IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 1, 2021, accepted August 7, 2021, date of publication August 12, 2021, date of current version August 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104293

ProGOMap: Automatic Generation of Mappings
From Property Graphs to Ontologies

NAGLAA FATHY ~, WALAA GAD *, NAGWA BADR, AND MOHAMED HASHEM

Department of Information Systems, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt

Corresponding author: Naglaa Fathy (naglaa_fathy @cis.asu.edu.eg)

ABSTRACT Property Graph databases (PGs) are emerging as efficient graph stores with flexible schemata.
This raises the need to have a unified view over heterogenous data produced from these stores. Ontology
based Data Access (OBDA) has become the most dominant approach to integrate heterogeneous data sources
by providing a unified conceptual view (ontology) over them. The corner stone of any OBDA system is
to define mappings between the data source and the target (domain) ontology. However, manual mapping
generation is time consuming and requires great efforts. This paper proposes ProGOMap (Property Graph
to Ontology Mapper) system that automatically generates mappings from property graphs to a domain
ontology. ProGOMap starts by generating a putative ontology with direct axioms from PG. A novel ontology
learning algorithm is proposed to enrich the putative ontology with subclass axioms inferred from PG. The
putative ontology is then aligned to an existing domain ontology using string similarity metrics. Another
algorithm is proposed to align object properties between the two ontologies considering different modelling
criteria. Finally, mappings are generated from alignment results. Experiments were done on eight data
sets with different scenarios to evaluate the effectiveness of the generated mappings. The experimental
results achieved mapping accuracy up to 97% and 81% when addressing PG-to-ontology terminological
and structural heterogeneities, respectively. Ontology learning by inferring subclass axioms from a property
graph helps to address the heterogeneity between the PG and ontology models.

INDEX TERMS Property graph database, resource description framework, ontology engineering, ontology

alignment, graph model heterogeneity.

I. INTRODUCTION

Property Graph databases (PGs) are extensively used in dif-
ferent domains e.g., social networks and web applications
because of their scalability, persistent data, flexible schemata,
etc. However, the lack of standardization in this kind of data
sources raises the need to have a unified view over them.
Ontology based data Access (OBDA) approaches best fit this
need because ontologies provide a formal specification of an
application domain. A typical OBDA system comprises three
layers: a data source (storing the data), a domain ontology
(conceptual model), and a set of mappings between them
which is the key component [1], [2].

Mappings describe how different parts of the data
source model correspond to different concepts of the ontol-
ogy. They are defined based on one of two approaches;
global-as-view (GAV), or local-as-view (LAV) [3]. In GAV
approach, the global schema is expressed from the local data

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Abid.

113100

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

source perspective. In LAV approach, the local data source is
expressed from the global schema perspective. These map-
pings are expressed in a standard language i.e. R2RML,
for relational-to-RDF [4] or xR2RML, for non-relational-to-
RDF [5]. Creating these mappings manually is hard, time-
consuming and requires domain expertise. Therefore, efforts
towards automated generation of these mappings from a data
source to a domain ontology are gaining attention.

In [6], An automated process for generating relational-to-
ontology mappings is proposed through three main steps.
At first, an ontology, called putative ontology, is automati-
cally derived from the relational database schema. The gen-
erated ontology has a flat structure as opposed to a domain
ontology created by experts. In the next step, ontology match-
ing methods are applied to align the putative ontology with a
target domain ontology. Finally, mappings are derived from
those alignments between both ontologies.

In this paper, a novel ProGOMap system (Property Graph
to Ontology Mapper) is proposed. It automatically generates
mappings from NoSQL property graphs to an existing domain

VOLUME 9, 2021

https://orcid.org/0000-0001-9921-7602
https://orcid.org/0000-0002-7816-3518

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

ontology expressed in OWL. Mapping generation process
is in line with the general strategy described in [6]. More
specifically, ProGOMap starts by generating a putative ontol-
ogy with direct axioms from the PG model. It then expands
the putative ontology by inferring class hierarchies from PG.
Next, the putative ontology is aligned to an existing domain
ontology using string similarity metrics. Object properties in
the putative ontology are aligned by considering class hierar-
chies of the property’s domain/range to enrich the alignment
process. Finally, mappings are generated using the alignment
results and the PG model. The main contributions of this
paper include:

« Proposing an ontology learning method that infers class
hierarchies from a property graph database, considering
different modelling patterns (Algorithm1).

« Proposing an ontology alignment method that consumes
the inferred class hierarchies to align object proper-
ties from the putative ontology to an existing ontology
(Algorithm?2).

« Generating PG-to-Ontology mappings from the aligned
axioms and enriching them with inferred data/object
properties.

The rest of this paper is organized as follows: related
work is covered in section 2. Challenges in mapping property
graphs to ontologies are discussed in section 3. The proposed
system is described in section 4. Experiments and evaluation
are discussed in section 5. Conclusion and future work are
presented in section 6.

Il. RELATED WORK

Various research studies were introduced for mapping diverse
data sources to ontologies. These studies could be categorized
into mapping: Relational Database-to-Ontology, Knowledge
Graph-to-Ontology, and Property Graph-to-Ontology.

A. RELATIONAL DATABASE-TO-ONTOLOGY
MAPPING GENERATION
State-of-the-art systems addressed diverse challenges for
automatically mapping relational databases to ontologies.
MIRROR [7] automatically generated R2RML mappings
either by following direct mapping approach, or by using
implicit information (i.e. subclasses and many-to-many rela-
tionships) encoded in relational database schema. However,
the system assumed using a complete normalized rela-
tional database, which is not true in real-world scenarios.
IncMap [8] merged the graphs of the relational schema and
the ontology to create a pairwise connectivity graph (PCG)
for representing possible matches. It addressed the semantic
heterogeneity between both models by applying reasoning
over the target ontology. However, it supported only 1:1 and
1:n class-to-table mapping generation but did not provide cor-
respondences for n:m or n:1 relational-to-ontology mapping.
BootOx [9] generated bootstrapped mappings by following
W3C direct mapping rules as well as advanced mapping tech-
niques. The system provided mappings for different ontolog-
ical profiles depending on the required application scenario.

VOLUME 9, 2021

It also offered to integrate a domain ontology to the boot-
strapped one through alignment, or directly mapped it to the
database. However, it provided only one-to-one relational-to-
ontology mapping correspondences but cannot match multi-
ple ontology classes to the same table. AutoMap4OBDA [10]
automatically generated RZRML mappings from the schema
and content of relational sources by applying ontology learn-
ing techniques and string similarity metrics.

Milan [11] proposed a multi-level algorithm to find table-
to-class, column-to-data property and foreign key-to-object
property correspondences between a relational database and
an ontology. The system employed Levenstein distance-
based fuzzy technique for label matching and improved the
matching scores using combinatorial optimization technique.
However, further improvements are needed for class-table
mapping generation.

B. KNOWLEDGE GRAPH-TO-ONTOLOGY

MAPPING GENERATION

Research papers were proposed for the integration of different
knowledge graphs into a unified ontology. In [12], statisti-
cal data analysis measures were used to generate ontology
axioms from large RDF datasets by running SPARQL queries
on them. RDF data were divided into blocks, depending on
disjoint properties, to execute the querying process in parallel.
MostoDEx prototype [13] presented an automatic genera-
tion of schema mapping between RDF knowledge bases in
Global-Local-As-View manner (GLAV). Matches between
entities in the source and target knowledge bases are referred
to as Correspondences. The proposed method depended on
using a set of input n:m correspondences and a single input
exchange sample. An exchange sample was composed of
two subsets from the exchanging source and expected target
data, respectively. However, it depended on user-provided
informative examples to correctly generate mapping rules,
which required a user to be completely aware of knowledge
base translation.

In [14], authors proposed a method that exploited existing
ontologies to build a unified schema over knowledge graphs
in an incremental manner. The incremental building pro-
cess started by loading hierarchical axioms (rdfs:subClassOf)
from ontologies into a single graph. Then, additional axioms
(i.e., owl:equivalentClass) were added to the ontology graph.
Finally, an ontology matching process was applied to the set
of ontologies to enrich edges with related concepts. Although,
the connectedness of the obtained graph was improved by
adding more axioms and mappings, some limitations to the
approach were highlighted by authors.

C. PROPERTY GRAPH-TO-ONTOLOGY

MAPPING GENERATION

Only few approaches were proposed for mapping a Prop-
erty Graph (PG) to an ontology. In [15], three models
were proposed to represent key/value properties of property
graph edges in RDF. These models were based on named
graphs, extended reification, and sub properties, respectively.

113101

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

The proposed approach was implemented on a commercial
database engine which demonstrated its feasibility, although
some limitations were presented. In the first model, not all
RDF systems support named graphs. Also, there is no formal
semantics for reification required in the second model, which
makes it difficult for querying data.

In [16], authors defined a new ontology model, called
PGO, and proposed an automatic mapping procedure
from property graphs to PGO. Axioms of PGO ontology
describe different elements of the property graph (pgo:Node,
pgo:Edge, pgo:property, etc.) and connections between
them (pgo:hasProperty, pgo:startNode, pgo:endNode, etc.).
Mapping a property graph to PGO ontology is carried out
through iterative transformations of labels and properties for
graph nodes and edges. However, the mapping method is
suitable only for PGO ontology that has its axioms defined
specifically for property graph elements. The proposed pro-
cedure could not be employed to map the property graph
to an existing domain ontology with different axioms. Yet,
current literature lacks proposals for automatic generation of
mapping from PG to an existing domain ontology.

In the opposite direction, some proposals were presented
for mapping RDF-to-PG. In [17], a Graph to Graph Mapping
Language (G2GML) is defined to map RDF graphs to PGs.
Five types of mapping were designed, namely, (i) resource to
node, (ii) datatype property to node property, (iii) object prop-
erty to edge, (iv) resource to edge and (v) datatype property
to edge property. Authors also proposed several serialization
formats for the PG model considering the differences in
existing models. Converted RDF data could be loaded into
various graph database engines for further analysis. Although
G2GML has several advantages over direct RDF-to-PG map-
ping, it requires user intervention to write the mapping file
for RDF subgraphs that match certain SPARQL patterns.

