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ABSTRACT Gear fault related information is distributed over a broad frequency band, indicating a
complex modulation mechanism. It is difficult to detect early-stage gear faults accurately by detecting
fault frequencies in a limited frequency band. This paper proposes a novel method for achieving fault
frequency detectionmore effectively. A short-frequency Fourier transformwith a series of frequency-window
functions is initially used to obtain the overall frequency information of a vibration signal. Subsequently,
based on sparse decomposition and orthogonal matching pursuit, harmonic atoms are applied to refine mod-
ulation components from multiscale pseudo mono-components. A multiscale-sparse frequency-frequency
distribution is eventually applied to augment existing fault-related harmonic components. In addition, a
synthesized sparse spectrum is acquired by determining the frequency-frequency ridge from the multiscale
sparse frequency-frequency distribution. Compared with empirical-mode-decomposition and fast-kurtogram
analyses, the effectiveness and superiority of the proposed method for gear fault detection have been verified
via experiments.

INDEX TERMS Demodulation, fault detection, Fourier transforms, gears, modulation, pursuit algorithms,
sparse matrices, spectral analysis, vibrations, windows.

I. INTRODUCTION
Based on their key roles in rotating machines, gearboxes
have been widely applied in industrial equipment such as
automobiles [1], wind turbines [2], [3], etc. Unfortunately,
as a result of unfavorable conditions and fluctuating loads
during service, gearboxes are inevitably exposed to faults,
which may result in enormous economic losses and security
issues [4]. Therefore, the effective and timely fault diagnosis
is crucial for preventing disasters.

However, gear fault diagnosis is challenging. Variable
and harsh environments trigger localized defects such
as cracking, spalling, or both. The diversity of these
faults cause several difficulties in gear fault diagnosis.
Additionally, the fault responses triggered by unavoidable
manufacturing and assembly errors always modulate defect
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information in multiple frequency bands, indicating that
there are various forms of modulation side-bands around the
gear mesh frequency and its higher harmonics in the spec-
trum. Multi-modulations with multi-coupling phenomena
further weaken the distribution characteristics of fault-related
components to different degrees. To address these chal-
lenges, several methods have been developed to moni-
tor gearbox conditions accurately. These methods primarily
focus on three areas: mechanism analysis based on dynamic
modelling [5]–[7], mathematical modelling [8], [9], and
data-based monitoring [10]–[12].

Regarding dynamic mechanisms, transient impulses
always exist as a result of periodic time-varying meshing
stiffness and force that trigger interference for diagnosis
analysis. By synthetically considering the characteristics
of strong noise, weak fault signals, multi-modulation, and
multi-coupling, it can be observed that sensitive informa-
tion extraction from raw contaminated signals is important
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for gear fault diagnosis. Multiscale analyses, including the
short time Fourier transform (STFT) [13], wavelet transform
(WT) [14], [15], empirical mode decomposition (EMD) [16],
and variational mode decomposition (VMD) [17], have been
validated as effective tools for separating related modu-
lated components. However, these applications of multiscale
analyses are limited by their own peculiarities to differ-
ent degrees. For example, the STFT cannot consider both
time and frequency resolutions once the 2D time-frequency
window is determined. Parey employed the WT to resolve
angular domain averaged signals and implemented diagnosis
for gearbox faults [18], but the noise reduction effect of the
WT significantly depends on its mother wavelet. It is difficult
to select a suitable mother wavelet that agrees well with
the physical structures of analytical signals. Amarnath suc-
cessfully diagnosed faults in helical gears using EMD-based
intrinsic mode functions [19]. Owing to the endpoint effect
andmodal aliasing, EMD is unsuitable for analyzing complex
modulated signals, and it also has weak theoretical support.
Miao employed VMD to diagnose planetary gearbox faults
and realized efficient and accurate effects for defect sepa-
ration [20], but the denoising performance of VMD relies
heavily on decomposition parameters that are difficult to
determine and require prior knowledge. It should be noted
that these methods all share two common limitations. First,
they obtain partial sensitive bands within the entire frequency
band, which induces the loss of meaningful information and
yields unclear multiscale distribution characteristics. Second,
they do not consider in-band noise, which is necessary for
accurate fault diagnosis.

