll plaza with a minimum social cost is greater than
the one with maximum profit. In other words, the profit of
a toll plaza is not necessarily the largest when a bi-modal
transportation system reaches social optimal. The reason is
that adding operating costs of toll plazas to increase traffic
capacity can reduce the individual travel cost of automobile
commuters, thus reducing the total social cost.

C. CAPACITY DESIGN OF A HIGHWAY TOLL PLAZA WITH
BI-OBJECTIVE OPTIMIZATION
As mentioned before, both the total profits of the toll plaza,
TP, and the total social cost of traffic systems, TSC , are
meaningful measures of system performance from different
perspectives. Here, we consider the maximization of TP
and the minimization of TSC simultaneously. In order to
coordinate the different expectations of toll plaza operators
and the traffic management department, the maximization
problem (23) is transformed into the minimization problem
and concurrently associated with the minimization problem
(26). Thus, we have generated the following bi-objective
minimization problem,

Minimize
(
−TP(θ,NA,NR)
TSC(θ,NA,NR)

)

=

Fθs− (u− κ)NA
δ

θs
(NA)2 + ω(NR)2 + κNA + pNR + θFs

 , (31)

the Pareto optimal solution of the bi-objective problem (31)
can be seen as a negotiation outcome between the traffic
management department and toll plaza operators. Addition-
ally, it confirms there is no other feasible solution of the
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unknown design factors in Equation (31) that could improve
one of its two objectives without having a detrimental effect
on the other. A similar notion of Pareto optimization has
been used by Guo and Yang [39], Tan et al. [40], and
Lu and Meng [41] for different bi-criteria problems. To solve
Equation (31), a commonly used method would be to transfer
it into a single objective via the weighting method (similarly
to Tan et al. [40]; Lu and Meng [41]). Theoretically, any
Pareto optimal schemes must uniquely solve the following
scalar programming model:

Minimize BI (θ,NA,NR) = −λTP(θ,NA,NR)

+ (1− λ)TSC(θ,NA,NR)

subject to ωNR −
δ

θs
NA = u− p,

NR + NA = N . (32)

In this situation, the polar point λ = 1 means that the toll
plaza operators take full control of the traffic system, whereas
λ = 0 indicates that the traffic management department takes
full control of the traffic system.When 0 < λ < 1, neither the
traffic management department nor toll plaza operators will
be better off without reducing the other’s benefit. Notably,
the Pareto efficiency is not necessarily the economic effi-
ciency; it is a tradeoff here between the traffic management
department and toll plaza operators.

Solving minimization problem (32) (See appendix C),
the proportion of the toll plaza capacity usedwith bi-objective
optimization, θλ, can be obtained:

θλ=

√
δF [(1−λ)ωN+u−κ] (ωN + p− u)−δF

ωFs
. (33)

As discussed above, when λ = 1, the proportion of the toll
plaza capacity used θλ = θ2; when λ = 0, the proportion
θλ = θ3.

The toll plaza must at least make ends meet, i.e.,
0 < TP(θλ), and according to Equations (11), (19), and (33),
we can derive

λ > 1−
u− κ
ωFδN

[(u− κ) (ωN + p− u)− Fδ] . (34)

Based on the given value range of the parameter λ and the
inequality in Equation (34), the value range of the parameter
λ, satisfying both the revenue of toll plaza greater than 0 and
the bi-objective minimization problem (Equation (31)), can
be obtained:

max
{
1−

u−κ
ωFδN

[(u−κ) (ωN+p−u)−Fδ] , 0
}
< λ < 1.

(35)

We explored the extent to which the system performance
varies when an alternative Pareto optimum scheme is consid-
ered. To measure the deviation, we defined the following two
ratios, called system performance deviation factors:

ρTPλ =
TPmax−TPλ

TPmax
and ρTSCλ =

TSCλ−TSCmin
TSCmin

. (36)

Clearly, ρTPλ ≤ 1 and ρTSCλ ≥ 0 for any feasible θλ.
Specifically, TPλ and TSCλ are the total profits of the toll
plaza and the total social cost of Pareto optimization under
parameter λ, respectively. Furthermore, let TPmax and TSCmin
denote the maximum total profits of the toll plaza and the
minimum total social costs which are realized, respectively.
For a given Pareto optimal capacity ratio θλ, we are interested
in knowing how far the system disabilities TPλ and TSCλ
could deviate from their optimal values, TPmax and TSCmin,
respectively.