In [18], three database mappings were proposed to trans-
form RDF into PG. The first kind of mappings was classified
as a simple mapping that ignores schema restriction from both
sides. The second kind was a generic mapping that followed
PG schema restrictions only, and the last kind was a complete
mapping that considered PG and RDF schema and instances.
Proposed mappings are all semantics preserving, which indi-
cates that a valid database always results from a database
mapping. However, they do not support RDF inference rules
and reified RDF data.

Ill. PG-TO-ONTOLOGY MAPPING CHALLENGES

A property graph (PG) [19] consists of a set of labeled vertices
connected by a set of labeled directed edges. Unique identi-
fiers within the graph are assigned to each vertex and edge.
A collection of properties (key/value pairs) may be associ-
ated to vertices and edges of PG. On contrary, a knowledge
graph (aka as RDF graph) [20] modeled by an ontology, is a
directed graph represented by triples. Each triple consists of
a subject (a resource), a predicate (a labeled resource) and
an object (a resource or a literal). SPARQL query language
is used to query Knowledge graphs [21], whereas there is

113102

no standard query language for PGs although some popular
declarative languages are proposed i.e. Cypher [22]. Accord-
ing to [18], [23], [24] and [25], PG-to-ontology mapping chal-
lenges could be classified into terminological heterogeneity,
structural heterogeneity, and semantic heterogeneity:

A. TERMINOLOGICAL HETEROGENEITY

It occurs when different naming conventions are used by
designers of ontologies and PGs to describe the same domain.
These include abbreviations (e.g., conference vs. conf.),
hyphenation, camel case, plural vs. single nouns, etc. There-
fore, the main challenge is to find matches despite these
differences.

B. STRUCTURAL HETEROGENEITY

It depends on the way used to model data of the same domain
in either ontologies or PGs. Structural heterogeneity could
result from: key conflicts, edge property conflicts, and class
hierarchy conflicts:

1) KEY IDENTIFIERS

In PGs, key identifiers are defined by unique constraints,
whereas identifiers for individuals in ontologies are defined
by IRIs (Internationalized Resource Identifiers). Therefore,
appropriate IRIs should be generated from the unique keys
when representing ontology individuals.

2) EDGE PROPERTIES

They represent the core difference between PGs and ontolo-
gies [15]. Edges in PGs may be assigned a set of properties
in the form of key/pairs. However, edges in RDF are only
assigned labels that define the object property. Therefore,
the main challenge is to correctly map an edge property
in a property graph to its equivalent structure/axiom in an
ontology.

3) CLASS HIERARCHIES

Contrary to ontologies, property graphs model class hierar-
chies (subsumption relationships) implicitly, following dif-
ferent design patterns discussed in [26]. Finding implicit
class hierarchies from PG is the main challenge in this type.
Table 1 shows different types of class hierarchies mapping
challenge with respect to property graph modeling patterns.

C. SEMANTIC HETEROGENEITY

It refers to differences in semantic expressiveness between
two data sources modeling the same domain. Ontology
axioms are interpreted differently from similar statements
in property graphs. For instance, a subsumption relation-
ship in RDF results in inheriting all data/object properties
from a superclass to its subclass by reasoning. Conversely,
a subsumption relationship in PG is simply manipulated as
an edge between two nodes with no more implicit infor-
mation that could be derived. Also, existence constraints in
PGs are used to ensure integrity of data, thus adopting a
Closed World Assumption (assuming complete knowledge

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

TABLE 1. Possible class hierarchies from different modeling
patterns in PG.

Mapping Challenge PG Modeling Pattern Description
Type
[n:1] Class-to-Node In this pattern, there is one node in the property
Match without graph for each ontology class in the hierarchy,

categorical property including the superclass. There is one edge
between the superordinate node and each
subordinate node in the property graph which
leads to having n sub nodes matched to a single
node. This helps inheriting properties from the
super-node to sub-nodes. The challenge is to
find the central node that connects other
subordinate nodes.

[n:1] Class-to-Node
Match with categorical
property

In this pattern, a single node in the property
graph corresponds to several subclasses of an
ontology. Such node uses additional properties
to indicate each subclass. The challenge is to
apply appropriate filtering operations to
retrieve information about different classes
from the same node.

[1: n] Class Property- In this pattern, each ontology subclass is

to- Node Property represented by a separate node in the property

Match graph. But the superclass of the class hierarchy
is not materialized in the property graph, and
therefore, inherited properties are materialized
in each node separately. In consequence, the
same ontology property must be mapped to
several nodes. The challenge is to find
taxonomic relations between node labels.

[1:1] Class-to-Edge In this pattern, multiple edges exist between the

Match same couple of nodes, forming a multigraph.
Each edge in the multigraph is a candidate class
in the hierarchy that is subordinate to either the
edge’s source or target nodes. The challenge is
to find semantic relatedness between edges in
the multigraph and their source/target nodes.

about the world). On contrary, existence qualifiers in ontolo-
gies do not check data integrity, rather they imply new facts
(i.e., unknown information). Therefore, ontologies are related
to Open World Assumption (assuming incomplete knowledge
about the world) [27], [28].

IV. THE PROPOSED ARCHITECTURE
ProGOMap (Property Graph to Ontology Mapper) is pro-
posed to automatically generate mappings from a property
graph to an existing target ontology (referred as domain ontol-
ogy). As shown in Fig.1, ProGOMap consists of three main
modules: (i) Ontology Bootstrapping from PG, (ii) Aligning
Bootstrapped (Putative) Ontology to Domain Ontology, and
(iii) Generating PG-to-Ontology Mappings.

The first module generates a putative ontology by deriving
a set of direct axioms from the PG schema, followed by infer-
ring subclass axioms from PG database through the proposed
Algorithm 1. The second module aligns the putative ontology
to the domain ontology using string matchers for classes and
data properties, then it aligns object properties through the
proposed Algorithm 2. The last module generates final PG-to-
ontology mappings from the alignments (correspondences)

VOLUME 9, 2021

3 |1 I
M PG Reverse Ontology Learning !

I 3 g I

Databasg H Engineering from PG H
Le————=—==—=====================/

[g o omT R m s E e mmEmE

I Aligning Putative to Domain Ontology H

I]

==ﬂll Label Object Property N-ary Relations H

II| Matching Matching Alignment I

Domain I I
Ontology e e T EE R S

L&ligned Axioms (Correspondences)
mm===========f====================9

H Generating PG-to-Ontology Mappings I

Final

i Direct Mappings
Mappings

Generation

Mappings

Inference

Property }

FIGURE 1. ProGOMap proposed architecture.

obtained from module 2. In this module, property inference
is applied to enrich the generated mappings.

A. ONTOLOGY BOOTSTRAPPING FROM PG

Ontology bootstrapping refers to the process of automat-
ically generating an ontology, named putative, from the
database schema. The input to this module is the property
graph database (Definition 3), and the output is the puta-
tive ontology generated in two steps: PG Reverse Engi-
neering, and Ontology Learning. Ontology basic axioms are
extracted from the property graph schema (Definition 2) in
the reverse engineering step. Then, PG database content (Def-
inition 1) is used together with PG schema in the ontology
learning step to enrich the putative ontology with subclass
axioms.

« Definition 1 (A Property Graph [26]): Let G = (V, E, p,
A, o) be a property graph, where:
- Vis a finite set of nodes (vertices),
- E is afinite set of edges.
- p: E — v x vis a total function that assigns a pair
of nodes to each edge.
A: (VUE) — SET*(L) is a labeling function for
nodes and edges with a set of labels from L.
0:(VUE) x P— SET™(U) s a partial function that
assigns properties (P) and their values from (U) to
nodes/edges.
« Definition 2 (A Property Graph Schema [26]): Let
S = (Ty, Tg, B,) be a property graph schema,
where:

- Ty C L is a finite set of labels representing node
types.

113103

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

- Tg C L is a finite set of labels representing edge
types.

- B: (Ty UTg) x P — T is a partial function that
defines the properties and their datatypes for node
and edge types.

- 8: (Ty, Ty) — SET¥(TE) is a partial function that
defines the edge types allowed between a given pair
of node types.

« Definition 3 (A Property Graph Database [26]): Is a pair
D(S, G) where S is a property graph schema and G is a
property graph data.

1) PG REVEERSE ENGINEERING
Reverse engineering of a property graph database allows
to infer its schema and represent the node labels and
edge types with their property keys, indexes, and con-
straints [29]. PG Schema is used to extract basic axioms of
the putative ontology according to a set of rules, as shown
in Table 2. Fig.2 shows an example of the generated putative
ontology after applying these rules to the property graph
schema:

Rule 1 (R1): Each node label in the property graph schema
is mapped to a class axiom in the putative ontology.

TABLE 2. Rules to represent property graph (PG) parts as OWL axioms (written in Turtle syntax).

PG part

Ontology Part

OWL Axiom

R1 Node with one label (L)

A class with name L

: CL rdfitype owl:class.

Node with many labels

: CL1 rdf:type owl: class.

n classes named (Li...La) with

: CLz rdfitype owl:class. ...