To address the limitations of existing multiscale analysis
methods, a method called sparse representation has attracted
significant research interest and exhibited promising per-
formance for noise removal and mechanical fault diagno-
sis [21]–[24]. This method operates based on the diverse
modulation distribution characteristics of faulty gears. Sun
designed a parametric impulsive dictionary to address the
problems ofmutual coherence between atoms and lowmatch-
ing of atoms to signals [25], which improved calculation
efficiency and impact feature extraction accuracy. However,
this method only focuses on local faults, and its application
to gear fault feature extraction must be further verified. Deng
proposed a novel parametric dictionary design algorithm, that
optimally matched the underlying fault impact characteristics
of analyzed signals, but its anti-noise performance must be
further improved [26]. Medina applied sparse representation
in a dictionary learning approach to perform the accurate
identification and classification of a gear fault dataset [27].
He designed two sub-dictionaries to separate the steady and
impact modulations of gear compound faults. In addition, the
effectiveness of this method was verified through simulations
and experiments [28], [29], where he adopted the modulation
feature in the resonance region to identify impact gear faults.
Ding constructed a novel time-frequency impulsive atom and
adopted its sparse representation for bearing fault diagno-
sis [30], which ignored the physical fault characteristics.

Accordingly, mathematical model analysis of gearbox vibra-
tion signal can provide a sparse representation of the desired
fault information, where the meshing characteristics of mod-
ulation information distributed in different frequency bands
can be optimally extracted. However, existing model-driven
methods based on sparse decomposition primarily focus on
transient feature extraction while ignoring the steady mod-
ulation features distributed in full frequency bands, which
hinders the accurate extraction of impact modulation com-
ponents and accurate gear fault diagnosis.

This study aimed to realize a general fault frequency dis-
tribution to illustrate the complex modulation information
systematically. Such information is disturbed by strong noise
in a broad frequency range. First, a short-frequency win-
dow function is introduced to obtain multi-scale features
through an FT (short-frequency FT, SFFT), where a series
of pseudo mono-frequency components exists. Subsequently,
a sparse representation with a mathematical model analysis
of a gearbox is applied to each pseudo mono-frequency sub-
signal, where noise interference can be optimally eliminated
from the envelope spectrum. Therefore, a new view of multi-
scale fault information can be provided in a sound spectrum
called a multiscale sparse frequency-frequency distribution
(MSFFD). Furthermore, a synthesized sparse spectrum (SSS)
is applied to the MSFFD. Multiple types of modulation
information can be mined efficiently and used to support
accurate gear fault diagnosis. In contrast to the conventional
multi-scale analysis method, the originality of the proposed
method is to synthesize crucial sparse information distributed
in a multi-scale modulation model for an effective identifi-
cation effect. The vibration modulation model of gear faults
is innovatively combined with sparse decomposition through
the application of the SFFT and SSS, which adaptively utilize
fault modulation information in the full frequency range to
enhance the fault features of weak gear faults with high
effectiveness. The proposed method is not limited to impact
modulation signals within the resonance region and circum-
vents the sensitive band selection of gear faults involved in
most conventional methods.

The remainder of this paper is organized as follows.
Section 2 presents mathematical model analysis in the fre-
quency and envelop spectrum. The theoretical background
of the proposed MSFFD is also presented. In Section 3,
experimental results and comparisons are used to verify the
effectiveness of the proposed method for gear fault diagnosis.
Finally, Section 4 summarizes our conclusions.

II. THEORETICAL BACKGROUND
In this section, we present transient signal analysis through
parallel time-frequency filtering based on time-frequency
modulation (TFM) signatures, which is called PTFM filter-
ing. The proposed method faces two significant challenges.
One is how to achieve theoretical reconstruction using an
efficient TFM learning process because the conventional
technique is very time consuming as a result of nonlinear
learning. The second crucial challenge is how to apply the
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local merits of TFM to global signals while retaining mani-
fold morphology structures. The following sections primarily
focus on these two challenges.

A. GEAR SIGNAL MODULATION MODEL
The meshing vibration of a typical gearbox can be approx-
imated as a simple harmonic vibration and a measured
signal x(t) with N data points is primarily distributed in
the change frequency of the meshing stiffness, which cor-
responds to the vibrations of meshing frequencies and their
harmonics. Hence, it can be modelled as [8], [31]

x(t) =
M∑
m=0

Am cos(mwzt + φm) (1)

wz = 2π fz, wr = 2π fr , fz = zfr (2)

where Am and φm represent the amplitude and phase of the
mth mesh frequency component, respectively, and fz and fr
are the meshing and rotating frequencies, respectively.
In addition, M is the maximum order of the meshing fre-
quency and r represents the shaft number. There are twomain
types of gear faults, namely distributed and local faults, which
correspond to steady and impact modulations, respectively.
Accordingly, the model can also be expressed as [22]

x(t) = xd (t)+ xl(t)+ ς (t) (3)

where xd (t), xl(t), and ς (t) represent the steady compo-
nents, impact components, and noise, respectively. When a
distributed/localized fault occurs, amplitude modulation and
frequency/phase modulation emerge, along with variations in
themeshing forces. In this study, we assumed that only ampli-
tude modulation was available for gear vibration signals.