Let ρTP1 denote the values of the two factors when θ = θ3,
and ρTSC0 denote the values of the two factors when θ = θ2.
Thus,

ρTP0 = 1−
TP0
TPmax

and ρTSC1 =
TSC1

TSCmin
− 1. (37)

ρTP0 measures the deviation of the total profits from the toll
plaza when the total social cost is minimized and the maxi-
mum total profits of the toll plaza are achieved; analogously,
ρTSC1 measures the deviation of the total social cost when the
total profit of the toll plaza is maximized and the total social
cost when it is minimized. Therefore, for any parameter λ,
we have ρTPλ ≤ ρ

TP
0 and ρTSCλ ≤ ρTSC1 .

Figure 2 plots the Pareto optimal frontier in (TP,TSC)
space to illustrate the two factors, ρTPλ and ρTSCλ . The two
points

(
ρTP0 , 0

)
and

(
0, ρTSC1

)
represent the optimal total

benefits and total social costs, respectively.

FIGURE 2. Pareto optimal frontier in
(
TP, TSC

)
space.

V. NUMERICAL ANALYSIS
In this section, we outline the numerical analysis verifying
the analytical analysis of the capacity design schemes of toll
plazas with bi-modal transportation systems. The number of
commuters, transit fares, highway tolls, and other parameters
of the example is shown in Table 3.

Figure 3 shows the modal split of the competitive system
against the parameter θ . With the increase in parameter θ , the
number of automobile commuters increases, and the number
of train commuters decrease. This is because the increased
capacity of the toll plaza reduces the individual travel cost for
automobile commuters, causing train commuters to transfer
to the highway.
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TABLE 3. The parameter values of numerical example.

FIGURE 3. Numbers of automobile commuters and train commuters
plotted against the parameter θ .

FIGURE 4. The total operating cost, total revenue, and total profit plotted
against the parameter θ .

Figure 4 shows the variation trend of the total operating
costs, total toll revenues, and total profits of the toll plaza
against the parameter θ . The operating cost and the total toll
revenue increase with θ , and the total profit increases first and
then decreases as θ increases.When θ = 0.280, the total profit
of the toll plaza is the greatest. When θ is greater than 0.875,
the total profit is less than 0, i.e., the toll plaza is running at
a loss. Figure 5 shows the change in the total social cost with
respect to θ . It can be seen in the figure that the total social
cost function graph is convex, and the minimum value, USD
4285.6, is obtained at θ = 0.618.
The variations of parameter θ with respect to the unit

operating cost κ for the three capacity design schemes are
shown in Figure 6. On the assumption that κ ∈ [0, 5], from
the figure, we can see that as κ increases, θ decreases. Due
to the increase in unit operating cost, the individual travel
cost to automobile commuters increases accordingly; then,
some automobile commuters abandon their cars and choose

FIGURE 5. Total social cost plotted against the parameter θ .

FIGURE 6. The value of parameter θ against the unit operating cost κ .

to travel on the mass transit system. Therefore, toll plaza
operators respond by reducing capacity to reduce the total
operating costs.