R2 (L1, La.... L) an equivalentClass axiom : CLa rdf:type owl:class
between these classes : CL1 owl:equivalentClass : CLo...: CLn
p P)in nod A data property P associated ~ : P rdfitype qwl:DatatypeProperty;
R3 labeﬁggir]?)] (() f)Plél} Itlo : ® to the class CL and datatype rdfs:domain : CL;
yp dt (matched from PG to XSD) rdfs:range dt.
Edge labeled (E) from An object property E : E rdfitype owl:ObjectProperty;
R4 source node (S) to target associated to the classes CS rdfs:domain : CS;
node (T) and CT rdfs:range CT.
5.1. A class with name (S-E- : CS-E-T rdfitype owl: class.
T) and A data property P : P rdfitype qwl:DatatypeProperty;
associated to the class CS-E-T rdfs:domain : CS-E-T;
and datatype dt rdfs:range dt.
Property (P) of type (t) in 5.2, An object property (E-S) E_i frc?g:type. oYvé(S)‘bjectProp erty;
R5 edge labeled (E) from associated to the classes CS rais-domaim - &5,
source node (S) to target 414 CS-E-T (left-side of rdfs:range CS-E-T.
node (T) original edge)
5.3. An object property (E-T) : E-T rdf:type owl:ObjectProperty;
associated to the classes CT rdfs:domain : CT;
and CS-E-T (right-side of rdfs:range CS-E-T.
original edge)
Id: int Id: int integer String integer String
name: String name: String \ / T f
: : id name id name
Author Reviewer \ / I /
\ / Author Reviewer
REVIEWS
HAS_AUTHOR Comment: String
Paper HAS_AUTHOR REVIEWS Reviewer_PR_Reviews
_ "
Id: int aarey
title: String > ‘ PR_Reviews
Topic: String Paper_PR_Reviews Co_mposi te
Node Class v
node Property Data Property comment
XKy Edge Literal range /
[——'9 Edge Property Object Property String

FIGURE 2. Example of basic putative ontology generation (right) from PG (left).

113104

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

Rule 2 (R2): Multiple labels assigned to the same node
in the property graph schema are referred to as equivalent
classes in the putative ontology.

Rule 3 (R3): Data types from PG are mapped to their
counterpart types in OWL according to XML schema
datatypes. Top datatype (rdfs:Literal) is used when a given
datatype in PG is not supported by OWL2 (i.e., xsd:double).
If same property name is already added to ontology, then
the domain of this property is changed to (owl:unionOf)
axiom that consists of names of all classes having this
property.

Rule 4 (R4): Each edge label in the property graph schema
is mapped to an object property in the putative ontology. The
edge’s source and target nodes represent the object property’s
domain and range, respectively.

Rule 5 (RS): Edge properties in PG are represented as
n-ary relations in ontology. Traditionally, in binary relations,
an owl property links one individual to another individual or
a value. On contrary, n-ary relations link an individual to
more than one individual or value. For example, there is a
“comment” property that is written by a certain ”’Reviewer”
who reviewed a specific “Paper”. In this case, “comment”
property does not only link the “Paper” to a value but
also to the “reviewer” who wrote this comment. N-ary
relations problem is usually addressed in ontologies by
adding a new class that represents the relation rather than
just a property [30]. Binary links from the new class to
each argument of the relation are provided by additional
properties. As shown in the example in Fig.2, a new
class “PR_Reviews_Composite” has an associated property
“comment” and has two binary links to “Reviewer” and
“Paper” classes, respectively. This pattern is called (reified
relation).

2) ONTOLOGY LEARNING FROM PG

In this step, the putative ontology is enriched with subclass
axioms inferred from PG schema and content. This is done
by proposing Algorithm 1 that addresses the class hierarchy
mapping challenge discussed in section III. The algorithm
infers class hierarchies from five different PG patterns as
follows: (i) Node property name, (ii) Node property values,
(iii) Edge labels, (iv) Edge nodes, and (v) Nodes with differ-
ent labels sharing a common category. Fig.3 shows an exam-
ple for the first four patterns in the context of Conference
domain.

The first pattern (lines 1-5) addresses the [n:1 class-
to-node with categorical property] class hierarchy chal-
lenge, where node properties might describe different roles
for the same node. For example, in Fig.3 (a), node
“Person’” has Boolean properties (isAuthor, isReviewer)
which reveals that a person might be a reviewer or an author
in the conference. In this regard, two subclasses, “Author”
and “Reviewer” might be generated to the super class cor-
responding to ““Person’ node. This could be achieved when
the property name has one of its hypernyms (its broader

VOLUME 9, 2021

category) equal to the super class name. Individuals of each
subclass are extracted from true values of the corresponding
node property. That is why only Boolean properties
could be considered in subclass generation from property
names.

The second pattern (lines 6-10) also addresses the
[n:1 class-to-node with categorical property] class hierar-
chy challenge, where some node properties might contain
categorical values. For example, in Fig.3 (b), node ‘‘Per-
son” has property “Type” that contains values (Author, and
Reviewer). These values may contribute as subclasses to
the superclass corresponding to ‘““Person” node. Entropy-
based estimation method of data diversity [31] is utilized
to find categorical properties from PG nodes. In informa-
tion theory, entropy measures the level of uncertainty in the
possible outcomes of a given variable [32]. This method
has achieved good performance when used for characteriz-
ing attributes in relational databases [33]. Therefore, it is
adopted in this paper to find properties with the most bal-
anced distribution of values. Given a set of nodes labeled
(L), with property (Y), the entropy H(Y) of property Y is
calculated as [31]:

HY)= Y Py logPy() 1)

vemy(L)

where my(L) is the set of values in property Y over all
nodes labeled L. Py(v) is the probability of having a
node € L with Y property equal to v. A Property with highest
entropy (all its values are unique), and a property with lowest
entropy (has highly duplicate values closest to single one) are
not considered as categorical property candidates. Properties
with entropy value less than the ontology entropy are stored
as candidates for categorical properties. The entropy of the
ontology is the maximum entropy over all classes. The class
entropy is also calculated with the same equation above where
Py (v) is the fraction of subclasses reachable at certain depth
to the total number of subclasses at the ontology’s maximum
depth.

The third pattern (lines 11-17) addresses the [1:1 class-to-
edge] class hierarchy challenge, where subclasses could be
obtained from multigraphs. Multigraphs exist when multiple
edges have the same end nodes. Each edge label is consid-
ered a candidate subclass when its hypernym equals to one
of its end nodes. For example, in Fig.3 (c), there are two
edges labeled (reviews and hasAuthor) between *Person”
and “Paper” nodes. The noun words for these edges respec-
tively are “Reviewer” and “Author”, which have the same
hypernym ““Person”. Therefore, both words are candidate
subclasses to the *“Person’ node.

The fourth pattern (lines 18-23) addresses the [n:1 class-
to-node without categorical property] class hierarchy chal-
lenge, where a central node is superordinate (hypernym)
to other nodes connected to it. For example, in Fig.3 (d),
“Author” and “Reviewer” nodes have ‘“‘isAuthor” and

113105

IEEE Access

Algorithm 1 Class Hierarchy Inference From PG

Input: Property Graph Schema (PG_S), Property Graph Data (PG_D), Initial Putative
Ontology (putOnt)

Output: Expanded Putative Ontology (putOnt)

/IA. Generating subClasses from node properties

1 FOR EACH node in PG_S.nodeList DO
2 FOR EACH p in node.properties DO
3 IF p.HasHypernym(node.label) AND p.IsBoolean() THEN
4 putOnt < CreateOWLClass(p.name)
5 putOnt <— AddsubClassAxiom(p.name, node.label)
//B. Generating subclasses from values of node properties
6 ELSE
7 p_entropy < calculatePropertyEntropy(p)
8 IF p_entropy <= ontology_entropy AND p.IsValidProperty() THEN
9 p_values < GetProperty Values(PG_D,node.label, p.name)
10 putOnt < CreateSubClassFromprop Values(p_values)
/IC. Generating subClasses from edge labels
11 multiGraph <« FindMultiGraph (PG_S.edgeList)
12 FOR EACH tripleedge, source,target in mutliGraph DO
13 matchedPairedge, node <
FindMatchingHypernyms(triple.edgeType, triple.sourceLabel, triple.targetLabel)
14 IF matchedPair.isEmpty() AND putOnt.hasClass(matchedPair.edgeType) THEN
15 CONTINUE
16 putOnt < CreateOWLClass(matchedPair.edgeType)
17 putOnt <— AddsubClassAxiom(matchedPair.edgeType,matchedPair.nodeLabel)
//D. Generating subclasses from edge nodes
18 FOR EACH edge in PG_S.edgeList DO
19 IF HypernymRelated(edge.sourceLabel, edge. targetLabel) THEN
20 sourceKeyValues <— GetKeyValues(edge.sourceLabel)
21 targetKeyValues <— GetKeyValues(edge.targetLabel)
22 IF isSubsetOf(sourceKey Values, targetKeyValues) OR
isSubsetOf(targetKey Values, sourceKeyValues) THEN
23 putOnt <— AddsubClassAxiom(edge.sourceLabel, edge. targetLabel
//E. Generating subclasses from labels of nodes sharing the same category
24 FOR EACH nl in PG_S.nodeList DO
25 FOR EACH n2 in PG_S.nodeList DO
26 commonProps <— FindCommonProperties(nl.properties, n2.properties)
27 commonHypernym <— FindCommonHypernym(n1.label, n2.label)
28 IF commonProps.found() AND commonHypernym.found() THEN
29 putOnt <— CreateOWLClass (commonHypernym)
30 putOnt <— AddsubClassAxiom(commonHypernym, nl.label)
31 putOnt <— AddsubClassAxiom(commonHypernym, n2.label)

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

“isReviewer” edges with *“‘Person’ node, respectively. Addi-
tionally, the key property values of “Author” and ““Reviewer”
nodes are subset of “Person” node’s key property. There-
fore, both nodes are candidate subclasses to the ““Person”
node.

The fifth pattern (lines 24-31) addresses the [1:n class
property-to-node property] class hierarchy challenge.
It occurs when different labels of two or more nodes share
the same category and have common properties in between
but not connected by an edge. For example, a PG graph
with “Reviewer” and ‘““Author” nodes having common

113106

properties (name and email). The common hypernym *‘Per-
son” between both nodes is retrieved and a new superclass
is created with its name, then both nodes are candidate
subclasses to it.

Information about correspondences between putative
ontology and PG is stored separately to be used during align-
ment and mapping generation. This information describes
each ontology axiom (owl:class, owl:DatatypeProperty,
rdfs:subClassOf) and the original PG element associ-
ated to it (i.e., node, property name, property value,
edge, etc.).