1) SIGNAL MODEL FOR FREQUENCY SPECTRUM ANALYSIS
For a distributed fault, the meshing frequency and harmonic
components of the complex signal xd (t) can be rewritten as

xd (t) =
M∑
m=0

Am [1+ bm(t)] ei(mwzt+ϕ0)

=

M∑
m=0

Am

[
1+

K∑
k=0

Bm,k cos(kwr t)

]
ei(mwzt+ϕ0) (4)

where K , ϕ0, and Bm,k represent the maximum order of the
rotating frequency, initial phase, and modulation factor of
the kth order rotating frequency of the mth mesh frequency
component, respectively. It can be determined that the car-
rier frequencies include the meshing frequency and its har-
monics mwz = mzwr (m = 0, 1, 2, . . . ,M ), whereas the
modulation frequencies include the rotating frequency and its
harmonics kwr (k = 0, 1, 2, . . . ,K ).

Accordingly, based on the trigonometric function of ampli-
tude modulation, the model in Eq. (4) can be transformed as

xd (t) =
M∑
m=0

xm(t) =
M∑
m=0

K∑
k=0

αm,kei[(mz±k)wr t+ϕ0] (5)

where αm,k is the triangle coefficient. It can be observed
that the raw distributed signal xd (t) can be decomposed into
a series of mono-components with a mono-frequency sfr ,
where order s is equal to mz ± k and is directly related to
the rotating frequency fr . The corresponding FT of xd (t) can
be expressed as

Xd (w) = 2π
M∑
m=0

K∑
k=0

αm,kδ [w− (mz± k)wr ] (6)

As a result of multiple modulation, the distributed fault
information will appear in several mono-frequency scales
(mz ± k)wr with different modulating intensities αm,k . This
suggests that we can extract and identify fault features at
different frequency scales.

For a local fault, the impact frequency and har-
monic components of the signal xl(t) can be rewritten
as

g(t;wl, ξ ) =

{
e−α[wl t]

2
eiwl t , |t| ≤ W

0 else
(7)

xl(t) =
∞∑

p=−∞

Apgp(t − pτr )

= g(t) ∗
∞∑

p=−∞

Apδ(t − pτr ) (8)

where A and g(t;wl, ξ ) are the amplitude and impact form,
respectively. Additionally, wl = 2π fl represents the carrier
frequency and τr denotes the period of transients, which is
equal to τr = 1/fr . The impulse will periodically appear, and
the FT of xl(t) is expressed as

Xl(w) = G(w)
∞∑

p=−∞

Ape−jpwτr

Ap=constant
=

 2π√
2αw2

l

e
−

w2

4αw2d ∗ δ(w− wl)

wr

×

∞∑
p=0

apδ(w± pwr )

=
2πwr√
2αw2

l

e
−

w2

4αw2l

∞∑
p=0

apδ [w− (wl ± pwr )]

(9)

According to this equation, it can be concluded that
the transient fault feature

∑
∞

p=0 apδ(w± pwr ) will spread
around the center frequency wl in a limited frequency
band [wl − Pwr ,wl + Pwr ]. The corresponding mono- fre-
quency components wl ± pwr , (p = 0, 1, 2, . . . ,P) eluci-
date the transient characteristics, where P is the maximum
order.
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Therefore, according to Eqs. (3), (6) and (9), we can obtain
the frequency spectrum of the gear signal x(t) as

X (w) = Xd (w)+ Xl(w)+ Fς (w)

= Fς (w)+ 2π
M∑
m=0

K∑
k=0

αm,kδ [w− (mz± k)wr ]

+
2πwr√
2αw2

l

e
−

w2

4αw2l

P∑
p=0

apδ [w− (wl ± pwr )] (10)

In addition, the fault features, including steady and impact
modulations, will be carried by different frequencies mzwr
or wl , and will concentrate on several mono-frequencies
(mz± k)wr or wl ± pwr in limited frequency bands.

2) SIGNAL MODEL FOR FREQUENCY SPECTRUM ANALYSIS
The corresponding envelope spectrum for a given complex
signal x(t) is also calculated as Ex = ||x(t)||. First, assuming
that the components of signal xd (t) correspond to the meshing
frequency and its harmonics, a distributed fault signal, such as
that modelled in Eq. (4), can be effectively separated through
multi-scale analysis. Accordingly, the envelope spectrum of
the separated component xmd (t) can be obtained as

Emd = Am

[
1+

K∑
k=0

Bm,k cos(kwr t)

]
, m = 0, 1, . . . ,M

(11)

The fault information appears as a combination of har-
monic signals related to the rotational frequency wr . In addi-
tion, the corresponding frequency spectrum is obtained as