Figure 7 shows the changes in the value of θ under the
three strategies when the highway toll value ranges from 0 to
12 and other parameters are fixed. In other words, under
different highway toll standards, the toll plaza capacity design
can make three different strategic goals achieved. It can be
observed in the figure that with the increase in highway toll
u, all three curves first increase and then decrease.
The derivatives with respect to u of θ1, θ2 and θ3 of Equa-

tions (21), (24), and (27) are

dθ1
du
=
−2u+ κ + ωN + p

ωFs
, (38)

dθ2
du
=

√
δF (−2u+ κ + ωN + p)

ωFs
√
(u− κ)(ωN + p− u)

, (39)

dθ3
du
=

√
δF(−2u+ κ + p)

ωFs
√
(ωN + u− κ)(ωN + p− u)

. (40)

Through simple calculations, when u < κ+ωN+p
2 , we have

dθ1
du < 0 and dθ2

du < 0. therefore, θ1 and θ2 increase monoton-
ically with respect to u. However, when u > κ+ωN+p

2 , θ1 and
θ2 aremonotonically decreasingwith respect to u. In addition,
the monotonicity of θ3 is different on both sides at u = κ+p

2 .
These conclusions are verified in Figure 6.

The change in the value of θ with the three strategies
of capacity design with respect to the total number of
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FIGURE 7. The value of parameter θ against the highway toll u.

FIGURE 8. The value of θ against N .

FIGURE 9. The value of the proportion θ , ρTP
λ

, and ρTSC
λ

against λ.

commuters, N , is shown in Figure 8. When N ∈ [300, 600],
the increase in total traffic demand will increase the propor-
tion θ of capacity under the three strategies. Moreover, when
the total traffic demand exceeds a certain amount, it may be
necessary to expand the toll plaza to increase the maximum
capacity, to ensure the balance of revenue and expenditure of
the toll plaza, although its upper bound may be determined
by geographical restrictions.

Figure 9 shows that the proportion of the toll plaza capacity
used, θ , and system performance deviation factors, ρTPλ and
ρTSCλ , change with parameter λ under the bi-objective opti-
mization model. The proportions θ and ρTPλ monotonically
decrease with respect to λ, and ρTSCλ monotonically increases
with respect to λ. Specifically, the degree of inclination for
maximizing the total profits of the toll plaza will increase

FIGURE 10. Pareto optimal frontier of the example.

if there is any inclination in the bi-objective optimization
model. In contrast, the total social cost decreases. In addition,
points (1, 0.280) and (0, 0.618) in Figure 8 correspond to
the values of θ = 0.280 and θ = 0.618 in Figure 4 and 5,
respectively.

The Pareto optimal frontier is shown in Figure 10. When
λ ∈ [0, 1], the system performance deviation factors ρTPλ and
ρTSCλ are valued in the range [0, 0.4140] and [0, 0.0397],
respectively, and ρTSCλ is decreasing with respect to ρTPλ .

Overall, it can be observed that the numerical results con-
firm our analytical results.

VI. CONCLUSION
Effective operation of toll plazas is a significant guarantee
for highways to provide sustainable transportation services.
The revenue of toll plazas is a major source of funding for
the repayment of highway construction loans and routine
maintenance, renovation, and expansion. In a bi-modal trans-
portation system, commuters usually choose the mode which
is most beneficial to them. In this paper, a traffic system in
which highways and public transport facilities coexist and
compete was taken as the research object, and a bi-modal
travel equilibrium model was adopted to study and determine
the capacity of highway toll plazas. Considering the operating
cost of the toll plaza, we deduced the capacity proportions of
the toll plaza required in three situations, i.e., breaking even,
maximizing the profit of the toll plaza, and minimizing the
total social cost. The numerical analysis verified the analyti-
cal analysis. This research has important managerial implica-
tions; for example, a highway management department could
control traffic flow by adjusting the capacity of the toll plaza
so that the traffic system can achieve different aims. From our
results, there are several aspects worth pointing out. Firstly,
the service hours of toll plazas can be determined by the ear-
liest departure time and the latest departure time of highway
commuters. Secondly, under certain parameters, when traffic
demands exceed a specified value, toll plazas can be upgraded
or expanded to increase maximum capacity, to ensure the
balance between income and expenditure. Thirdly, highway
tolls priced too high or too low will reduce the capacity
of the toll plaza. Finally, the single-objective optimization
problem has difficultly meeting the requirements of multiple
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departments; however, the bi-objective optimization model
can be used to obtain a Pareto capacity design scheme, which
can be adopted by toll plaza operators and trafficmanagement
departments.