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property G

raphs to Ontologies

IEEE Access

id: int integer String
a . name: String
ey iy email: Sting |, A ...
x / type: String
id name
id: int id name Person \ /
name: String /
email: String
isAuthor: bool Person
isReviewer: bool Person id; name; email; type
1089; Cenon Colon; Cn@mail; Reviewer ﬂ R
ﬂ [k 316; Dijana Murfin; DM@mail; Reviewer \
Person / \ 241; Emina Yeeloy; EY@mail; Reviewer subClassOf subClassOf
bClassOf 1023; Lyron Strawder; L@mail;Reviewer / \
subClassOf subllass 179; Nia Drakes; ND@mail; Author
Z \ 52; Cecil Kochler; CL@mail; Author N
68; Luzia Rahib; LR@mail; Author Reviewer Author
. . . 281; Aleece Thorn; AT@mail; Author
ERetleey isAuthor 97; Urako Staker;US@mail; Author
158; Kea Croshaw; KC@mail: Author
values of property (type) from node
. (person) have the most even
(a) from properties names St
(b) from property values
Person Pl Author | 5pClassOf id:int
= UTHOR ~ A -
HA Pl) Author g bClassOf
Paper Person S\AUTHO v5\>~\:‘\ HAS\ AUr; P 4 su \ass
REVIEWS HAS_AUTHOR _— R e~ _="THog ~A
REVIEWS -~ Paper Person Paper Person
subClassOf
Paper “Reviewer p —
NQEV id: int _ ~
REVIEWS oy, name: String REVIEWS
U Revi A/ ©r email: String ~U subClassOf
eviewer Reviewer ~
id:int
(c) from edge labels (d) from edge nodes

FIGURE 3. Example of SubClasses generation for putative ontology.

B. ALIGNING PUTATIVE ONTOLOGY TO

DOMAIN ONTOLOGY

This module aligns the bootstrapped (putative) ontology
to an existing domain ontology. Ontology alignment [34]
is the process of finding correspondences between entities
(i.e. classes, data properties, etc.) of two ontologies, which
can be used for query answering, ontology merging,
etc. A correspondence represents the semantic relationship
between given two entities (i.e. equivalence and subsump-
tion relationship) [35]. Finding correspondences between ele-
ments of two ontologies might be difficult for off-the-shelf
ontology alignment systems, such as LogMap [36], when the
source ontology is a putative ontology derived from another
database. This is because the syntactical structure is specified
on a high-level of abstraction in an existing domain ontology,
whereas it is described on a very low level of granularity in a
putative ontology derived from another database (PG). There-
fore, detecting correspondences might be hindered when
using structural metrics for ontology alignment. In this con-
text, string similarity metrics are better used for the alignment
between the putative and domain ontologies.

1) LABEL MATCHING

In this paper, two string matchers, namely StringAuto [37]
and PropString [38] are used to match entity labels between
the putative and domain ontologies, to address the termino-
logical heterogeneity challenge. These matchers provide a list
of string similarity metrics with a set of guidelines to help

VOLUME 9, 2021

choosing the proper metric with the goal of maximizing either
the precision or recall measures. These guidelines are based
on the language of the ontologies, the number of words per
tokenized entity label, and the embedded synonyms. In this
step, two lists of correspondences are generated between the
classes and data properties of the putative and domain ontolo-
gies, respectively. Class correspondences will be used in the
next step to align object properties between both ontologies.

2) OBJECT PROPERTY MATCHING

In this step, Algorithm 2 (lines 1-8) is proposed to align
object properties between the putative and domain ontologies.
Given a list of class correspondences between the putative and
domain ontologies, two sets of object properties are obtained,
one from a pair of putative classes, and the other from a pair of
their equivalent domain classes (lines 1-5). In case the second
set is not found between the pair of domain classes, then
the class hierarchies for both domain classes are traversed
upwards to search for possible object properties (lines 6-7).
Then, object properties from the first pair are aligned to their
counterparts from the second pair using string matchers while
considering property directionality (line 8).The example in
Fig. 4 shows that the object property between “Conference”
and “Admin” classes in the putative ontology is aligned to its
counterpart between the “Conference’ and *“User” classes in
the domain ontology. This is because there is a subsumption
relationship between “User” and “Admin’ classes in the
domai’ ontology.

113107

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

Algorithm 2 Ontology Alignment for Object Properties and
N-ary Relations
Input: Domain Ontology (domOnt), Putative
Ontology (putOnt), ClassCorrespondences (CLC)
Output: Aligned object properties(op_matches)

1 FOR EACH cl in CLC.GetMatchedClasses() DO
2 FOR EACH c2 in CLC. GetMatchedClasses() DO
3 op_putative <

GetObjectProperties(c1.putativeName,
c2.putativeName, putOnt)

4 op_domain <—
GetObjectProperties(cl.domainName,
c2.domainName, domOnt)

5 IF op_putative.isNotEmpty() THEN
6 IF op_domain.isEmpty() THEN
7 op_domain <—

GetObjectPropertiesFromClassHierarchy
(cl.domainName, c2.domainName, domOnt)

8 op_matches <— ApplyStringMatcher
&PropDirectionality(op_putative, op_domain)

9 FOR EACH put_rel in CLC.Get_Putative
_Nary_Relations() DO

10 dom_rel <«

Find_Domain_Nary_Relation

(put_rel.domSourceClass, put_rel.domTargetClass,

domOnt)

11 IF dom_rel IS NOT NULL THEN

12 put_rel.domHeadClass = dom_rel.headClass

13 dp_matches <— MatchDataProperties
(rel.putHeadClass, rel.domHeadClass,domOnt)

14 CLC <« Update_DP_Correspondences

(dp_matches)

15 op_matches.ADD (put_rel.GetSourceOP,
dom_rel.GetSourceOP)

16 op_matches.ADD put_rel.GetTargetOP,

dom_rel.GetTargetOP)

Object Property Directionality for a pair of putative
classes and a pair of aligned domain classes might dif-
fer. For example, the putative object property (Author -
writes -> Paper) has different direction from the domain one
(Paper- writtenBy-> Author). Additionally, there might be
owl:inverseOf axioms to some object properties in domain
ontology. Therefore, to properly align object properties
between putative and domain ontologies, three cases should
be considered:

a) There is only one putative/domain object property (op)
in the same direction for a single pair of putative/
domain classes, respectively. Then the putative op is
aligned to the domain op and its inverse (if any).
Fig.4 shows an example of aligning the object property
“reviews” in the putative ontology to the object prop-
erty “readPaper” in the domain ontology though they
are not lexically similar.

113108

l/ﬁ\ ':'E'mpt.conf w/\‘ r/\. oeﬂ“z“ /_\ A
F"n'e_'ejﬂ— =erency. ety | Admin | ‘ ,L ,cunwe“c (e
! 1 / \ nlz \
h g) _/ b/ . 4
> bClassf
/& ‘ M
- /€S Y - | Admin |
z/ \ & A, Y o <
PR_Reviews.«— 4/ eviewer | Author | ng | =
-Compnsllu,- ,' “ 4 \u
X; :T— /—\ /_
REVIEWS HAS AUTHOR ||| review: Y
\ _Reviewer | nuthor |
comment \

| writeReview \
e

{ \ <
“’ Paper | | Review JA/ Qe writePaper
\ \)
EX \/ - & y?y
V(&

@ AZ: hasReviews — A
(Version| ebeees
Paper | < *\ \
, Lrn \—
Putative Ontology Domain Ontology | Version \Suoc\as
Paper
OP in Putative Ontology OPO':‘E;EH'" OP Alignment Type

enter_conference_details | enterConferenceDetails Inference from Class Hicrarchy of OP rdfs:domain axiom

has_Author writePaper case b in Property Directionality

reviews readPaper + its inverse case a in Property Directionality

N-ary relation: PR_Reviews Composite and Review
are central classes in putative and domain ontologies

writeReview
hasReviews

paper PR Reviews
reviewer PR-Reviews

FIGURE 4. Alignment example from putative (left) to domain (right)
ontologies in the conference domain.

b) There is only one putative/domain object property (op)
in the opposite direction for a single pair of puta-
tive/domain classes, respectively. Then the putative op
is inferred to be aligned to domain op. Fig.4 shows an
example of aligning the object property “Has_Author”
in the putative ontology to the object property
“writePaper” in the domain ontology although they are
in different directions.

¢) There are multiple putative/domain object properties in
different directions for a single pair of putative/domain
classes, respectively. Then string matcher is applied
with direction prioritization. It means that the sim-
ilarity score between a domain object property and
a putative one is always prioritized over the similarity
score between the inverse of the same domain object
property and other putative one. This way avoids hav-
ing a domain property and its inverse aligned to two
different putative properties.

3) N-ARY RELATIONS ALIGNMENT

In this step, Algorithm 2 (lines 9-16) aligns n-ary relations
between putative and domain ontologies. As mentioned in
(sec. 3.1.1), n-ary relation in ontology represents edge prop-
erties in PG. The main component of this relation is a head
(central) class that links edge properties together with edge’s
source and target nodes. Two object properties are created
between this head class and putative classes corresponding to
source and target nodes. In addition, one or more data proper-
ties representing the edge properties are associated to the head
class. N-ary relation alignment is achieved by looking for an
unaligned class in domain ontology which is linked to the pair
of putative classes corresponding to source and target nodes.

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

If match is found, then data properties are aligned between
this class and the putative central class. If multiple n-ary rela-
tions exist between same putative classes, then string matcher
is applied to these relations to align each domain central
class to its correct putative central class. As shown in Fig.4,
the “Review” class in the domain ontology is considered
the head class that is aligned to the “PR_ReviewComposite”
head class in the putative ontology. Data property “‘review”
is aligned to its counterpart “comment’ property from head
classes in the domain and putative ontologies, respectively.