Xmd (w) =Am

{
1+

K∑
k=0

Bm,kδ(w± kwr )

}
, m = 0, 1, . . . ,M

(12)

For a local fault, as modelled in Eqs. (8) and (9), the
corresponding envelope spectrum can be computed using
Eq. (10) as follows

El = E[xl(t)]

= E[g(t) ∗
∞∑

p=−∞

Apδ(t − pτr )]

= e−αw
2
l t

2
∗

∞∑
p=0

Apδ(t ± pτr ) (13)

The corresponding frequency spectrum is obtained as

Xl(w) = F
[
e−αw

2
l t

2
]
F

 ∞∑
p=0

Apδ(t ± pτr )


Ap=constant
=

wr√
2αw2

l

e
−

w2

4αw2l

∞∑
p=0

δ(w± pwr ) (14)

The component e−αw
2
l t

2
or e−w

2/4αw2
l is a Gaussian func-

tion and it serves as its own frequency spectrum. According
to the monotonic decay property of the Gaussian function,
it can be observed that the value of this component will
continuously decrease until it disappears. Accordingly, a con-
straint condition can be set to ensure the maximum order
of p as

e
−

w2

4αw2l ≥ ξ ⇒ w ≤ 2
√
α ln(1/ξ )wd (15)

Because the value sequence for w is pwr (p = 0, 1,
2, . . . , P), we can also obtain that

P ≤
2
√
α ln(1/ξ )wl
wr

(16)

Therefore, by applying Eq. (15) to Eq. (14), we can obtain
the limited form of the envelope spectrum as

Xl(w) =
wr√
2αw2

d

e
−

w2

4αw2l

+∞∑
p=0

δ(w± pwr )

=

P∑
p=0

 wr√
2αw2

l

e
−
p2w2r
4αw2l δ(w± pwr )

 (17)

In conclusion, by using Eqs. (11) and (17), we can finally
infer that the fault features hide in the envelope spectrum
at each frequency scales, which can be uniformly expressed
as a series of harmonic frequencies kwr or pwr with dif-
ferent distribution densities, including steady and impact
faults.

dwr ,sfscale = cos(swr t + θs), s = 0, 1, 2, . . . , I (18)

where wr , I , and θs represent the rotational frequency of
the gearbox, corresponding maximum order of the har-
monic frequencies, and initial phase, respectively. In addition,
fscale represents the selected frequency scale for the compo-
nent separated from the raw gear signal.

In general, the fault frequency wr can be directly identi-
fied from the envelope spectrum Ex . However, owing to the
multi-modulation and heavy interference noise, it is difficult
to identify and extract fault features. Based on Eqs. (3), (4)
and (9), we can conclude that the gear signal x(t) can be
considered a linear superposition of multiple components
at different frequency scales, where different carrier waves
combine different modulating waves. Hence, we can obtain
the corresponding envelope as

E2
x = ‖xd‖

2
+ ‖xl‖2 + (xd x̄l + x̄dxl)+ E2

ς

=

M∑
m=0

∥∥xmd ∥∥2 + ‖xl‖2
+

M∑
i6=j
i,j=0

(x id x̄
j
d + x̄

i
dx

j
d )+ (xd x̄l + x̄dxl)+ E2

ς
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=

M∑
m=0

∥∥xmd ∥∥2 + ‖xl‖2 + 2
M∑
i6=j
i,j=0

∥∥∥x idx jd∥∥∥ cos(θ id − θ jd )
+2 ‖xdxl‖ cos(θd − θl)+ E2

ς

=

M∑
m=0

Em2d + E
2
l + 2

M∑
i6=j
i,j=0

∥∥∥x idx jd∥∥∥ cos(∇θ i,jd )

+2 ‖xdxl‖ cos(∇θd,l)+ E2
ς

=

M∑
m=0

Em2d + E
2
l + E

2
cross + E

2
ς (19)

where ∇θ i,jd represents the phase difference of the carrier
frequencies izwr and jzwr , and ∇θd,l denotes the phase dif-
ference of the carrier frequencies mzwr and wd . Therefore,
we have

∇θ
i,j
d = m(i− j)wr

∇θd,l = mzwr − wl (20)

By excluding the main components Em2d and E2
l , it can be

observed that several envelope cross-terms will emerge once
multiple components (with different carrier frequenciesmzwr
orwd ) appear in the raw signal. In this case, before calculating
the envelope spectrum Emd or El , the raw signal x(t) should be
divided into a series of pseudo mono-components at differ-
ent frequency scales, including the desired carrier frequency
mzwr or wd . Accordingly, a series of pseudo mono-frequency
components can be used tomine fault information, which will
be discussed in the next section.