The following aspects are limitations of our research and
suggested issues for further study. (1) In this paper, to sim-
plify the analysis and focus on the investigation, we made
some assumptions that caused the model to differ from actual
traffic. Relaxing some assumptions, such as incorporating
commuters’ heterogeneity, elastic demand, and operational
characteristics of highway toll plazas during off-peak hours
will be one direction for our future research. (2) Our inves-
tigation was qualitative and has not been empirically veri-
fied by actual traffic data; therefore, it will be necessary to
calibrate our survey results based on actual traffic data in
the future. (3) In the field of public transportation, dynamic
departure and multiple pricing strategies are not usually con-
sidered during peak periods.

APPENDIX
A. DERIVATION OF THE CAPACITY DESIGN SCHEME
WHICH MAXIMIZES THE PROFITS

Maximize TP(θ,NA,NR) = (u− κ)NA − Fθs

Subject to ωNR −
δ

θs
NA = u− p,

NR + NA = N . (A.1)

Substituting the constraints into the target function,
we obtain

TP(θ ) =
θs(u− κ)(ωN − u+ p)

ωθs+ δ
− θFs. (A.2)

The derivative of the function TP(θ ) with respect to θ is

dTP(θ )
dθ

=
δs(u− κ)(ωN − u+ p)

(ωθs+ δ)2
− Fs. (A.3)

Letting dTP(θ )
dθ = 0, we derive

θ =

√
δF(u− κ)(p+ ωN )− δF

ωFs
. (A.4)

B. DERIVATION OF THE CAPACITY DESIGN SCHEME
WHICH MINIMIZES THE TOTAL SOCIAL COST

Minimize TSC(θ,NA,NR) =
δ

θs
(NA)2 + ω(NR)2

+ κNA + pNR + θFs

Subject to ωNR −
δ

θs
NA = u− p,

NR + NA = N . (B.1)

Substitute NR into the target function TSC(θ,NA,NR), and
then write the Lagrange function of Equation (B1) as

L(NA, θ, λ)=
δ

θs
(NA)2+ω(NR)2+κNA + pNR

+ θFs+λ
[
ω(N − NA)−

δ

θs
NA−u− p

]
.

(B.2)

The partial derivative of the function L(NA, θ, λ) with
respect to NA, θ and λ, results in

∂L
∂NA
=−2ωN + k − p+ 2(ω+

δ

θs
)NA − λ(ω+

δ

θs
),

∂L
∂θ
=Fs−

δ(NA)2

θ2s
+
δNA
θ2s

λ,

∂L
∂λ
=ωN − u+ p− (ω +

δ

θs
)NA.

(B.3)

Setting the partial derivatives equal to 0, and solving Equa-
tion (B3), the parameter θ and the number of automobile
commuters to minimize the total social cost is

θ =

√
δF(ωN + u− κ)(ωN − u+ p)− δF

ωFs
, (B.4)

NA =
1
ω
(ωN − u+ p)

×

(
1−

√
δF

(ωN + u− κ)(ωN − u+ p)

)
. (B.5)

C. DERIVATION OF THE CAPACITY DESIGN SCHEME
WHICH BI-OBJECTIVE OPTIMIZATION

Minimize BI (θ,NA,NR) = −λTP(θ,NA,NR)

+ (1− λ) TSC(θ,NA,NR)

subject to ωNR −
δ

θs
NA = u− p.

NR + NA = N . (C.1)

From the constraints, we can solve for NR and NA with
respect to θ , and substitute it into the objective function
BI (θ,NA,NR), thus

BI (θ )= (1− λ)
[
ωN

(u− p) θs+ δN
ωθs+ δ

+ pN
]

+ (κ−u)
[
N −

(u− p) θs+ δN
ωθs+δ

]
+θFs. (C.2)

Letting dBI(θ )
dθ = 0, we derive

θ=

√
[(1−λ)ωN+u−κ] (ωN+p−u) δF−δF

Fωs
. (C.3)
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