C. PG-TO-ONTOLOGY MAPPING GENERATION

Generating mappings from the ontology alignment (set of
correspondences) is the last module in the ProGOMap work-
flow. In this module, xR2RML mapping language [5] is used
to write mappings. Triple maps are the main components
of an xXR2RML mapping document. Each triple map rep-
resents one RDF triple extracted from the domain ontol-
ogy. It consists of a logical source query and three ferm
maps. The logical source query (xrr:logicalSource) contains
the PG nodes and/or edges to be mapped to current RDF
triple. Term maps include subject map, predicate map, and
object map. They are used to map data from the logical
source to RDF terms (literal, IRI, blank node). This mod-
ule consists of two steps: Direct mapping generation, and
Property_Inference.

1) DIRECT MAPPING GENERATION

In this step, one TripleMap is generated for each single
correspondence to provide a normalized mapping document.
Fig.5 shows the structure of correspondences obtained
from the second module for class, N-ary relation, and

object property, respectively. For each class correspon-
dence, an xR2RML rr:logicalSource includes a Cypher
query that matches the node name and returns the node’s
key property. An xR2RML rr:subjectMap includes the node
key property appended to the URI of the aligned class
instance. An XR2RML rr:predicateMap includes the constant
axiom [rdf:type], and an xR2RML rr:objectMap includes the
aligned class name. For each data property inside the class
correspondence, an XR2RML rr:logicalSource includes a
Cypher query that matches the node name and returns a
certain node property. An xXR2RML rr:subjectMap includes
the node’s key property appended to the URI of the aligned
class instance. An xXR2RML rr:predicateMap includes the
aligned data property name, and an XR2RML rr:objectMap
includes the node property name.

For each subclass inside the class correspondence, two
types of xXR2RML triple maps might be generated. When
the subclass is inferred from a node property, an xXR2RML
rr:logicalSource includes a Cypher query that matches the
node name and returns that node property. An xR2RML
rr:subjectMap includes the value of the returned node prop-
erty appended to its aligned subclass URI. An xR2RML
rr:predicateMap includes the constant axiom [rdf:type],
and an xR2RML rr:objectMap includes the aligned sub-
class name. When the subclass is inferred from an edge,
an xR2RML rr:logicalSource includes a Cypher query
that matches the edge type between the source and tar-
get nodes to return the edge identifier (id). An xXR2RML
rr:subjectMap includes the edge id appended to its aligned
subclass URI. xR2RML rr:predicateMap and rr:objectMap
include [rdf:type] axiom and the aligned subclass name,
respectively.

Class Comespondence

—» node_name:

—aligned_fo_class_name:

—»node_properties

—»<node_property, aligned_data_property>
—»<node_property, aligned_data_property>
o

= subclass

—» generated_from: node_property
—» properly_name:

—» property_value:

L aligned_to_subclass_name:

—» subclass

—» generated_from: edge

—» edge_fype:

—» source_node:

—» targei_node:

—» aligned_to_subclass_name:

H-ary relation Correspondence

—» domain_ontology_information

—» domain_cntology_source_class:
—» domain_ontology_target_class:
== domain_ontology_head_class:
—»head_io_source_object_property:
—» head_fo_target object_property:

— edge_information

—» edge_fype:

—» edge_source_node:
—» edge_target_node:
—» edge_properties:

<property_name, aligned_head_class_data_property=
<property_name, aligned_head_class_data_property=

domain_ontology_information

domain_ontology_domain_class:
domain_ontology_range_class:
domain_ontology_object_property:

edge_information

edge_fype:
edge_source_node:
edge_farget_node:

FIGURE 5. The structure of ontology alignment (correspondences) obtained for class (left), N-ary relation (middle), and object

property (right).

VOLUME 9, 2021

113109

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

For each N-ary relation correspondence, at least three
xR2RML triple maps are generated. In the first two triple
maps, the xR2RML rr:logicalSource terms include the same
Cypher query that matches the edge type between the source
and target nodes. The xR2RML rr:subjectMap for both triple
maps include the source and target nodes’ key properties
appended to the URI of the head class instance. The xXR2RML
rr:predicateMap of the first triple map includes the head-to-
source object property name, and the XR2RML rr:objectMap
includes the source node’s key property appended to the URI
of its aligned class instance. The xR2RML rr:predicateMap
of the second triple map includes the head-to-target object
property name, and the xR2RML rr:objectMap includes the
target node’s key property appended to the URI of its aligned
class instance. Finally, an xR2RML triple map is gener-
ated for each edge property aligned to the head class’s data

property.

<CLmapping_1>
xrr:logicalSource [xrr:query "Match (p:Paper) return p.id as Pid"];
rr:subjectMap [rr:template
"http://www.examples.com/resource/Paper/{Pid}";];
rr:predicateObjectMap [
rripredicateMap [rriconstant rdfitype];
rr:objectMap [rr:constant <http://cmt#Paper>; |;].
<CLmapping_3>
xrr:logicalSource [xrr:query "Match (p:Paper) where
p.isFullVersion=true return p.id as FpId"];
rr:subjectMap [rr:template
"http://www.examples.com/resource/FullversionPaper/ {Fpld}";];
rr:predicateObjectMap [
rr:predicateMap [rr:constant rdf:type];
rr:objectMap [rriconstant <http://cmt#Full VersionPaper>; ;].
<DPmapping_10>
xrr:logicalSource [xrr:query "Match (r:Reviewer)-[e:reviews]-
>(p:Paper) returnr.id as Rid, p.id as Pid, e.comment as Comments"];
rr:subjectMap [rr:template
"http://www.examples.com/resource/Review/{Rid}-{Pid}";];
rr:predicateObjectMap [
rr:predicateMap [rr:constant <http://cmt#review>];
rr:objectMap [rr:column "Comments"];].
<OPmapping_5>
xrr:logicalSource [xrr:query "Match (r:Reviewer)-[e:reviews]->
(p:Paper) return r.id as Rid, p.id as Pid"];
rr:subjectMap [rr:template
"http://www.examples.com/resource/Paper/{Pid} ";];
rr:predicateObjectMap [
rr:predicateMap [rriconstant <http://cmt#readByReviewer>];
rriobjectMap [rritemplate
"http://www.examples.com/resource/Reviewer/{Rid}"];].

FIGURE 6. A fragment of the generated xR2RML mappings.

For each object property correspondence, an XR2RML
rr:logicalSource includes a Cypher query that matches
the edge type between the source and target nodes.
An xR2RML rr:subjectMap includes the source node’s key
property appended to the URI of its aligned class instance.
An xR2RML rr:predicateMap includes the aligned object
property name, and an XR2RML rr:objectMap includes the
target node’s key property appended to the URI of its aligned
class instance. Fig.6 shows a fragment of xR2RML map-
pings generated for the alignments from Fig.4. TripleMap
(CLmapping_1) represents a class aligned to a PG node.

113110

TripleMap (CLmapping_3) represents a class aligned to a
PG node property. TripleMap (DPmapping_10) represents
an edge property (comment) aligned to property (review) of
ontology class (Review). TripleMap (OPmapping_5) repre-
sents an edge aligned to an inverse object property.

2) PROPERTY INFERENCE

This step refers to the inheritance of data/object properties
from super classes in the domain ontology to all their sub-
classes downwards the class hierarchy. This is applied only
on class hierarchies that has corresponding hierarchies in
the putative ontology inferred during the ontology learning
step. xR2RML mappings are then generated for the inherited
properties. This step improves the quality of the generated
mappings, by covering a broad range of RDF triples that
might be issued in SPARQL query. A new triple map is gener-
ated for each subsumption relationship in the class hierarchy
of an ontology property’s domain (or range) class. For the
hierarchy of a data property’s domain class, the xXR2RML
rr:logicalSource includes a Cypher query that matches one
edge type. The edge connects the two nodes aligned to the
property’s domain class (superclass) and its subclass in the
hierarchy. The query returns the key property of the node
aligned to the subclass and the value of the property aligned to
the super class’s data property. An xXR2RML rr:subjectMap
includes the key property of the node aligned to the prop-
erty’s domain subclass appended to the URI of the subclass
instance. An xR2RML rr:predicateMap includes the aligned
data property name. An xXR2RML rr:objectMap includes the
node property name.

For the hierarchy of an object property’s domain
class, the xR2RML rr:logicalSource includes a Cypher query
matching two edge types. The first edge type is between the
two nodes aligned to the property’s domain class (superclass)
and its subclass in the hierarchy. The second edge type is
between the two nodes aligned to the property’s domain
class (superclass) and property’s range class. An xXR2RML
rr:subjectMap includes the key property of the node aligned
to the property’s domain subclass appended to the URI of
the subclass instance. An XR2RML rr:predicateMap includes
the aligned object property name. An xR2RML rr:objectMap
includes the key property of the node aligned to the property’s
range class appended to the URI of this class instance. For the
hierarchy of an object property’s range class, the XR2RML
rr:subjectMap includes the key property of the node aligned
to the property’s domain class appended to the URI of this
instance. the xXR2RML rr:objectMap includes the key prop-
erty of the node aligned to the property’s range subclass
appended to the URI of the subclass instance. As shown in the
example of Fig. 7, class “conferenceDocument” has object
property ‘“hasAuthor” to class ““ Person”. Inference (dotted
lines in Fig.7 (a)) results in adding xR2RML mappings
(Fig.7 (b)) for the same object property between all subclasses
downwards the “conferenceDocument’ and ““Person” class
hierarchies.