B. SHORT-FREQUENCY FOURIER TRANSFORM
According to the signal model for the frequency spectrum
discussed in Sub-section 2.1.1, we can infer that the fault
information of a defective gear will distribute over a wide
frequency band, which is directly related to the carried fre-
quencies, and that there are different modulating intensities
for each frequency band. An important objective is to mine
modulated information at different carrier frequency scales.
In this section, a short- frequency window function is applied
to the raw frequency spectrum to obtain multiscale frequency
units. This method is called the SFFT, and aims to achieve
multi-scale analysis for gear fault signals with multi-carrier
frequencies.

A sliding window g(τ ) centered at time t with a con-
stant length of k is applied to the analysed time-domain
signal x(t), and the corresponding frequency information of
the windowed time-domain signal xt (τ ) = x(τ )g(τ − t) can
be analysed through an FT. Hence, the frequency distribution
around the time shift t can be represented by the frequency
spectrum of the modified signal xt (τ ) as

Y (t,w) = Yt (w) =
1
√
2π

∫
xt (τ )e−jwτdτ

=
1
√
2π

∫
x(τ )g(τ − t)e−jwτdτ (21)

The STFT analyses the frequency characteristics at the
time shift t . However, as mentioned in Subsection 2.1.1,
the gear fault features of interest are distributed across differ-
ent carrier frequency scales with different modulating inten-
sities. Therefore, similar to the STFT with a time-domain
filter used for analysing the frequency characteristics at
the time shift t , the SFFT [22] focuses on applying a
frequency-domain filter to study the time characteristics at
the frequency scale w.
For a measured gear signal x(t), the corresponding fre-

quency spectrum is obtained from the FT as

X (w) =
1
√
2π

∫
x(t)e−jwtdt (22)

Similar to the time-domain window g(τ ) in STFT, with
a center frequency v and constant length W , a frequency-
domain window G(v) is employed to analyse the correspond-
ing frequency-domain signal X (w), which is defined as

Xw(v) = X (v)G(v− w) (23)

It can be assumed that the frequency spectrum at the
carrier frequency w only covers the modulated information
carried by frequency w. Accordingly, the raw frequency fea-
tures are fragmented into different carrier frequency scales.
The corresponding time-domain signal of the windowed
frequency-domain signal Xw(v) at the frequency w can be
calculated through a series of inverse FTs as

x(w, t) = xw(t) =
1
√
2π

∫
Xw(v)ejvtdv

=
1
√
2π

∫
X (v)G(v− w)ejvtdv (24)

where x(w, t) is a complex matrix, and a series of pseudo
mono-frequency components xw(t) can be calculated at each
frequency scalew. The definition of Ew(t) for the correspond-
ing amplitude density spectrum at the frequency shift w is
expressed as

Ew(t) = E(w, t) = |x(w, t)| = |xw(t)| (25)

where a time-frequency distribution (TFD) can also be real-
ized for time-frequency analysis. By using this SFFT-based
TFD, we can obtain the multi-components for each car-
rier frequency scale, which elucidates the mono-frequencies
(mz ± k)wr or wd ± pwr modulated at different carrier fre-
quencies mzwr or wd . For complex modulation, the desired
fault characteristics will mainly be distributed in a limited
frequency band, such as the frequency band [−Iwr , Iwr1],
where I is defined as the maximum order of the harmon-
ics. In other words, the frequency extent with an available
frequency bandwidth 2Iwr can be covered by the frequency
window function G. As illustrated in Fig. 1, the frequency
spectrum can be divided into a series of modulation fre-
quency bands, including the carrier frequenciesmzwr andwd .
A short frequency window with different frequency shifts is
employed to obtain the localmodulation band. In addition, the
fault information can be further modulated from these narrow
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FIGURE 1. SFFT process with short-frequency window sliding in the
frequency spectrum to divide the frequency spectrum into several
modulation frequency bands. Here, mzwr and wd are the carried
frequencies, and G represents the frequency window function.

bands at different frequency scales, where the cross terms in
Eq. (19) can be ignored to a certain degree.