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

hasAuthor
conferenceDocument ye

|

confContributions

¥

writtenContributions [£---- -+~ 3

|

Paper

-

Person

confContributers

RegularAuthor

<OPmapping 20>
xrrlogicalSource [ar:query "Match (cont: confContributions) --

rr:subfecthap [rrtemplate

rropredicateObjectiap [
m:predicatedap [rriconstant <hitp://ernt#hasauthors 1;
rr:objectMap [rriternplate "hitp: [fwwiv.examples.com/ TesourceParson,/{Pid}" 1;].
<OPmapping 21>
arr:logical Source [xrriquery

rr:subjectiap [rritemplate "http://www.examples.com,resource, Paper/ {Cid}";];
rr:predicateObjectdlap [

rr:predicateMap [rriconstant <hitp://cmishasAuthors 1;

rr:objecthlap [rr:template

(c:Conference_Document) - [eshas_Author]-=
(p:Person) refurn cont.id as Cid, p.id as Pid"];

"hitp:/www.examples.com/resourcs /confContributions, {Cid}";T;

"Match (c:Conference_Document)-[e:has_Author]-» (p:Person)-[*]-
(a:Regular_Author) return cid as Cid, a.id as Aid"];

"http:/ [www.examples.com, resource/ RegularAuthor, [Aid}" T;].

(3}

(b

FIGURE 7. Example of property inference during mapping generation.

V. EXPERIMENTAL EVALUATION

In this section, experiments are conducted to measure the
effectiveness of mappings generated by the proposed system
from a given PG to an existing domain ontology. Mapping
effectiveness refers to the ability of mappings to properly
support query answering in the mapped domain compared
to answers retrieved from the original domain. In relational-
to-ontology mapping context, a comprehensive benchmark
suite, RODI, is released to evaluate RZRML mappings gen-
erated from relational databases [39], [40]. The suite con-
sists of a broad range of real-world benchmarking scenarios.
Each scenario includes a database, a target ontology, and
SQL-SPARQL query pairs that evaluate different mapping
challenges. However, regarding property graphs, no compa-
rable approach or benchmark exists, to the best of our knowl-
edge, to evaluate the proposed approach. Therefore, RODI
default scenarios are adopted in this paper to evaluate map-
pings from property graph perspective. This is because RODI
is considered the most comprehensive evaluation methodol-
ogy that test for many requirements such as structural het-
erogeneity, terminological heterogeneity (naming conflicts),
inter-model mismatch, etc.

A. DESCRIPTION OF DATASETS
In this paper, eight RODI default scenarios were selected
for the evaluation from property graph perspective. Selected
scenarios represent the conference domain through three dif-
ferent conference ontologies (cmt, conf, sigkdd) that vary
in size, modeling style and expressiveness. Each ontology
is associated with a set of relational database instances that
are modeled to fit into specific mapping challenge. These
databases are imported into property graph database engine
using neo4j ETL tool! as shown in Table 3. The transformed
PG schema and the complete query set for each scenario are
found at [41].

Modeling patterns of the imported graphs are modified
to fit into different mapping challenges related to property
graphs according to the following rules:

1 https://neo4j.com/developer/neodj-etl/

VOLUME 9, 2021

TABLE 3. Description of eight scenarios used in the experiment from the
conference domain.

Mapping . #Ontology #PG
Challenge Scenario classes nodes
Adiusted cmt_renamed 32 31
]u.s ¢ conf renamed 67 59
Naming LT
sigkdd renamed 51 49
Restructured cmt_structured 32 14
?s rue 1fre conf structured 67 24
Hierarchies T
sigkdd_structured 51 12
Combined cmt_mixed 32 14
Case sigkdd mixed 51 12

1. Two tables with one-to-one PK/FK relationship are con-
verted into two nodes with an edge in between. This
modeling pattern tests for [n:1 class-to-node without
categorical property] class hierarchy challenge.

2. A table that has two foreign keys is considered a junc-
tion table (that breaks M-N relation) and is converted
into an edge with edge properties. This modeling pat-
tern tests for [edge property-to-N ary relation] structural
hierarchy challenge.

3. A table that has more than two foreign keys is con-
verted into a node with multiple edges. This model-
ing pattern tests for [1:1 class-to-edge] class hierarchy
challenge.

4. A categorical column per table is converted into a cat-
egorical property per node. This modeling pattern tests
for [n:1 class-to-node with categorical property] class
hierarchy challenge.

B. EXPERIMENTAL QUERIES

Each scenario adopted from RODI was originally associ-
ated with SPARQL-SQL query pairs. In this paper, SPARQL
queries provided for each scenario are manually trans-
lated into Cypher queries considering various graph patterns
and paths. The following example shows a query pair from
the cmt_renamed scenario that tests variable-length pattern

113111

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

TABLE 4. Category tags used in SPARQL-Cypher query pairs for each mapping challenge.

Mapping Challenge Category Tag
Matching class class
Matching data type property prop
Matching object property link

1-1 node-class/edge-class match 1-1

n-1 class-node with categorical property n-1

1-n class-node with categorical label superclass
Finding the data value in the same node matched with the related class (data property match) in-node
Finding the data value in a node other than the one matched with the related class (data property match) other-node
Finding 1-length or 2-length edge(s) between two nodes corresponding to related classes (object 1-hop, 2-hops
property match)

Finding n-length edges (n>2) between two nodes corresponding to related classes (object property n-hops
izaci}tli)onal tag for all queries that are tagged n-hop, with any n > 1 (variable-length pattern matching) X-hops
Matching composite edge to an object property in corresponding N-ary relation OP-nary
Matching edge property to a data property in corresponding N-ary relation DP-nary

matching. In this example, Cypher pattern 1 describes a graph
of four nodes and three relationships, all in one path (a path of

TABLE 5. Number of queries per challenge category for eight scenarios.

length 3). Cypher pattern 2 shows another pattern for the same = 3
. e - 3 = T ¢ £ =
query by identifying the four nodes that should be traversed <) - § £ 5 E £ 2
in that path: cenarlo £ 5 £ § 8 B E E Totalper
2 & E| o =] T !
R~ ' (- tag
£ 5% ¢ %% 3
name = Q46 (PCs (-) Persons) CTZtgegory s E S g B o&m E
Cypher(Pattern 1) = match(progCom: program i
_committees) -[*3]-> class,1- 2 0 0 2 0 2 0 0 6
(p:persons) return count (*) 1superclass
class,1-1 10 7 7 14 8 13 7 73
Cypher (Pattern 2) = match(progCom: program
_committees) class,n-1 0 5 4 0 8 0 8 6 31
-[1- (pcMem:pc_members) prop,inmede 7 11 9 10 13 8 9 8 5
-[]- (conMem:conf_members
-[1- (p:persons) return g;(:i[;, other- 4 0 0 5 2 2 1 1 15
count (*) OP
-nary 0 0 3 0 0 0 0o 2 5
SPARQL =
prefix rdf: (http://www.w3.0rg/1999/02/22-rdf DP-nary 60 3 0o o0 0 0 1 4
-syntax-ns#) link,1-hop 1 5 2 2 4 3 4 2 23
prefix: (http://cmt#) \n\ _
SELECT (COUNT(x) AS Zcnt) \n\ i:;‘]';;x"”l’s’z' 300 3 00y
WHERE {?c rdf:type:ProgramCommittee; link,X-hops,3- 1 1 0 1 T 0 0 o0 .
:hasProgramCommitteeMember 7p. hops
?p rdf:type:Person} link,X- 1o 0o 4 0 0 0 O 5
categories = link, X-hops, 3 hops ¥°$s;h°ps>,_4
otal Queries ,5 59 33 39 39 29 29 27 249

per scenario:

Each query in the eight scenarios evaluates specific

PG-to-ontology mapping challenge(s) categorized as shown
in Table 4. The number of queries tested for each mapping
challenge along with each scenario is shown in Table 5.

113112

C. EXPERIMENTAL METHODOLOGY
Experiment encompasses eight scenarios, each one con-
stitutes of a property graph database, a domain ontology,

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

and a set of SPARQL-Cypher query pairs. For each test,
input will be xR2ZRML mappings generated from the
proposed ProGOMap system. Evaluation starts by executing
rr:logicalSource queries from these mappings over the Neo4j
PG database [42].Then, PG data results are materialized
into A-Box facts in Triple store (Sesame) together with
T-Box (axioms) of the domain ontology. Finally, query pairs
of the scenario are evaluated on the PG database and on the
triple store to measure the accuracy of the produced results.

D. EVALUATION METRICS

A per-query precision and recall metrics are used to mea-
sure the correctness and completeness of query results,
respectively. Then F-measure is calculated as the mean of
precision and recall values for each single query test in each
RODI scenario. In addition, the average of F-measure values
for query tests is calculated to obtain the overall score for
each scenario. Given a single SPARQL-Cypher query pair,
the precision, recall and F-measure scores are calculated as
follows [39]:

|s_res| — |[unmatched(s_res)|

Precision = 2
|s_res|
Recall — |c_ref] — Junmatched(c_ref)| 3)
|c_ref]
Precisi Recall
F-measure — 2 X |Precision x Reca @)

Precision + Recall

where s_res, c_ref are the result sets returned by SPARQL
query and Cypher query, respectively. unmatched(s_res),
unmatched(c_ref) are tuples that could not be matched in the
SPARQL results and Cypher reference results, respectively.

E. RESULTS AND DISCUSSION

Table 6 shows the overall average scores calculated based on
per-test F-measures in eight default scenarios. All scenarios
perform best in the “adjusted renaming” challenge because
their PG and ontology modelling patterns are very close.
Scores for all scenarios in the “structured hierarchies” are
more than 0.5, which indicates the effectiveness of the pro-
posed algorithms for class hierarchy inference and object
property alignment.

TABLE 6. Overall scores in eight default scenarios (calculated as the
average of per-test F-measure scores).

Mappin: . Score
Ch;)li)en:gge Scenario (AVG)
. cmt_renamed 0.84
g:::is:;;d conf renamed 0.90

sigkdd_renamed 0.97
cmt_structured 0.62
Restructured -
Hierarchies conf structured 0.78
sigkdd_structured 0.67
Combined cmt_mixed 0.71
Case sigkdd mixed 0.81

VOLUME 9, 2021

The relative performance of the proposed ProGOMap sys-
tem is further drilled down into four main categories. These
categories test mapping effectiveness of class instances,
datatype properties, object properties and n-ary relationships
which are identified by class, prop, link, OP/DP-nary tag IDs

of mapping challenges, respectively.

FIGURE 8. Score break-down for queries with “class” taglD for eight
scenarios.

Class (AVG)

I

Scenario

Score
ettt ot
QENWAENONOOO
[slejelelslolelolelels)

In Fig.8, all scenarios succeeded to easily map PG data
to class types (All scores > 0.70). Scenarios for conf
and sigkdd ontologies perform better in the ‘“‘adjusted
naming” challenge than in “restructured hierarchy” chal-
lenge. However, cmt_renamed scenario failed to map the
abbreviated PG node (PC_Members) to the ontology class
(Program_Committee_Members). Therefore, the scenario
of cmt_structured outperforms the renamed one for class

mapping.

Data Property (AVG)

0.90

0.80
0.70
0.60
0.50
0.40
030
0.20
0.10

0

0.0

Score

6’ <
o”& ¢§ {3’ & & 06* §
o & & & & > x
< < < o &) &
& S D £ % ¥ & &
& & & & Ny &°
& © %
Scenario

FIGURE 9. Score break-down for queries with “prop” taglD for eight
scenarios.

In Fig.9, most scenarios successfully answered queries
about data properties linked to classes/nodes other than the
queried ones because of applying property inference dur-
ing mapping generation (most scores >= 0.70). However,
cmt_structured scenario received the lowest score in mapping
data properties. This is because it failed to find mappings
for ontology subclassses: paperFullVersion and paperAb-
stract. They are represented in PG as numeric values in Type

113113

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

property of Paper node (categorical property). Therefore,
SPARQL queries about data properties for those subclasses
did not return answers, causing a negative impact on the
overall score.

Object Property (AVG)

& & &

Score
cococcoooor
S o o i O 100 ©
Scs8E883888

& S o &
> d ~ >
& & F & F S & &
& & & & & & &
P A ANV ES I L
< & > N <
s‘% M & 443'
Scenario

FIGURE 10. Score break-down for queries with “link” tagID for eight
scenarios.

cypher= match (nl:Paper) —[r:assigned To]-
={n2:Person) where nl Type=1 return count(*)

SPARQI=SELECT (COUNT(*) AS 7cnt)

WHERE {7paper rdftype ‘PaperFullVersion .
Tauthor rdf-type ‘Reviewer; -hasBeenAssigned 7paper
H

FIGURE 11. Cypher_SPARQL query pair example on numerical categorical
properties.

In Fig.10, cmt_structured and sigkdd_structured scenarios
received the worst scores for mapping object properties. This
originates from failure in inferring class hierarchies from
categorical properties that include numeric values as in the
PaperType property in the example of Fig.11. Therefore,
all SPARQL queries about object properties from/to those
unmapped subclasses return no results. Overall, (n-1 cate-
gorical property) mapping challenge has a great effect on the
success of mapping generation process.

Finally, Fig.12 shows scores of mapping PG edge prop-
erty to ontology n-ary relations. In, sigkdd_mixed scenario,
the “submits” PG edge between ““Person’” and * document”
PG nodes has two date properties. This edge is correctly
mapped to the following ontology ternary relationship:

o« An object property ‘‘notification_until”

“Author” and “notificationDeadline’ classes.

o An object property “‘submit_until” between ‘“‘Docu-

ment” and “‘submissionDeadline” classes.

o A data property “‘date” for the “deadline” class.

between

This ternary mapping is found only when applying class
hierarchy traversal on the domain and range classes of
the object properties. In this case, classes “notification-
Deadline” and “‘submissionDeadline” are matched with the
base class “Deadline” that represents the head class of the

113114

N-ary Relations (AVG)

1.00
050
0.80
0.70
0.60
0.50
0.40
030
020
0.10
0.00

B OP-nary

Score

B DP-nary

cmt_mixed sigkdd_mixed

Scenario

FIGURE 12. Score break-down for queries with “OP/DP-nary” tagID for
eight scenarios.

TABLE 7. F-measures averaged over mapping challenge categories
(tag ID) for each scenario.

. | | Overall
S = 9] TR =
cenario lE - SE2E 282w Score
EEEZEZ2582E2E222 2 per
Category SE5 25 EScS 3RS EE lt)
Tag BTETREEgEmET g ot
S o y
class (AVG) 0.92 1.00 0.82 0.94 0.75 1.00 0.73 0.85 0.87
n-1(AVG) - 06 075 0.63 - 05 0.67 0.61
1-1 (AVG) 0.92 1.00 0.89 0.94 0.89 1.00 1.00 1.00 0.95

superclass (AVG) 190 - . 100 - 100 - - 1.00

prop (AVG) 0.85 0.55 0.78 0.87 0.80 0.90 0.70 0.78 0.73

in-node (AVG) 1.00 0.55 0.78 0.90 0.85 0.99 0.78 0.87 0.83

other-node (AVG) (71 _ _ (80 0.50 0.50 NaN NaN 0.59

link (AVG) 0.83 0.33 0.50 0.88 0.75 1.00 0.25 0.50 0.68

X-hops (AVG) 0.60 NaN - 080 080 1.00 - - 0.71

hops->=4(AVG) NN - - 075 - - - - 0.0
3-hops (AVG) NaN NaN - 100 1.00 - - - 05
2-hops (AVG) 100 - - 1.00 0.66 1.00 0.87
1-hop (AVG) 1.00 0.40 0.50 1.00 0.75 1.00 025 0.50 0.61
OP-nary (AVG) - 067 - - - - 1 080
DP-nary (AVG) - 033 - - - - 1 0.50
SP::'ZrGeOMap AVG 0.79

mapped ternary relationship. Also, the data property “date”
is mapped to the “notificationDate” and ‘submissionDate”
properties of the *“ submits” PG edge with two different triple
maps; one for each property.

The score in the cmt_mixed scenario decreases because
there exist two different edges, each with additional proper-
ties. n-ary relation is found for one edge but missed for the
other edge due to data type mismatch between the head class
data property and the edge property.

VOLUME 9, 2021

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

IEEE Access

A more detailed information about F-measure scores aver-
aged over mapping challenge categories (tag ID) for each
scenario is provided in Table 7. The overall average score for
mapping an ontology class to a property graph node/property
is 0.87. Algorithm 1 managed to find classes from categorical
properties of PG nodes with overall score of 0.61. The overall
score of mapping each ontology class to a single PG node
is 0.95. This proves the effectiveness of string similarity mea-
sures to address the terminological heterogeneity between
PG and ontology models. The overall score for mapping
data properties is 0.73. Applying property inference during
mapping generation succeeded in mapping data properties
from other classes with an average score of 0.59. Mapping
object properties to a variable length graph pattern (x-hops)
achieved a score of 0.71. This indicates the significance of
applying class hierarchy traversal to the domain/range classes
of the object properties during the alignment between the
putative and domain ontologies.

VI. CONCLUSION

This paper presents a novel approach that automatically gen-
erates mappings from property graph (PG) data sources to
ontologies by addressing various mapping challenges. The
mapping process comprises three main steps: (i) generat-
ing putative ontology from PG schema, (ii) aligning puta-
tive ontology to a target domain ontology, (iii) generating
xR2RML mappings from the resulting alignments. Exper-
iments to measure mapping effectiveness were conducted
on eight datasets in the conference domain. Each dataset is
designed to assess the quality of a specific mapping chal-
lenge. Terminological heterogeneity challenge is addressed
by applying various string similarity measures between the
two models. The overall mapping scores achieved in this
challenge for mapping classes, data properties, and object
properties are 0.96, 0.73, and 0.90, respectively. The data
property score is the least because some data properties in
the domain ontology are modeled as nodes in the property
graph (e.g., email). Also, a class label “‘conference_www”’
could not be mapped to a node label “website”, and in
turn their properties are not mapped. Structural heterogeneity
challenges are addressed by proposing an ontology learning
algorithm to infer class hierarchies from the PG model, and
an ontology alignment algorithm for object properties consid-
ering various criteria. The overall mapping scores achieved in
this challenge for mapping classes, data properties, and object
properties are 0.81, 0.70, and 0.50, respectively. The drop in
these scores arises from having many categorical properties
in PG nodes that have numerical values which cannot be used
to infer class hierarchies during ontology learning/alignment
steps. Further investigation is required for mapping properties
with this challenge.

In the future, it is planned to conduct experiments for cross-
matching scenarios (e.g., mapping cmt with sigkdd). In these
scenarios, the level of semantic heterogeneity is higher than
default ones because it involves mapping a schema derived
from one ontology to another different ontology in the same

VOLUME 9, 2021

domain. Further extension includes mapping generation for
other types of NoSQL databases (e.g., document database),
which requires additional ontology learning methods to infer
class hierarchies from them.

REFERENCES

[1] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati, “Linking data to ontologies,” in Journal on Data Semantics X.
Berlin, Germany: Springer, 2008, pp. 133-173, doi: 10.1007/978-3-540-
77688-8_5.

[2] E. Kharlamov, D. Hovland, M. G. Skjaveland, D. Bilidas,

E. Jiménez-Ruiz, G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov,

M. Giese, H. Lie, Y. Ioannidis, Y. Kotidis, M. Koubarakis, and A. Waaler,

“Ontology based data access in statoil,” J. Web Semantics, vol. 44,

pp. 3-36, May 2017.

G. Fusco and L. Aversano, “An approach for semantic integration of het-

erogeneous data sources,” PeerJ Comput. Sci., vol. 6, p. €254, Mar. 2020.

S. Das, S. Sundara, and R. Cyganiak. (2012). R2RML: RDB to RDF

Mapping Language. Accessed: Jan. 31, 2019. [Online]. Available:

https://www.w3.org/TR/r2rml/http://www.w3.0rg/TR/2012/REC-12rml-

20120927/Latestversion:http://www.w3.org/TR/r2rml/

F. Michel, L. Djimenou, C. Faron-Zucker, and J. Montagnat, ‘“Translation

of relational and non-relational databases into RDF with xR2RML,” in

Proc. 11th Int. Conf. Web Inf. Syst. Technol. (WEBIST), 2015, pp. 443-454.