C. ORTHOGONAL MATCHING PURSUIT
By applying the introduced SFFT, a series of narrow-band
signals, which contain multiple pseudo mono-frequency
components can be derived. In addition, the SFFT-based
TFD provides a method of amplitude density analysis for
multi-frequency scales. Furthermore, considering the sig-
nal model for the envelope spectrum discussed in Subsec-
tion 2.1.2, we can also derive that the envelopes of the
multiple pseudo mono-frequency components comprise har-
monic waves related to rotational frequencies. As expressed
in Eqs. (23)-(25), another crucial objective is to represent
the envelope spectrum Fw(t) sparsely, which facilitates the
efficient mining of fault features. According to the principle
of additional orthogonalization in the atom matching pro-
cess, the orthogonal matching pursuit (OMP) technique is
employed to match the crucial harmonic components to a
given harmonic dictionary. For example, with a dictionary
d = {dm,m = 1, 2, . . . , n, ||di|| = 1}, a real signal Sε RL can
be sparsely expressed by a linear combination of K atoms as

S =
K∑
k=1

gmkdmk (26)

where mk and gmk represent the label and coefficient
of the matched atom dmk , respectively. To illustrate
harmonic modulation, the dictionary d is defined as{
d fr ,sfscale

∣∣∣ cos(2πsfr t + θj), s = 0, 1, 2, . . . , I , j = 0, 1, . . . , J
}

in Eq. (18), where fr , I , and J represent the related rotational
frequencies of all shifts, maximum order of the harmonic
frequencies, and number of the initial phase in the range of
[0, 2π ], respectively. Considering the non-stationarity and
resolution ratio of the real signal, a frequency compensa-
tion factor 1f is introduced to extend ±21f . Therefore,
as mentioned in Section 2.1, the raw envelope Fw(t) can
be decomposed into a series of harmonic atoms, where
the approximation envelope Êw (t) is reconstructed and the
residual error rM is rejected. For the k-order approximation,
the reconstructed envelope Êw (t) can be expressed as

Êkw (t) = dfscaleck . (27)

dfscale = supp{d1fscale, d
2
fscale, . . . , d

k
fscale} (28)

ck =
(
dTfscaledfscale

)−1
dTfscaleFw (t) (29)

where dfscale and ck are the matched dictionary and corre-
sponding coefficient, respectively. In addition, the iteration
termination condition can be ascertained from the energy
ratio of the residual signal ri = E(t) − Ê iw (t), which is
expressed as

RE =
||ri+1||2 − ||ri||2

||r0||2
< ξ (30)

where ξ is a predetermined threshold.

D. MULTISCALE SPARSE FREQUENCY-FREQUENCY
DISTRIBUTION
Based on the sparse representation of the envelope for each
pseudo mono-frequency component, the Fourier spectrum at
each frequency scale fscale is derived for frequency-frequency
analysis. We propose a novel frequency to frequency dis-
tribution called the multiscale sparse frequency-frequency
distribution, which can be synthesized as

S(fscale, f ) = Sfscale(f ) = F
[
Êkfscale

]∣∣∣
f

(31)

where Êkfscale is the reconstructed envelope at the fre-
quency scale fscale. A multi-scale feature representation can
be addressed using hard threshold de-noising, which is
expressed as

S(fscale, f ) =

{
0 S(fscale, f ) ≤ λmax [S(fscale, f )]
S(fscale, f ) else

(32)

Subsequently, it can be observed that a 2D distribution
with multiscale frequencies retains all modulated information
and fault characteristics, where substantial information can
be explicitly expressed when different modulation levels are
ignored.

For more comprehensive analysis, an SSS is derived
through frequency-frequency ridge extraction from the
MSFFD as

A(f ) = max
fscale∈All

S(fscale, f ) (33)

As expressed in Eqs. (23) and (24), a series of pseudo
mono-frequency components can be derived by applying
the sliding operation of a frequency-domain window G(v).
As discussed for G(v), which belongs to a weight sequence
with time shifts, it can be inferred that the information at
the frequency fscale indicates a number of LG (window length
of the window function G) pseudo components. Therefore,
an inverse weight at the scale fscale is used to recalculate the
sparse spectrum as

Aw(f ) =
Nf2∑

fscale=Nf1

[Sf (fscale)/G(fscale − f
f
max)] (34)
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where Nf1 and Nf2 are the limited frequency points around
the selected frequency scale (b(Nf2 + Nf1)/2c = f fmax
and Nf2 − Nf1 = LG). The weighted SSS syntheti-
cally provides a sound demodulation information distribu-
tion with multiple modulation. The proposed MSFFD aims
to synthesize complex multiple modulation information and
different modulation densities simultaneously. Additionally,
it discards harmonic-unrelated noise to facilitate gearbox
fault diagnosis.

E. PROCEDURE OF THE PROPOSED METHOD
Based on the sparse representation of vibration fault sig-
nals, the proposed MSFFD aims to represent pseudo
mono-frequency components in multiple short frequency
scales. Accordingly, a weighted sparse spectrum is obtained
from the pseudo mono-components. A flowchart of the pro-
posed method is illustrated in Fig. 2.

FIGURE 2. Illustration of the proposed MSFFD method containing
multiple envelope construction, harmonic atoms construction, multiple
sparse representation, synthesized sparse spectrum, weighting frequency
factor, and multiple sparse frequency-frequency distribution.

For a gear fault vibration signal x(t) with a rotation fre-
quency of the input shaft of fr , the MSFFD is implemented
using the following four steps.

(I) The SFFT is first derived as expressed in Eq. (21),
where the frequency-domain sliding window G(v) is applied
to obtain a series of pseudomono-component signals from the
frequency spectrum of x(t), which involves different modu-
lation densities. The corresponding envelops of the complex
signal x(w, t) cover the feature frequencies of interest.

(II) Based on the theoretical derivations for the gearbox
vibration signal in Eqs. (4)-(20), harmonic atoms d sfscale are
obtained using Eq. (18) under the condition of a known input
shaft speed.

(III) Sparse coefficients are calculated based on the OMP
technique using Eqs. (27)-(30) to obtain a sparse representa-
tion of the pseudomono-components Êkfscale (t). Subsequently,

the frequency-to-frequency distribution S(fscale, f ) can be
acquired from the FT in Eqs. (31)-(32).

(IV) The synthesized sparse spectrum A(f ) is calculated
from Sfscale (f ) using Eq. (33). The MSFFD is finally realized
by fusing A(f ) and w(fscale) using Eq. (34).

III. EXPERIMENTAL VALIDATIONS
A custom-made test stand for a gearbox driven system was
used to verify the effectiveness of the proposed method. The
test stand mainly consisted of a two-stage gearbox, magnetic
powder brake, three-phase induction motor, control unit, and
several flexible couplings, as presented in Fig. 3. The motor
and magnetic powder brake are controlled by a frequency
converter and load controller, respectively. The structural
parameters of the two-stage gearbox are listed in Table 1, and
the gear ratio of gearbox is approximately 3.59.

FIGURE 3. Custom-made test stand of two-stage gearbox testing system
mainly comprising three-phase induction motor, gearbox, magnetic
powder brake, data acquisition unit, load controller, coupler,
speed-torque sensor, inter-process communication unit,
and variable frequency drive.

TABLE 1. Structural parameters for the tooth numbers and gear ratios of
the two-stage gearbox.

Multiple operations with various speeds and loads can be
tested using this gearbox system. With a 5120 -Hz sampling
frequency, vibration signals are collected by a LMS data
acquisition system with three accelerometers (V1/V2/V3)
located in the bearing case of the gearbox, as illustrated
in Fig. 3. A crack defect is conducted on the driving gear
of the second-stage gear pair, as illustrated in Fig. 3. Owing
to the relatively large bearing stiffness, and all the mesh-
ing excitations acting on the bearing pedestal, the vibration
signals collected by the accelerometers on the bearings are
typically larger than those elsewhere on the housing. The
vibration signals collected by the accelerometer mounted on

VOLUME 9, 2021 113095



L. Zhang et al.: Gearbox Fault Diagnosis Using MSFFDs

the bearing pedestal of the intermediate shaft (location V2)
were analysed, because the distances from themeshing points
of the gearbox to V2 are more modest than V1 and V3,
and accelerometer V2 can obtain vibration signals containing
the fault information provided by each meshing point. The
detailed frequency parameters of the gearbox can be calcu-
lated as presented in Table 2, where input speeds are 600,
800, 1000 and 1200 rpm, respectively. The fault characteristic
frequency fsf for the crack fault is equal to the shaft frequency
of the middle shaft fg, although they have different harmonic
information.

TABLE 2. Frequency parameters (Hz) of the gearbox with different input
speeds under the no-load condition.

A. EFFECTIVENESS OF THE PROPOSED METHOD
The time-domain waveforms of vibration signals are pre-
sented in Fig. 4 under different input speeds. These signals
included impulse components. The vibration signal under the
input speed of 600 rpm was analysed and the resulting spec-
trum is illustrated in Fig. 5(a). Evidently, the transient char-
acteristic is completely submerged in the interference caused
by strong noise and meshing components. According to the
envelop spectrum in Fig. 5(b), frequency components such as
fg, fh, and 2fg are significant. However, some irrelevant ele-
ments still restrict the high harmonics of the shaft frequency.
After applying the proposed method, the envelop spectrum is
presented in Fig. 5(d). When comparing Figs. 5(b) and (d),
it is clear that the proposed method is superior to the con-
ventional demodulation method in terms of discarding inter-
ference elements. In Fig. 5(d), one can be observed that the
fg, fh, and 2fg components are more significant than the other
components, which indicates that the gears mounted on the
middle and input shafts, experienced faults. This agrees well
with the crack on the driving gear of the second-stage gear
pair. In addition, coupling often triggers the misalignment of
the connection shaft, which causesmisalignments of the input
and output shafts. Hence, the harmonics of fh in the envelop
spectrum are triggered by the misalignment of the input shaft.
In other words, the fault feature components are consistent
with the experimental conditions.