[6] J. FE Sequeda, A. Garcia-Castro, O. Corcho, S. H. Tirmizi, and
D. P. Miranker, “Overcoming database heterogeneity to facilitate social
networks: The Colombian displaced population as a case study,” in Proc.
18th Int. Conf. World Wide Web Ibero-Amer. Track, 2009.

[7] L. E. de Medeiros, F. Priyatna, and O. Corcho, “MIRROR: Automatic

R2RML mapping generation from relational databases,” in Proc. Int. Conf.

Web Eng., 2015, pp. 326-343.

C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, A. Nikolov,

A. Schwarte, C. Heupel, and T. Kraska, “Incmap: A journey towards

ontology-based data integration,” Lect. Notes Informat. Proc. Gesellschaft

Inform., vol. 265, pp. 145-164, 2017.

E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel,

M. G. Skjeveland, E. Thorstensen, and J. Mora, “BootOX: Practical

mapping of RDBs to OWL 2,” in Proc. Int. Semantic Web Conf., 2015,

pp. 113-132.

[10] A. Sicilia and G. Nemirovski, “AutoMap4OBDA: Automated generation
of R2RML mappings for OBDA,” in Proc. Eur. Knowl. Acquisition Work-
shop, 2016, pp. 577-592.

[11] S. N. Mathur, D. O’Sullivan, and R. Brennan, “Milan: Automatic gener-
ation of RZRML mappings,” in Proc. 26th Irish Conf. Artif. Intell. Cogn.
Sci., Dublin, Ireland, 2018.

[12] H. Li and Q. Sima, “‘Parallel mining of OWL 2 EL ontology from large
linked datasets,” Knowl.-Based Syst., vol. 84, pp. 10-17, Aug. 2015, doi:
10.1016/j.knosys.2015.03.023.

[13] C.R. Rivero, I. Hernandez, D. Ruiz, and R. Corchuelo, ‘“Mapping RDF
knowledge bases using exchange samples,” Knowl.-Based Syst., vol. 93,
pp. 47-66, Feb. 2016, doi: 10.1016/j.knosys.2015.11.001.

[14] D. Oliveira, R. Sahay, and M. d’Aquin, “‘Leveraging ontologies for knowl-
edge graph schemas,” in Proc. ESWC Workshop KGB, 2019.

[15] S. Das and M. Perry, “A tale of two graphs: Property graphs as RDF in
Oracle,” in Proc. EDBT, 2014, pp. 762-773.

[16] D. Tomaszuk, R. Angles, and H. Thakkar, “PGO: Describing property
graphs in RDF,” IEEE Access, vol. 8, pp. 118355-118369, 2020.

[17] H. Chiba, R. Yamanaka, and S. Matsumoto, “G2GML: Graph to graph
mapping language for bridging RDF and property graphs,” in Proc. Int.
Semantic Web Conf., 2020, pp. 160-175.

[18] R. Angles, H. Thakkar, and D. Tomaszuk, “Mapping RDF databases to
property graph databases,” IEEE Access, vol. 8, pp. 86091-86110, 2020.

[19] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. Newton, MA,
USA: O’Reilly Media, Inc., 2013.

[20] G. Klyne and J. Carroll. (2004). Resource Description Frame-
work (RDF) Concepts and Abstract Syntax. [Online]. Available:
https://www.w3.0rg/TR/2004/REC-115-concepts-20040210/

[21] E. Harris, S. Seaborne, A. Prud’hommeaux. (2013). SPARQL 1.1
Query Language. W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/sparql11-query/

[22] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor, “Cypher: An evolving
query language for property graphs,” in Proc. Int. Conf. Manage. Data,
May 2018, pp. 1433-1445.

3

—

[4

=

[5

—

[8

—

[9

—

113115

http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1016/j.knosys.2015.03.023
http://dx.doi.org/10.1016/j.knosys.2015.11.001

IEEE Access

N. Fathy et al.: ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

R. Angles, H. Thakkar, and D. Tomaszuk, “RDF and property graphs
interoperability: Status and issues,” in Proc. AMW, Paraguay, 2019.

J. Euzenat and P. Shvaiko, ‘“The matching problem,” in Ontology Match-
ing. Berlin, Germany: Springer, 2013, pp. 25-54.

(2019). W3C Workshop Minutes. W3C Workshop on web Stan-
dardization for Graph Data. Berlin, Germany. [Online]. Available:
https://www.w3.org/Data/events/data-ws-2019/minutes.html

R. Angles, “The property graph database model,” in Proc. AMW, Cali,
Colombia, 2018.

P. Pauwels, S. Zhang, and Y.-C. Lee, ““Semantic web technologies in AEC
industry: A literature overview,” Autom. Construct., vol. 73, pp. 145-165,
Jan. 2017.

B. Motik, I. Horrocks, and U. Sattler, “Bridging the gap between OWL and
relational databases,”” J. Web Semantics, vol. 7, no. 2, pp. 74-89, Apr. 2009.
I. Comyn-Wattiau and J. Akoka, “Model driven reverse engineering of
NoSQL property graph databases: The case of Neo4j,” in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2017, pp. 453-458.

N. Noy, A. Rector, P. Hayes, and C. Welty, “Defining n-ary relations on
the semantic web,” W3C Work. Group Note, Apr. 2006, vol. 12, no. 4.
[Online]. Available: http://www.w3.org/TR/swbp-n-aryRelations

F. Cerbah, “Mining the content of relational databases to learn ontologies
with deeper taxonomies,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell.
Intell. Agent Technol., Dec. 2008, pp. 553-557.

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2012.

F. Cerbah, “Learning ontologies with deep class hierarchies by mining the
content of relational databases,” in Advances in Knowledge Discovery and
Management, F. Guillet, G. Ritschard, D. A. Zighed, and H. Briand, Eds.
Berlin, Germany: Springer, 2010, pp. 271-286.

P. Shvaiko and J. Euzenat, “Ontology matching: State of the art and future
challenges,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 158-176,
Jan. 2011.

P. Ochieng and S. Kyanda, “‘Large-scale ontology matching: State-of-the-
art analysis,” ACM Comput. Surv., vol. 51, no. 4, pp. 1-35, Sep. 2018.

E. Jiménez-Ruiz and B. C. Grau, “Logic-based and scalable ontology
matching,” in The Semantic Web. Berlin, Germany: Springer, 2011,
pp. 273-288.

M. Cheatham and P. Hitzler, ““String similarity metrics for ontology align-
ment,” in Proc. Int. semantic Web Conf., 2013, pp. 294-309.

M. Cheatham and P. Hitzler, “The properties of property alignment,” in
OM. CEUR-WS.org, 2014, pp. 13-24.

C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, W. May, A. Nikolov,
A. S. Bastinos, M. G. Skjeveland, A. Solimando, M. Taheriyan, C. Heupel,
and I. Horrocks, “RODI: Benchmarking relational-to-ontology mapping
generation quality,” Semantic Web, vol. 9, no. 1, pp. 25-52, Nov. 2017.
C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze, M. G. Skjave-
land, A. Solimando, and E. Kharlamov, “RODI: A benchmark for auto-
matic mapping generation in relational-to-ontology data integration,” in
Proc. Eur. Semantic Web Conf., 2015, pp. 21-37.

(2020). Schema and Test Queries for the ProGOMap Experimental
Datasets. [Online]. Available: https://drive.google.com/drive/
folders/15JQk0yZKucv]2eadKLz-9ChOnLyb9LEs?usp=sharing

Neodj Graph Platform—The Leader in Graph Databases. Accessed:
Mar. 14, 2019. [Online]. Available: https://neo4j.com/

NAGLAA FATHY received the B.Sc. and M.Sc.
degrees in information systems from the Faculty
of Computer and Information Sciences (FCIS),
Ain Shams University (ASU), Egypt, in 2006 and
2012, respectively, where she is currently pursuing
the Ph.D. degree. Her master’s was about personal-
ized information retrieval considering users’ pref-
erences. She is an Assistant Lecturer with FCIS,
ASU. Her research interests include information
retrieval, information integration, semantic web,
and ontology engineering, and social networking.

113116

WALAA GAD received the B.Sc. and M.Sc.
degrees in computers and information sciences
from Ain Shams University, Cairo, Egypt,
in 2000 and 2005, respectively, and the Ph.D.
degree in computers and information sciences,
in 2010. Her master’s was about designing and
planning a network model in the presence of obsta-
cles using clustering around medoids techniques.
She was a Ph.D. Student with the Pattern and
Machine Intelligence (PAMI) Group, Faculty of
Electrical and Computer Engineering, University of Waterloo, Canada. The
dissertation title is “Text Clustering Based on Semantic Measures.” The
work was done jointly between the Faculty of Computers and Information
Sciences, Ain Shams University, and the University of Waterloo. She is cur-
rently an Associate Professor with the Faculty of Computers and Information
Sciences. She is the author of several publications. Her current research
interests include data science, semantic web and machine learning, data
warehouse, and big data analytics.

NAGWA BADR received the M.S. degree in com-
puter science and the Ph.D. degree in software
engineering and distributed systems from Liver-
pool John Moores University, UK., in 1996 and
2003, respectively. She had done postdoctoral
studies with Glasgow University, U.K. She is cur-
rently a Professor and the Dean of the Faculty of
Computer and Information Sciences (FCIS), Ain
Shams University (ASU). For the last few years,
she is the Head of committee that contributed to
research projects funded by national and international grants in information
systems, bioinformatics, business analytics, and health informatics. Her
research interests include software engineering, cloud computing, big data
analytics, social networking, Arabic search engines, and bioinformatics.

MOHAMED HASHEM was the Head of the Infor-
mation Systems Department, FCIS. He was the
Vice-Dean of education and student affairs at the
Faculty of Computer and Information Sciences
(FCIS). He is currently a Professor in information
systems with FCIS, Ain Shams University, Egypt.
His research interests include modeling and sim-
ulation of computer networks, computer security,
and data management.

VOLUME 9, 2021