Similarly, the vibration signals under input speeds
of 800 rpm, 1000 rpm and 1200 rpmwere also analysed using
the spectrum analysis methods. Figs. 6(b) and (d) indicate
that the fault feature harmonics in the envelope spectrum
obtained by the proposed method are more dominant than
those obtained by the compared method. Similar results can
be observed in Figs. 7(b) and (d), which suggests that the

FIGURE 4. Waveforms of the gear crack defect signals under different
input speeds: (a) 600 rpm, (b) 800 rpm, (c) 1000 rpm, and (d) 1200 rpm.

FIGURE 5. Spectrum analysis of the gear crack defect signal under an
input speed of 600 rpm: (a) FFT spectrum, (b) envelop spectrum,
(c) MSFFD (frequency ridge marked by red line), and (d) SSS (fl , fg,
and fh respectively correspond to the shaft frequencies of the
output, middle and input shafts).

FIGURE 6. Spectrum analysis of the gear crack defect signal under an
input speed of 800 rpm: (a) FFT spectrum, (b) envelop spectrum,
(c) MSFFD (frequency ridge marked by red line), and (d) SSS (fl , fg,
and fh represent the shaft frequencies of the output, middle,
and input shafts, respectively).

proposed method is more effective at enhancing fault feature
components and discarding interference elements. It should
be noted that fl harmonics also emerge in the envelop spec-
trum, which coincides with the misalignment of the output
shaft. Similar results can be observed in Fig. 8(d), which
presents the fault feature frequencies of the input, middle and
output shafts related to the cracked gear and misalignments.
In addition, the proposed method can effectively discard the
illusory modulation components marked by the green circles
in Figs. 8 (b) and (d). Therefore, it can be inferred that
the proposed method can effectively extract fault modulation
components and detect gear faults.

B. COMPARISONS
To demonstrate the effectiveness of the proposed method fur-
ther, EMD-based spectrum and fast-kurtogram analyses were
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FIGURE 7. Spectrum analysis of the gear crack defect signal under a
1000-rpm input speed: (a) FFT spectrum, (b) envelop spectrum,
(c) MSFFD (frequency ridge marked by red line), and (d) SSS (fl , fg,
and fh represent the shaft frequencies of the output, middle,
and input shafts, respectively).

FIGURE 8. Spectrum analysis of the gear crack defect signal under a
1200 rpm input speed: (a) FFT spectrum, (b) envelop spectrum,
(c) MSFFD (frequency ridge marked by red line), and (d) SSS (fl , fg,
and fh represent the shaft frequencies of the output, middle,
and input shafts, respectively).

FIGURE 9. EMD-based spectrum analysis of the gear crack defect signals
under different input speeds: (a) 600 rpm, (b) 800 rpm, (c) 1000 rpm, and
(d) 1200 rpm.

adopted to assess the measured vibration signals. By compar-
ing Figs. 9 and 10 to Figs. 5–8, it can be inferred that some
fault feature components related to the gear faults cannot
be clearly identified, which goes against the correct fault
diagnosis. This comparison further validates the proposed
method in terms of the accuracy of fault feature extraction
from complicated modulation signal triggered by multiple
gear faults.

FIGURE 10. Fast-kurtogram analysis of the gear crack defect signals
under different input speeds: (a) 600 rpm, (b) 800 rpm,
(c) 1000 rpm, and (d) 1200 rpm.

IV. CONCLUSION
In the paper, a novel gear fault frequency detection method
called MSFFD was proposed for gearbox fault diagnosis.
First, a series of pseudo mono-components acquired by a
frequency-window function are used to obtain the desired
modulation features that are sparsely distributed in multi-
scale space. Second, a weighted SSS synthetically provides
efficient fault detection feature. Hence, the proposed method
can extract multiple modulation components combined with
different modulation levels at one frequency scale with a
series of pseudo mono-components, which can clearly sepa-
rate and sparsely represent fault-related harmonics to derive a
logical and accurate fault frequency distribution. In addition,
the weighted SSS can elucidate the weighted SSS struc-
ture of fault frequency components and detect gear faults.
Experiments and comparisons verified the effectiveness of
the proposed method at enhancing fault feature components,
and demonstrated the advantages of the proposed method for
obtaining information from multiple modulation signals for
gear fault diagnosis. These results were confirmed through
EMD-based spectrum and fast-kurtogram analyses. It should
be noted that the quantifiable data on fault features are
important for gear fault quantitative diagnosis, which should
be further researched in the future to supplement gear fault
quantitative diagnosis.
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